1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
// Program captree explores a process tree rooted in the supplied
// argument(s) and displays a process tree indicating the capabilities
// of all the dependent PID values.
//
// This was inspired by the pstree utility. The key idea here, however,
// is to explore a process tree for capability state.
//
// Each line of output is intended to capture a brief representation
// of the capability state of a process (both *Set and *IAB) and
// for its related threads.
//
// Ex:
//
// $ bash -c 'exec captree $$'
// --captree(9758+{9759,9760,9761,9762})
//
// In the normal case, such as the above, where the targeted process
// is not privileged, no distracting capability strings are displayed.
// Where a process is thread group leader to a set of other thread
// ids, they are listed as `+{...}`.
//
// For privileged binaries, we have:
//
// $ captree 551
// --polkitd(551) "=ep"
// :>-gmain{552} "=ep"
// :>-gdbus{555} "=ep"
//
// That is, the text representation of the process capability state is
// displayed in double quotes "..." as a suffix to the process/thread.
// If the name of any thread of this process, or its own capability
// state, is in some way different from the primary process then it is
// displayed on a subsequent line prefixed with ":>-" and threads
// sharing name and capability state are listed on that line. Here we
// have two sub-threads with the same capability state, but unique
// names.
//
// Sometimes members of a process group have different capabilities:
//
// $ captree 1368
// --dnsmasq(1368) "cap_net_bind_service,cap_net_admin,cap_net_raw=ep"
// +-dnsmasq(1369) "=ep"
//
// Where the A and B components of the IAB tuple are non-default, the
// output also includes these:
//
// $ captree 925
// --dbus-broker-lau(925) [!cap_sys_rawio,!cap_mknod]
// +-dbus-broker(965) "cap_audit_write=eip" [!cap_sys_rawio,!cap_mknod,cap_audit_write]
//
// That is, the `[...]` appendage captures the IAB text representation
// of that tuple. Note, if only the I part of that tuple is
// non-default, it is already captured in the quoted process
// capability state, so the IAB tuple is omitted.
//
// To view the complete system process map, rooted at the kernel, try
// this:
//
// $ captree 0
//
// To view a specific binary (as named in /proc/<PID>/status as 'Name:
// ...'), matched by a glob, try this:
//
// $ captree 'cap*ree'
//
// The quotes might be needed to avoid the '*' confusing your shell.
package main
import (
"flag"
"fmt"
"io/ioutil"
"log"
"os"
"path/filepath"
"sort"
"strconv"
"strings"
"sync"
"kernel.org/pub/linux/libs/security/libcap/cap"
)
var (
proc = flag.String("proc", "/proc", "root of proc filesystem")
depth = flag.Int("depth", 0, "how many processes deep (0=all)")
verbose = flag.Bool("verbose", false, "display empty capabilities")
color = flag.Bool("color", true, "color targeted PIDs on tty in red")
colour = flag.Bool("colour", true, "colour targeted PIDs on tty in red")
)
type task struct {
mu sync.Mutex
viewed bool
depth int
pid string
cmd string
cap *cap.Set
iab *cap.IAB
parent string
threads []*task
children []string
}
func (ts *task) String() string {
return fmt.Sprintf("%s %q [%v] %s %v %v", ts.cmd, ts.cap, ts.iab, ts.parent, ts.threads, ts.children)
}
var (
wg sync.WaitGroup
mu sync.Mutex
colored bool
)
func isATTY() bool {
s, err := os.Stdout.Stat()
if err == nil && (s.Mode()&os.ModeCharDevice) != 0 {
return true
}
return false
}
func highlight(text string) string {
if colored {
return fmt.Sprint("\033[31m", text, "\033[0m")
}
return text
}
func (ts *task) fill(pid string, n int, thread bool) {
defer wg.Done()
wg.Add(1)
go func() {
defer wg.Done()
c, _ := cap.GetPID(n)
iab, _ := cap.IABGetPID(n)
ts.mu.Lock()
defer ts.mu.Unlock()
ts.pid = pid
ts.cap = c
ts.iab = iab
}()
d, err := ioutil.ReadFile(fmt.Sprintf("%s/%s/status", *proc, pid))
if err != nil {
ts.mu.Lock()
defer ts.mu.Unlock()
ts.cmd = "<zombie>"
ts.parent = "1"
return
}
for _, line := range strings.Split(string(d), "\n") {
if strings.HasPrefix(line, "Name:\t") {
ts.mu.Lock()
ts.cmd = line[6:]
ts.mu.Unlock()
continue
}
if strings.HasPrefix(line, "PPid:\t") {
ppid := line[6:]
if ppid == pid {
continue
}
ts.mu.Lock()
ts.parent = ppid
ts.mu.Unlock()
}
}
if thread {
return
}
threads, err := ioutil.ReadDir(fmt.Sprintf("%s/%s/task", *proc, pid))
if err != nil {
return
}
var ths []*task
for _, t := range threads {
tid := t.Name()
if tid == pid {
continue
}
n, err := strconv.ParseInt(pid, 10, 64)
if err != nil {
continue
}
thread := &task{}
wg.Add(1)
go thread.fill(tid, int(n), true)
ths = append(ths, thread)
}
ts.mu.Lock()
defer ts.mu.Unlock()
ts.threads = ths
}
var empty = cap.NewSet()
var noiab = cap.IABInit()
// rDump prints out the tree of processes rooted at pid.
func rDump(pids map[string]*task, requested map[string]bool, pid, stub, lstub, estub string, depth int) {
info, ok := pids[pid]
if !ok {
panic("programming error")
return
}
if info.viewed {
// This process (tree) has already been viewed so skip
// repeating it.
return
}
info.viewed = true
c := ""
set := info.cap
if set != nil {
if val, _ := set.Cf(empty); val != 0 || *verbose {
c = fmt.Sprintf(" %q", set)
}
}
iab := ""
tup := info.iab
if tup != nil {
if val, _ := tup.Cf(noiab); val.Has(cap.Bound) || val.Has(cap.Amb) || *verbose {
iab = fmt.Sprintf(" [%s]", tup)
}
}
var misc []*task
var same []string
for _, t := range info.threads {
if val, _ := t.cap.Cf(set); val != 0 {
misc = append(misc, t)
continue
}
if val, _ := t.iab.Cf(tup); val != 0 {
misc = append(misc, t)
continue
}
if t.cmd != info.cmd {
misc = append(misc, t)
continue
}
same = append(same, t.pid)
}
tids := ""
if len(same) != 0 {
tids = fmt.Sprintf("+{%s}", strings.Join(same, ","))
}
hPID := pid
if requested[pid] {
hPID = highlight(pid)
requested[pid] = false
}
fmt.Printf("%s%s%s(%s%s)%s%s\n", stub, lstub, info.cmd, hPID, tids, c, iab)
// loop over any threads that differ in capability state.
for len(misc) != 0 {
this := misc[0]
var nmisc []*task
var hPID = this.pid
if requested[this.pid] {
hPID = highlight(this.pid)
requested[this.pid] = false
}
same := []string{hPID}
for _, t := range misc[1:] {
if val, _ := this.cap.Cf(t.cap); val != 0 {
nmisc = append(nmisc, t)
continue
}
if val, _ := this.iab.Cf(t.iab); val != 0 {
nmisc = append(nmisc, t)
continue
}
if this.cmd != t.cmd {
nmisc = append(nmisc, t)
continue
}
hPID = t.pid
if requested[t.pid] {
hPID = highlight(t.pid)
requested[t.pid] = false
}
same = append(same, hPID)
}
c := ""
set := this.cap
if set != nil {
if val, _ := set.Cf(empty); val != 0 || *verbose {
c = fmt.Sprintf(" %q", set)
}
}
iab := ""
tup := this.iab
if tup != nil {
if val, _ := tup.Cf(noiab); val.Has(cap.Bound) || val.Has(cap.Amb) || *verbose {
iab = fmt.Sprintf(" [%s]", tup)
}
}
fmt.Printf("%s%s:>-%s{%s}%s%s\n", stub, estub, this.cmd, strings.Join(same, ","), c, iab)
misc = nmisc
}
if depth == 1 {
return
}
if depth > 1 {
depth--
}
x := info.children
sort.Slice(x, func(i, j int) bool {
a, _ := strconv.Atoi(x[i])
b, _ := strconv.Atoi(x[j])
return a < b
})
stub = fmt.Sprintf("%s%s", stub, estub)
lstub = "+-"
for i, cid := range x {
estub := "| "
if i+1 == len(x) {
estub = " "
}
rDump(pids, requested, cid, stub, lstub, estub, depth)
}
}
func findPIDs(list []string, pids map[string]*task, glob string) <-chan string {
finds := make(chan string)
go func() {
defer close(finds)
found := false
// search for PIDs, if found exit.
for _, pid := range list {
match, _ := filepath.Match(glob, pids[pid].cmd)
if !match {
continue
}
found = true
finds <- pid
}
if found {
return
}
fmt.Printf("no process matched %q\n", glob)
os.Exit(1)
}()
return finds
}
func setDepth(pids map[string]*task, pid string) int {
if pid == "0" {
return 0
}
x := pids[pid]
if x.depth == 0 {
x.depth = setDepth(pids, x.parent) + 1
}
return x.depth
}
func main() {
flag.Usage = func() {
fmt.Fprintf(flag.CommandLine.Output(), "Usage: %s [options] [pid|glob] ...\nOptions:\n", os.Args[0])
flag.PrintDefaults()
}
flag.Parse()
// Honor the command line request if possible.
colored = *color && *colour && isATTY()
// Just in case the user wants to override this, we set the
// cap package up to find it.
cap.ProcRoot(*proc)
pids := make(map[string]*task)
pids["0"] = &task{
cmd: "<kernel>",
}
// Ingest the entire process tree
fs, err := ioutil.ReadDir(*proc)
if err != nil {
log.Fatalf("unable to open %q: %v", *proc, err)
}
for _, f := range fs {
pid := f.Name()
n, err := strconv.ParseInt(pid, 10, 64)
if err != nil {
continue
}
ts := &task{}
mu.Lock()
pids[pid] = ts
mu.Unlock()
wg.Add(1)
go ts.fill(pid, int(n), false)
}
wg.Wait()
var list []string
for pid, ts := range pids {
setDepth(pids, pid)
list = append(list, pid)
if pid == "0" {
continue
}
if pts, ok := pids[ts.parent]; ok {
pts.children = append(pts.children, pid)
}
}
// Sort the process tree by tree depth - shallowest first,
// with numerical order breaking ties.
sort.Slice(list, func(i, j int) bool {
x, y := pids[list[i]], pids[list[j]]
if x.depth == y.depth {
a, _ := strconv.Atoi(x.pid)
b, _ := strconv.Atoi(y.pid)
return a < b
}
return x.depth < y.depth
})
args := flag.Args()
if len(args) == 0 {
args = []string{"1"}
}
wanted := make(map[string]int)
requested := make(map[string]bool)
for _, pid := range args {
if _, err := strconv.ParseUint(pid, 10, 64); err == nil {
requested[pid] = true
if info, ok := pids[pid]; ok {
wanted[pid] = info.depth
continue
}
if requested[pid] {
continue
}
requested[pid] = true
continue
}
for pid := range findPIDs(list, pids, pid) {
requested[pid] = true
if info, ok := pids[pid]; ok {
wanted[pid] = info.depth
}
}
}
var noted []string
for pid := range wanted {
noted = append(noted, pid)
}
sort.Slice(noted, func(i, j int) bool {
return wanted[noted[i]] < wanted[noted[j]]
})
// We've boiled down the processes to a unique set of targets.
for _, pid := range noted {
rDump(pids, requested, pid, "", "--", " ", *depth)
}
for pid, missed := range requested {
if missed {
fmt.Println("[PID", pid, "not found]")
}
}
}
|