1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
|
/*
csymlib_f.c: Fortran API to CCP4 symmetry handling functions
Copyright (C) 2001 CCLRC, Martyn Winn
This library is free software: you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License
version 3, modified in accordance with the provisions of the
license to address the requirements of UK law.
You should have received a copy of the modified GNU Lesser General
Public License along with this library. If not, copies may be
downloaded from http://www.ccp4.ac.uk/ccp4license.php
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
*/
/** @page csym_f_page Fortran API to CSYM
*
* @section csym_f_file_list File list
<ul>
<li>csymlib_f.c
</ul>
*
* @section csym_f_overview Overview
This library consists of a set of wrappers to the CSYM library
giving the same API as the original symlib.f For details of the
API, see the original <a href="../symlib.html">documentation</a>.
This document covers some peculiarities of the C implementation.
* @section csym_f_multiple Multiple Spacegroups
The set of Fortran calls which mimic the original symlib.f assume
you are working within a single spacegroup. All calls access the
same spacegroup data structure, in analogy with the COMMON blocks
of symlib.f For cases where you wish to work with multiple
spacegroups (e.g. in the program <a href="../reindex.html">REINDEX</a>,
a different set of calls is provided (the names of which generally
start with "CCP4SPG_F_"). These identify the spacegroup of interest
via an index "sindx" (by analogy with the "mindx" of mtzlib).
* @section csym_f_mtz Symmetry information from MTZ files
MTZ file headers contain 2 types of symmetry records:
<dl>
<dt>SYMINF
<dd>Contains number of symmetry operators, number of primitive symmetry
operators, lattice type, spacegroup number, spacegroup name and point
group name.
<dt>SYMM
<dd>A series of records holding the symmetry operators.
</dl>
Note that the spacegroup name is likely to be ambiguous at best, with
no indication of the particular setting used. The primary source of
symmetry information is therefore taken to be the list of symmetry
operators. Note also that the order of operators is important if an
ISYM column is present.
*/
/** @file csymlib_f.c
*
* @brief Fortran API for symmetry information.
*
* @author Martyn Winn
*/
/*#define FORTRAN_CALL_DEBUG 1*/
#if defined (FORTRAN_CALL_DEBUG)
# define CSYMLIB_DEBUG(x) x
#else
# define CSYMLIB_DEBUG(x)
#endif
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "ccp4_fortran.h"
#include "ccp4_general.h"
#include "ccp4_parser.h"
#include "csymlib.h"
#include "cmtzlib.h"
#include "cvecmat.h"
/* rcsid[] = "$Id$" */
#define MSPAC 4
#define MAXSYM 192
/* the two constants below are also defined in ccp4/csymlib.c, keep in sync */
#define MAXSYMOPS 20
#define MAXLENSYMOPSTR 80
static CCP4SPG *spacegroup = NULL; /* allow more than one spacegroup ?? */
static CCP4SPG *spacegrp[MSPAC] = {NULL}; /* cf. Eugene's channel for rwbrook */
void ccp4spg_mem_tidy(void) {
CSYMLIB_DEBUG(puts("CSYMLIB_F: ccp4spg_mem_tidy");)
/* free any existing spacegroup */
if ( spacegroup ) ccp4spg_free(&spacegroup);
}
FORTRAN_SUBR ( INVSYM, invsym,
(const float a[4][4], float ai[4][4]),
(const float a[4][4], float ai[4][4]),
(const float a[4][4], float ai[4][4]))
{
CSYMLIB_DEBUG(puts("CSYMLIB_F: INVSYM");)
invert4matrix(a,ai);
}
FORTRAN_SUBR ( SYMFR3, symfr3,
(const fpstr icol, const int *i1, int *nsym, float rot[MAXSYM][4][4],
int *eflag, fpstr_size_t icol_len),
(const fpstr icol, const int *i1, int *nsym, float rot[MAXSYM][4][4],
int *eflag),
(const fpstr icol, fpstr_size_t icol_len, const int *i1, int *nsym,
float rot[MAXSYM][4][4], int *eflag))
/* symfr3 ---- Read and interpret symmetry operations
This is the same as symfr2 except that it doesn't abort on error
Instead the error status is returned in eflag (0=success, otherwise
indicates an error occured).
*/
{
char *temp_name;
int i,j,k,ns;
float tmp_rot[MAXSYMOPS][4][4];
CSYMLIB_DEBUG(puts("CSYMLIB_F: SYMFR3");)
/* nsym is the position to store the first symop in
Convert from Fortran (starts at 1) to C (starts at 0) */
*nsym = *nsym - 1;
if (*nsym < 0) *nsym = 0;
/* Get the input string to interpret */
temp_name = ccp4_FtoCString(FTN_STR(icol)+(*i1-1), FTN_LEN(icol)-(*i1-1));
/* Fetch the matrices */
if ((ns = symfr_driver(temp_name,tmp_rot)) >= 0) {
/* Store the matrices in Fortran ordering
i.e. reverse of that normally used in C */
for (i = 0; i < ns; ++i)
for (j = 0; j < 4; ++j)
for (k = 0; k < 4; ++k)
rot[*nsym+i][j][k] = tmp_rot[i][k][j];
*nsym = *nsym + ns;
*eflag = 0;
} else {
/* Error occured in symfr_driver - return error*/
*eflag = 1;
}
/* Tidy up */
if (temp_name) free(temp_name);
return;
}
FORTRAN_SUBR( SYMFR2, symfr2,
(fpstr symchs, int *icol, int *nsym, float rot[MAXSYM][4][4], fpstr_size_t symchs_len),
(fpstr symchs, int *icol, int *nsym, float rot[MAXSYM][4][4]),
(fpstr symchs, fpstr_size_t symchs_len, int *icol, int *nsym, float rot[MAXSYM][4][4]))
/* symfr2 ---- Read and interpret symmetry operations
SYMFR2 recognises the following types of input:
real space symmetry operations, e.g. X+1/2,Y-X,Z
reciprocal space operations, e.g. h,l-h,-k
reciprocal axis vectors, e.g. a*+c*,c*,-b*
real space axis vectors, e.g. a,c-a,-b
The subroutine returns the appropriate 4x4 transformation
matrix for each operation. The calling program must
interpret the resutling matrix(ces) correctly.
Multiple symmetry operations can be specified in a single
input line, and must be separated by * (with spaces either
side).
On entry, icol is the first character to look at
nsym is the number of the first symmetry
operation to be read, and returns with the last
one read
*/
{
char *temp_name;
int i,j,k,ns;
float tmp_rot[MAXSYMOPS][4][4];
CSYMLIB_DEBUG(puts("CSYMLIB_F: SYMFR2");)
/* nsym is the position to store the first symop in
Convert from Fortran (starts at 1) to C (starts at 0) */
*nsym = *nsym - 1;
if (*nsym < 0) *nsym = 0;
/* Get the input string to interpret */
temp_name = ccp4_FtoCString(FTN_STR(symchs)+(*icol-1), FTN_LEN(symchs)-(*icol-1));
/* Fetch the matrices */
if ((ns = symfr_driver(temp_name,tmp_rot)) >= 0) {
/* Store the matrices in Fortran ordering
i.e. reverse of that normally used in C */
for (i = 0; i < ns; ++i)
for (j = 0; j < 4; ++j)
for (k = 0; k < 4; ++k)
rot[*nsym+i][j][k] = tmp_rot[i][k][j];
*nsym = *nsym + ns;
} else {
/* Error occured in symfr_driver - abort */
ccperror(1," **SYMMETRY OPERATOR ERROR**");
return;
}
/* Tidy up */
if (temp_name) free(temp_name);
return;
}
/** Fortran wrapper for mat4_to_symop.
* @param nsm number of symmetry matrices passed.
* @param rsm symmetry matrices.
* @param symchs symmetry strings returned.
* @param iprint print flag.
*/
FORTRAN_SUBR ( SYMTR3, symtr3,
(const int *nsm, const float rsm[MAXSYM][4][4],
fpstr symchs, const int *iprint, fpstr_size_t symchs_len),
(const int *nsm, const float rsm[MAXSYM][4][4],
fpstr symchs, const int *iprint),
(const int *nsm, const float rsm[MAXSYM][4][4],
fpstr symchs, fpstr_size_t symchs_len, const int *iprint))
{ char temp_symch[80];
int i,j,k;
float rsym[4][4];
CSYMLIB_DEBUG(puts("CSYMLIB_F: SYMTR3");)
for (i = 0; i < *nsm; ++i) {
/* need to transpose F to C */
for (j = 0; j < 4; ++j)
for (k = 0; k < 4; ++k)
rsym[j][k] = rsm[i][k][j];
mat4_to_symop(temp_symch,temp_symch+79,(const float (*)[4])rsym);
/* mat4_to_symop fills temp_symch with spaces */
/* ccp4_CtoFString will perform strlen(temp_symch) */
temp_symch[79] = '\0';
ccp4_CtoFString(FTN_STR(symchs+i*FTN_LEN(symchs)),FTN_LEN(symchs),temp_symch);
if (*iprint) {
printf("Symmetry %d %s \n",i+1,temp_symch);
}
}
}
/** Fortran wrapper for mat4_to_symop.
* @param nsm number of symmetry matrices passed.
* @param rsm symmetry matrices.
* @param symchs symmetry strings returned.
*/
FORTRAN_SUBR ( SYMTR4, symtr4,
(const int *nsm, const float rsm[MAXSYM][4][4],
fpstr symchs, fpstr_size_t symchs_len),
(const int *nsm, const float rsm[MAXSYM][4][4],
fpstr symchs),
(const int *nsm, const float rsm[MAXSYM][4][4],
fpstr symchs, fpstr_size_t symchs_len))
{ char temp_symch[80];
int i,j,k;
float rsym[4][4];
CSYMLIB_DEBUG(puts("CSYMLIB_F: SYMTR4");)
for (i = 0; i < *nsm; ++i) {
/* need to transpose F to C */
for (j = 0; j < 4; ++j)
for (k = 0; k < 4; ++k)
rsym[j][k] = rsm[i][k][j];
mat4_to_symop(temp_symch,temp_symch+80,(const float (*)[4])rsym);
/* mat4_to_symop will pad with spaces, but ccp4_CtoFString needs
* null-terminated
*/
temp_symch[79] = '\0';
ccp4_CtoFString(FTN_STR(symchs+i*FTN_LEN(symchs)),FTN_LEN(symchs),temp_symch);
}
}
FORTRAN_SUBR ( PGMDF, pgmdf,
(int *jlass, int*jcentr, int jscrew[3]),
(int *jlass, int*jcentr, int jscrew[3]),
(int *jlass, int*jcentr, int jscrew[3]))
{
static int klass, icentr, iscrew[3];
CSYMLIB_DEBUG(puts("CSYMLIB_F: PGMDF");)
if (*jlass==0) {
/* need to set these variables */
*jlass = klass;
*jcentr = icentr;
jscrew[0] = iscrew[0];
jscrew[1] = iscrew[1];
jscrew[2] = iscrew[2];
} else {
klass = *jlass;
icentr = *jcentr;
iscrew[0] = jscrew[0];
iscrew[1] = jscrew[1];
iscrew[2] = jscrew[2];
}
/* sorry, too lazy to do write statements! */
}
FORTRAN_SUBR ( PGDEFN, pgdefn,
(fpstr nampg, int *nsymp, const int *nsym, float rsmt[192][4][4],
const ftn_logical *lprint, fpstr_size_t nampg_len),
(fpstr nampg, int *nsymp, const int *nsym, float rsmt[192][4][4],
const ftn_logical *lprint),
(fpstr nampg, fpstr_size_t nampg_len, int *nsymp, const int *nsym,
float rsmt[192][4][4], const ftn_logical *lprint))
{
int i,j,k,l,nsym1;
ccp4_symop *op1;
CSYMLIB_DEBUG(puts("CSYMLIB_F: PGDEFN");)
/* free any existing spacegroup and start again */
if ( spacegroup ) ccp4spg_free(&spacegroup);
op1 = (ccp4_symop *) ccp4_utils_malloc(*nsym*sizeof(ccp4_symop));
for (i = 0; i < *nsym; ++i) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l)
op1[i].rot[k][l] = rsmt[i][l][k];
/* Discard any translational component - it's not required
anyway when looking up the point group */
op1[i].trn[k] = 0.0;
}
}
/* Throw away symops that are duplicated once the
translations have been removed */
nsym1 = *nsym;
i = 0;
while ( i < nsym1 ) {
j = i + 1;
while ( j < nsym1 ) {
if (ccp4_symop_code( op1[i] ) == ccp4_symop_code( op1[j] )) {
/* Duplication - overwrite this with the symop
at the end of the list */
--nsym1;
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l) {
op1[j].rot[k][l] = op1[nsym1].rot[k][l];
}
/* Nb don't increment j as we need to test the 'new'
symop for duplication before stepping on */
}
} else {
/* Look at next symop */
++j;
}
}
/* Look at next symop */
++i;
}
/* first, identify a spacegroup from supplied symops */
spacegroup = ccp4_spgrp_reverse_lookup(nsym1,op1);
free(op1);
if (!spacegroup) ccperror(1,"Fatal error in PGDEFN");
ccp4_CtoFString(FTN_STR(nampg),FTN_LEN(nampg),spacegroup->point_group);
*nsymp = spacegroup->nsymop_prim;
}
/** Return Laue number and name for current spacegroup.
* @param nampg Point group name (unused in this implementation)
* @param nlaue Laue number
* @param launam Laue name
*/
FORTRAN_SUBR ( PGNLAU, pgnlau,
(const fpstr nampg, int *nlaue, fpstr launam,
fpstr_size_t nampg_len, fpstr_size_t launam_len),
(const fpstr nampg, int *nlaue, fpstr launam),
(const fpstr nampg, fpstr_size_t nampg_len, int *nlaue,
fpstr launam, fpstr_size_t launam_len))
{
char *temp_pgname;
CSYMLIB_DEBUG(puts("CSYMLIB_F: PGNLAU");)
temp_pgname = ccp4_FtoCString(FTN_STR(nampg), FTN_LEN(nampg));
if (!spacegroup || !ccp4spg_pgname_equal(spacegroup->point_group,temp_pgname)) {
printf("PGNLAU: No spacegroup or incorrect spacegroup loaded! \n");
free(temp_pgname);
return;
}
/* We should check we have the right spacegroup! However,
nampg is typically in the format of the MTZ header record,
which is different from that recorded in syminfo.lib */
*nlaue = spacegroup->nlaue;
ccp4_CtoFString(FTN_STR(launam),FTN_LEN(launam),spacegroup->laue_name);
free(temp_pgname);
}
/** Return Laue number and name for a spacegroup onto index "sindx".
* @param sindx index of this spacegroup.
* @param nlaue Laue number
* @param launam Laue name
*/
FORTRAN_SUBR ( CCP4SPG_F_GET_LAUE, ccp4spg_f_get_laue,
(const int *sindx, int *nlaue, fpstr launam, fpstr_size_t launam_len),
(const int *sindx, int *nlaue, fpstr launam),
(const int *sindx, int *nlaue, fpstr launam, fpstr_size_t launam_len))
{
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_GET_LAUE");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_GET_LAUE: sindx %d out of range!\n",*sindx);
return;
}
if ( ! spacegrp[*sindx-1] ) {
printf("CCP4SPG_F_GET_LAUE: No spacegroup loaded on channel %d ! \n",*sindx);
return;
}
*nlaue = spacegrp[*sindx-1]->nlaue;
ccp4_CtoFString(FTN_STR(launam),FTN_LEN(launam),spacegrp[*sindx-1]->laue_name);
}
/** Return ranges on H K L appropriate to spacegroup.
* @param sindx index of this spacegroup.
* @param nlaue Laue number
* @param launam Laue name
*/
FORTRAN_SUBR ( HKLRANGE, hklrange,
(int *ihrng0, int *ihrng1, int *ikrng0, int *ikrng1, int *ilrng0, int *ilrng1),
(int *ihrng0, int *ihrng1, int *ikrng0, int *ikrng1, int *ilrng0, int *ilrng1),
(int *ihrng0, int *ihrng1, int *ikrng0, int *ikrng1, int *ilrng0, int *ilrng1))
{
int i,j,itest;
int test[8],max;
CSYMLIB_DEBUG(puts("CSYMLIB_F: HKLRANGE");)
if (!spacegroup) {
ccperror(2,"HKLRANGE: No spacegroup loaded yet! \n");
return;
}
/* set up maximum ranges */
*ihrng0 = - (*ihrng1);
*ikrng0 = - (*ikrng1);
*ilrng0 = - (*ilrng1);
max = *ihrng1;
if (*ikrng1 > max) max = *ikrng1;
if (*ilrng1 > max) max = *ilrng1;
test[0] = -max-2;
test[1] = -max-1;
test[2] = -max+1;
test[3] = -1;
test[4] = 1;
test[5] = max-1;
test[6] = max+1;
test[7] = max+2;
/* now try to cut it down by testing points */
/* this is overkill but should be safe */
/* update: not so simple. Didn't work for R32, see bugzilla 4149 */
/* should be fixed now, but if further problems then consider not cutting down at all */
itest = 0;
for (i = 0; i < 8; ++i)
for (j = 0; j < 8; ++j)
if (ccp4spg_is_in_asu(spacegroup,*ihrng0,test[i],test[j])) itest = 1;
if (!itest) *ihrng0 = 0;
itest = 0;
for (i = 0; i < 8; ++i)
for (j = 0; j < 8; ++j)
if (ccp4spg_is_in_asu(spacegroup,*ihrng1,test[i],test[j])) itest = 1;
if (!itest) *ihrng1 = 0;
itest = 0;
for (i = 0; i < 8; ++i)
for (j = 0; j < 8; ++j)
if (ccp4spg_is_in_asu(spacegroup,test[i],*ikrng0,test[j])) itest = 1;
if (!itest) *ikrng0 = 0;
itest = 0;
for (i = 0; i < 8; ++i)
for (j = 0; j < 8; ++j)
if (ccp4spg_is_in_asu(spacegroup,test[i],*ikrng1,test[j])) itest = 1;
if (!itest) *ikrng1 = 0;
itest = 0;
for (i = 0; i < 8; ++i)
for (j = 0; j < 8; ++j)
if (ccp4spg_is_in_asu(spacegroup,test[i],test[j],*ilrng0)) itest = 1;
if (!itest) *ilrng0 = 0;
itest = 0;
for (i = 0; i < 8; ++i)
for (j = 0; j < 8; ++j)
if (ccp4spg_is_in_asu(spacegroup,test[i],test[j],*ilrng1)) itest = 1;
if (!itest) *ilrng1 = 0;
}
/** Return the Patterson group name and number corresponding to a spacegroup
* identified by spacegroup name and point group name.
* @param spgnam On input, spacegroup name.
* @param pgname On input, point group name.
* @param patnam On return, Patterson spacegroup name.
* @param lpatsg On return, Patterson spacegroup number.
*/
FORTRAN_SUBR ( PATSGP, patsgp,
(const fpstr spgnam, const fpstr pgname, fpstr patnam, int *lpatsg,
fpstr_size_t spgnam_len, fpstr_size_t pgname_len, fpstr_size_t patnam_len),
(const fpstr spgnam, const fpstr pgname, fpstr patnam, int *lpatsg),
(const fpstr spgnam, fpstr_size_t spgnam_len, const fpstr pgname,
fpstr_size_t pgname_len, fpstr patnam, fpstr_size_t patnam_len, int *lpatsg))
{
CCP4SPG *tmp_spacegroup;
char *temp_spgnam, *temp_pgname;
CSYMLIB_DEBUG(puts("CSYMLIB_F: PATSGP");)
temp_spgnam = ccp4_FtoCString(FTN_STR(spgnam), FTN_LEN(spgnam));
temp_pgname = ccp4_FtoCString(FTN_STR(pgname), FTN_LEN(pgname));
if ( !spacegroup || !ccp4spg_name_equal_to_lib(spacegroup->symbol_xHM,temp_spgnam) ||
!ccp4spg_pgname_equal(spacegroup->point_group,temp_pgname) ) {
/* load temporary spacegroup */
if ( ! (tmp_spacegroup = ccp4spg_load_by_ccp4_spgname(temp_spgnam)) ) {
printf("PATSGP: failed to load spacegroup info from SYMINFO! \n");
free(temp_spgnam);
free(temp_pgname);
return;
}
*lpatsg = tmp_spacegroup->npatt;
ccp4_CtoFString(FTN_STR(patnam),FTN_LEN(patnam),tmp_spacegroup->patt_name);
free(tmp_spacegroup);
} else {
*lpatsg = spacegroup->npatt;
ccp4_CtoFString(FTN_STR(patnam),FTN_LEN(patnam),spacegroup->patt_name);
}
free(temp_spgnam);
free(temp_pgname);
}
/** Set spacegroup for subsequent calls to ASUPUT, ASUGET, ASUSYM and ASUPHP.
* @param spgnam spacegroup name
* @param numsgp spacegroup number
* @param pgname On return, point group name
* @param msym number of symmetry matrices passed.
* @param rrsym symmetry matrices (preferred method of identifying spacegroup).
* @param msymp On return, number of primitive symmetry operators
* @param mlaue On return, number of Laue group.
* @param lprint If true, print symmetry information.
*/
FORTRAN_SUBR ( ASUSET, asuset,
(fpstr spgnam, int *numsgp, fpstr pgname,
int *msym, float rrsym[192][4][4], int *msymp,
int *mlaue, ftn_logical *lprint, fpstr_size_t spgnam_len, fpstr_size_t pgname_len),
(fpstr spgnam, int *numsgp, fpstr pgname,
int *msym, float rrsym[192][4][4], int *msymp,
int *mlaue, ftn_logical *lprint),
(fpstr spgnam, fpstr_size_t spgnam_len, int *numsgp,
fpstr pgname, fpstr_size_t pgname_len,
int *msym, float rrsym[192][4][4], int *msymp,
int *mlaue, ftn_logical *lprint))
{
int i,k,l;
ccp4_symop *op1;
CSYMLIB_DEBUG(puts("CSYMLIB_F: ASUSET");)
/* free any existing spacegroup and start again */
if ( spacegroup ) ccp4spg_free(&spacegroup);
op1 = (ccp4_symop *) ccp4_utils_malloc(*msym*sizeof(ccp4_symop));
for (i = 0; i < *msym; ++i) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l)
op1[i].rot[k][l] = rrsym[i][l][k];
op1[i].trn[k] = rrsym[i][3][k];
}
}
/* Loading by symops ensures spacegroup has desired ordering of symops.
This is important for ASUGET which may use ISYM stored in MTZ file. */
spacegroup = ccp4_spgrp_reverse_lookup(*msym,op1);
/* If we fail to find match for symops, fall back on spacegroup number. */
if (!spacegroup ) {
if (*numsgp > 0) {
if ( ! (spacegroup = ccp4spg_load_by_ccp4_num(*numsgp)) ) {
printf("ASUSET: failed to load spacegroup info from SYMINFO! \n");
ccperror(1,"Fatal error in ASUSET.");
return;
}
} else {
printf("ASUSET: no spacegroup info! \n");
ccperror(1,"Fatal error in ASUSET.");
return;
}
}
ccp4_CtoFString(FTN_STR(pgname),FTN_LEN(pgname),spacegroup->point_group);
*msymp = spacegroup->nsymop_prim;
*mlaue = spacegroup->nlaue;
if (*lprint != FORTRAN_LOGICAL_FALSE) ccp4spg_print_recip_spgrp(spacegroup);
free(op1);
}
/** Return symmetry operators and inverses, set up by ASUSET.
* @param rassym symmetry operators.
* @param rinsym inverse symmetry operators.
* @param nisym number of symmetry operators returned.
*/
FORTRAN_SUBR ( ASUSYM, asusym,
(float rassym[384][4][4], float rinsym[384][4][4], int *nisym),
(float rassym[384][4][4], float rinsym[384][4][4], int *nisym),
(float rassym[384][4][4], float rinsym[384][4][4], int *nisym))
{
int i,j,k,l;
float sgn;
CSYMLIB_DEBUG(puts("CSYMLIB_F: ASUSYM");)
if (spacegroup) {
*nisym = 0;
for (i = 0; i < spacegroup->nsymop_prim; ++i) {
sgn = +1.0;
for (j = 0; j < 2; ++j) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l) {
rassym[*nisym][l][k] = sgn * spacegroup->symop[i].rot[k][l];
rinsym[*nisym][l][k] = sgn * spacegroup->invsymop[i].rot[k][l];
}
rassym[*nisym][3][k] = sgn * spacegroup->symop[i].trn[k];
rinsym[*nisym][3][k] = sgn * spacegroup->invsymop[i].trn[k];
rassym[*nisym][k][3] = 0.0;
rinsym[*nisym][k][3] = 0.0;
}
rassym[*nisym][3][3] = 1.0;
rinsym[*nisym][3][3] = 1.0;
++(*nisym);
sgn = -1.0;
}
}
} else {
ccperror(2,"ASUSYM: No spacegroup loaded yet! \n");
}
}
/** Put reflection in asymmetric unit, as set up by ASUSET.
* @param ihkl input indices.
* @param jhkl output indices.
* @param isym symmetry operation applied (ISYM number).
*/
FORTRAN_SUBR ( ASUPUT, asuput,
(const int ihkl[3], int jhkl[3], int *isym),
(const int ihkl[3], int jhkl[3], int *isym),
(const int ihkl[3], int jhkl[3], int *isym))
{
int hin,kin,lin,hout,kout,lout;
CSYMLIB_DEBUG(puts("CSYMLIB_F: ASUPUT");)
hin = ihkl[0]; kin = ihkl[1]; lin = ihkl[2];
*isym = ccp4spg_put_in_asu(spacegroup, hin, kin, lin, &hout, &kout, &lout);
jhkl[0] = hout; jhkl[1] = kout; jhkl[2] = lout;
}
/** Get the original indices jkhl from input indices ihkl generated
* under symmetry operation isym.
* @param ihkl input indices.
* @param jhkl output indices (recovered original indices).
* @param isym symmetry operation to be applied (ISYM number).
*/
FORTRAN_SUBR ( ASUGET, asuget,
(const int ihkl[3], int jhkl[3], const int *isym),
(const int ihkl[3], int jhkl[3], const int *isym),
(const int ihkl[3], int jhkl[3], const int *isym))
{
int hin,kin,lin,hout,kout,lout;
CSYMLIB_DEBUG(puts("CSYMLIB_F: ASUGET");)
hin = ihkl[0]; kin = ihkl[1]; lin = ihkl[2];
ccp4spg_generate_indices(spacegroup, *isym, hin, kin, lin, &hout, &kout, &lout);
jhkl[0] = hout; jhkl[1] = kout; jhkl[2] = lout;
}
/** Generate phase of symmetry equivalent JHKL from that of IHKL.
* @param jhkl indices hkl generated in ASUPUT
* @param lsym symmetry number for generating JHKL
* @param isign 1 for I+ , -1 for I-
* @param phasin phase for reflection IHKL
* @param phasout phase for reflection JHKL
*/
FORTRAN_SUBR ( ASUPHP, asuphp,
(const int jhkl[3], const int *lsym, const int *isign,
const float *phasin, float *phasout),
(const int jhkl[3], const int *lsym, const int *isign,
const float *phasin, float *phasout),
(const int jhkl[3], const int *lsym, const int *isign,
const float *phasin, float *phasout))
{
int hin,kin,lin;
float trans[3];
CSYMLIB_DEBUG(puts("CSYMLIB_F: ASUPHP");)
trans[0] = spacegroup->symop[*lsym-1].trn[0];
trans[1] = spacegroup->symop[*lsym-1].trn[1];
trans[2] = spacegroup->symop[*lsym-1].trn[2];
hin = jhkl[0]; kin = jhkl[1]; lin = jhkl[2];
*phasout = ccp4spg_phase_shift(hin, kin, lin, *phasin, trans, *isign);
}
/** Loads a spacegroup onto index "sindx". The spacegroup is
* identified by the spacegroup name.
* @param sindx index of this spacegroup.
* @param namspg spacegroup name.
*/
FORTRAN_SUBR ( CCP4SPG_F_LOAD_BY_NAME, ccp4spg_f_load_by_name,
(const int *sindx, fpstr namspg, fpstr_size_t namspg_len),
(const int *sindx, fpstr namspg),
(const int *sindx, fpstr namspg, fpstr_size_t namspg_len))
{
char *temp_name;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_LOAD_BY_NAME");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_LOAD_BY_NAME: sindx %d out of range!\n",*sindx);
return;
}
/* free any existing spacegroup and start again */
if ( spacegrp[*sindx-1] ) ccp4spg_free(&spacegrp[*sindx-1]);
temp_name = ccp4_FtoCString(FTN_STR(namspg), FTN_LEN(namspg));
if (strlen(temp_name)) {
spacegrp[*sindx-1] = ccp4spg_load_by_ccp4_spgname(temp_name);
}
free (temp_name);
}
/** Loads a spacegroup onto index "sindx". The spacegroup is
* identified by the set of symmetry matrices.
* @param sindx index of this spacegroup.
* @param msym number of symmetry matrices passed.
* @param rrsym symmetry matrices.
*/
FORTRAN_SUBR ( CCP4SPG_F_LOAD_BY_OPS, ccp4spg_f_load_by_ops,
(const int *sindx, int *msym, float rrsym[192][4][4]),
(const int *sindx, int *msym, float rrsym[192][4][4]),
(const int *sindx, int *msym, float rrsym[192][4][4]))
{
int i,k,l;
ccp4_symop *op1;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_LOAD_BY_OPS");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_LOAD_BY_OPS: sindx %d out of range!\n",*sindx);
return;
}
/* free any existing spacegroup and start again */
if ( spacegrp[*sindx-1] ) ccp4spg_free(&spacegrp[*sindx-1]);
op1 = (ccp4_symop *) ccp4_utils_malloc(*msym*sizeof(ccp4_symop));
for (i = 0; i < *msym; ++i) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l)
op1[i].rot[k][l] = rrsym[i][l][k];
op1[i].trn[k] = rrsym[i][3][k];
}
}
/* Loading by symops ensures spacegroup has desired ordering of symops.
This is important for ASUGET which may use ISYM stored in MTZ file. */
spacegrp[*sindx-1] = ccp4_spgrp_reverse_lookup(*msym,op1);
if (!spacegroup ) {
printf("CCP4SPG_F_LOAD_BY_OPS: no spacegroup info! \n");
ccperror(1,"Fatal error in CCP4SPG_F_LOAD_BY_OPS.");
return;
}
ccp4spg_print_recip_spgrp(spacegrp[*sindx-1]);
free(op1);
}
/** Compare two sets of symmetry operators to see if they are
* in the same order. This is important for the consistent use
* of ISYM which encodes the operator position in the list.
* @param msym1 number of symmetry matrices passed in first list.
* @param rrsym1 first list of symmetry matrices.
* @param msym2 number of symmetry matrices passed in second list.
* @param rrsym2 second list of symmetry matrices.
* @return 1 if operator lists are equal and in the same order, 0 otherwise
*/
FORTRAN_FUN (int, CCP4SPG_F_EQUAL_OPS_ORDER, ccp4spg_f_equal_ops_order,
(int *msym1, float rrsym1[192][4][4],int *msym2, float rrsym2[192][4][4]),
(int *msym1, float rrsym1[192][4][4],int *msym2, float rrsym2[192][4][4]),
(int *msym1, float rrsym1[192][4][4],int *msym2, float rrsym2[192][4][4]))
{
int i,k,l,ret;
ccp4_symop *op1, *op2;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_EQUAL_OPS_ORDER");)
op1 = (ccp4_symop *) ccp4_utils_malloc(*msym1*sizeof(ccp4_symop));
for (i = 0; i < *msym1; ++i) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l)
op1[i].rot[k][l] = rrsym1[i][l][k];
op1[i].trn[k] = rrsym1[i][3][k];
}
}
op2 = (ccp4_symop *) ccp4_utils_malloc(*msym2*sizeof(ccp4_symop));
for (i = 0; i < *msym2; ++i) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l)
op2[i].rot[k][l] = rrsym2[i][l][k];
op2[i].trn[k] = rrsym2[i][3][k];
}
}
ret = ccp4_spgrp_equal_order(*msym1, op1, *msym2, op2);
free(op1);
free(op2);
return ret;
}
/** Put reflection in asymmetric unit of spacegroup on index sindx.
* @param sindx index of this spacegroup.
* @param ihkl input indices.
* @param jhkl output indices.
* @param isym symmetry operation applied (ISYM number).
*/
FORTRAN_SUBR ( CCP4SPG_F_ASUPUT, ccp4spg_f_asuput,
(const int *sindx, const int ihkl[3], int jhkl[3], int *isym),
(const int *sindx, const int ihkl[3], int jhkl[3], int *isym),
(const int *sindx, const int ihkl[3], int jhkl[3], int *isym))
{
int hin,kin,lin,hout,kout,lout;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_ASUPUT");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_ASUPUT: sindx %d out of range!\n",*sindx);
return;
}
if ( ! spacegrp[*sindx-1] ) {
printf("CCP4SPG_F_ASUPUT: No spacegroup loaded on channel %d ! \n",*sindx);
return;
}
hin = ihkl[0]; kin = ihkl[1]; lin = ihkl[2];
*isym = ccp4spg_put_in_asu(spacegrp[*sindx-1], hin, kin, lin, &hout, &kout, &lout);
jhkl[0] = hout; jhkl[1] = kout; jhkl[2] = lout;
}
/** Test whether reflection or it's Friedel mate is in asu.
* The argument nlaue is checked against the value for the current
* spacegroup: if it differs then spacegroup->nlaue is updated temporarily.
* @param ihkl reflection indices.
* @param nlaue Laue group number.
* @return 1 if in asu, -1 if -h -k -l is in asu, 0 otherwise
*/
FORTRAN_FUN (int, INASU, inasu,
(const int ihkl[3], const int *nlaue),
(const int ihkl[3], const int *nlaue),
(const int ihkl[3], const int *nlaue))
{
int ih, ik, il, nlaue_save = -1, retval;
CSYMLIB_DEBUG(puts("CSYMLIB_F: INASU");)
if (!spacegroup) {
ccperror(2,"INASU: No spacegroup loaded yet! \n");
return 999;
}
if (spacegroup->nlaue != *nlaue) {
/* The requested Laue number is different to that for the
current spacegroup
Save the current Laue code and load the data for the requested code */
nlaue_save = spacegroup->nlaue;
if (ccp4spg_load_laue(spacegroup,*nlaue)) {
printf("INASU: unrecognised CCP4 Laue code\n");
return 999;
}
}
ih = ihkl[0];
ik = ihkl[1];
il = ihkl[2];
retval = ccp4spg_is_in_pm_asu(spacegroup,ih,ik,il);
if (nlaue_save > -1) {
/* Restore previous settings */
ccp4spg_load_laue(spacegroup,nlaue_save);
}
return retval;
}
/** Test whether reflection or it's Friedel mate is in the asymmetric
* unit of the spacegroup on index "sindx".
* @param sindx index of this spacegroup.
* @param ihkl reflection indices.
* @return 1 if in asu, -1 if -h -k -l is in asu, 0 otherwise
*/
FORTRAN_FUN (int, CCP4SPG_F_INASU, ccp4spg_f_inasu,
(const int *sindx, const int ihkl[3]),
(const int *sindx, const int ihkl[3]),
(const int *sindx, const int ihkl[3]))
{
int ih, ik, il, retval;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_INASU");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_INASU: sindx %d out of range!\n",*sindx);
return 999;
}
if ( ! spacegrp[*sindx-1] ) {
printf("CCP4SPG_F_INASU: No spacegroup loaded on channel %d ! \n",*sindx);
return 999;
}
ih = ihkl[0];
ik = ihkl[1];
il = ihkl[2];
retval = ccp4spg_is_in_pm_asu(spacegrp[*sindx-1],ih,ik,il);
return retval;
}
FORTRAN_SUBR ( PRTRSM, prtrsm,
(const fpstr pgname, const int *nsymp,
const float rsymiv[192][4][4], fpstr_size_t pgname_len),
(const fpstr pgname, const int *nsymp,
const float rsymiv[192][4][4]),
(const fpstr pgname, fpstr_size_t pgname_len, const int *nsymp,
const float rsymiv[192][4][4]))
{
CSYMLIB_DEBUG(puts("CSYMLIB_F: PRTRSM");)
ccp4spg_print_recip_ops(spacegroup);
}
void ccp4spg_register_by_ccp4_num(int numspg) {
CSYMLIB_DEBUG(puts("CSYMLIB_F: ccp4spg_register_by_ccp4_num");)
/* free any existing spacegroup and start again */
if ( spacegroup ) ccp4spg_free(&spacegroup);
spacegroup = ccp4spg_load_by_ccp4_num(numspg);
if (!spacegroup) ccperror(1,"Fatal error in ccp4spg_register_by_ccp4_num");
}
void ccp4spg_register_by_symops(int nops, float rsm[][4][4]) {
int i,k,l;
ccp4_symop *op1;
CSYMLIB_DEBUG(puts("CSYMLIB_F: ccp4spg_register_by_symops");)
/* free any existing spacegroup and start again */
if ( spacegroup ) ccp4spg_free(&spacegroup);
/* identify spacegroup from supplied symops */
op1 = (ccp4_symop *) ccp4_utils_malloc(nops*sizeof(ccp4_symop));
for (i = 0; i < nops; ++i) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l) {
op1[i].rot[k][l] = rsm[i][k][l];
}
op1[i].trn[k] = rsm[i][k][3];
}
}
spacegroup = ccp4_spgrp_reverse_lookup(nops,op1);
free(op1);
if (!spacegroup) ccperror(1,"Fatal error in ccp4spg_register_by_symops");
}
/** Fortran wrapper for ccp4spg_load_by_* functions.
* @param ist Obsolete parameter.
* @param lspgrp Spacegroup number in CCP4 convention. If set on
* entry, used to search for spacegroup. Returned value is that found.
* @param namspg_cif Spacegroup name. If set on
* entry, used to search for spacegroup. Returned value is the full
* extended Hermann Mauguin symbol, with one slight alteration. Symbols
* such as 'R 3 :H' are converted to 'H 3'. This is for backwards compatibility.
* @param namspg_cifs On output, contains the spacegroup name without
* any spaces.
* @param nampg On output, the point group name.
* @param nsymp On output, the number of primitive symmetry operators.
* @param nsym On output, the total number of symmetry operators.
* @param rlsymmmatrx On output, the symmetry operators.
*/
FORTRAN_SUBR ( MSYMLB3, msymlb3,
(const int *ist, int *lspgrp, fpstr namspg_cif,
fpstr namspg_cifs, fpstr nampg, int *nsymp, int *nsym,
float rlsymmmatrx[192][4][4], fpstr_size_t namspg_cif_len,
fpstr_size_t namspg_cifs_len, fpstr_size_t nampg_len),
(const int *ist, int *lspgrp, fpstr namspg_cif,
fpstr namspg_cifs, fpstr nampg, int *nsymp, int *nsym,
float rlsymmmatrx[192][4][4]),
(const int *ist, int *lspgrp, fpstr namspg_cif, fpstr_size_t namspg_cif_len,
fpstr namspg_cifs, fpstr_size_t namspg_cifs_len, fpstr nampg, fpstr_size_t nampg_len,
int *nsymp, int *nsym, float rlsymmmatrx[192][4][4]))
{
int i,j,k;
char *temp_name, *shortname=NULL, *no_colon_name=NULL;
CSYMLIB_DEBUG(puts("CSYMLIB_F: MSYMLB3");)
/* search by number first
we assume that lspgrp is in CCP4 convention */
if (*lspgrp > 0) {
/* free any existing spacegroup and start again */
if ( spacegroup ) ccp4spg_free(&spacegroup);
spacegroup = ccp4spg_load_by_ccp4_num(*lspgrp);
} else {
/* else try to search by name */
temp_name = ccp4_FtoCString(FTN_STR(namspg_cif), FTN_LEN(namspg_cif));
if (strlen(temp_name)) {
/* free any existing spacegroup and start again */
if ( spacegroup ) ccp4spg_free(&spacegroup);
spacegroup = ccp4spg_load_by_ccp4_spgname(temp_name);
}
free (temp_name);
}
if (spacegroup) {
if (spacegroup->spg_ccp4_num > 0) {
*lspgrp = spacegroup->spg_ccp4_num;
} else {
*lspgrp = spacegroup->spg_num;
}
/* produce de-coloned version of xHM symbol */
if (strlen(spacegroup->symbol_xHM) > 0) {
no_colon_name = (char *) ccp4_utils_malloc((strlen(spacegroup->symbol_xHM)+1)*sizeof(char));
strcpy(no_colon_name,spacegroup->symbol_xHM);
} else {
/* If no _xHM try _old. This should only happen in exceptional circumstances! */
no_colon_name = (char *) ccp4_utils_malloc((strlen(spacegroup->symbol_old)+1)*sizeof(char));
strcpy(no_colon_name,spacegroup->symbol_old);
}
ccp4spg_name_de_colon(no_colon_name);
ccp4_CtoFString(FTN_STR(namspg_cif),FTN_LEN(namspg_cif),no_colon_name);
if (spacegroup->symbol_old) {
if (strlen(spacegroup->symbol_old) > 0) {
shortname = (char *) ccp4_utils_malloc((strlen(spacegroup->symbol_old)+1)*sizeof(char));
ccp4spg_to_shortname(shortname,spacegroup->symbol_old);
}
}
if (!shortname) {
if (strlen(no_colon_name) > 0) {
shortname = (char *) ccp4_utils_malloc((strlen(no_colon_name)+1)*sizeof(char));
ccp4spg_to_shortname(shortname,no_colon_name);
}
}
ccp4_CtoFString(FTN_STR(namspg_cifs),FTN_LEN(namspg_cifs),shortname);
free(shortname);
ccp4_CtoFString(FTN_STR(nampg),FTN_LEN(nampg),spacegroup->point_group);
*nsymp = spacegroup->nsymop_prim;
*nsym = spacegroup->nsymop;
for (i = 0; i < *nsym; ++i) {
for (j = 0; j < 3; ++j) {
for (k = 0; k < 3; ++k)
rlsymmmatrx[i][k][j] = spacegroup->symop[i].rot[j][k];
rlsymmmatrx[i][3][j] = spacegroup->symop[i].trn[j];
rlsymmmatrx[i][j][3] = 0.0;
}
rlsymmmatrx[i][3][3] = 1.0;
}
}
}
FORTRAN_SUBR ( MSYMLB, msymlb,
(const int *ist, int *lspgrp, fpstr namspg_cif,
fpstr nampg, int *nsymp, int *nsym,
float rlsymmmatrx[192][4][4], fpstr_size_t namspg_cif_len,
fpstr_size_t nampg_len),
(const int *ist, int *lspgrp, fpstr namspg_cif,
fpstr nampg, int *nsymp, int *nsym,
float rlsymmmatrx[192][4][4]),
(const int *ist, int *lspgrp, fpstr namspg_cif, fpstr_size_t namspg_cif_len,
fpstr nampg, fpstr_size_t nampg_len,
int *nsymp, int *nsym, float rlsymmmatrx[192][4][4]))
{
char namspg_cifs;
int namspg_cifs_len=0;
CSYMLIB_DEBUG(puts("CSYMLIB_F: MSYMLB");)
FORTRAN_CALL ( MSYMLB3, msymlb3,
(ist, lspgrp, namspg_cif, &namspg_cifs, nampg, nsymp, nsym,
rlsymmmatrx, namspg_cif_len, namspg_cifs_len, nampg_len),
(ist, lspgrp, namspg_cif, &namspg_cifs, nampg, nsymp, nsym,
rlsymmmatrx),
(ist, lspgrp, namspg_cif, namspg_cif_len, &namspg_cifs,
namspg_cifs_len, nampg, nampg_len, nsymp, nsym, rlsymmmatrx));
}
FORTRAN_SUBR ( MSYMLB2, msymlb2,
(const int *ist, int *lspgrp, fpstr namspg_cif,
fpstr nampg, int *nsymp, int *nsym,
float rlsymmmatrx[192][4][4], fpstr_size_t namspg_cif_len,
fpstr_size_t nampg_len),
(const int *ist, int *lspgrp, fpstr namspg_cif,
fpstr nampg, int *nsymp, int *nsym,
float rlsymmmatrx[192][4][4]),
(const int *ist, int *lspgrp, fpstr namspg_cif, fpstr_size_t namspg_cif_len,
fpstr nampg, fpstr_size_t nampg_len,
int *nsymp, int *nsym, float rlsymmmatrx[192][4][4]))
{
char namspg_cifs;
int namspg_cifs_len=0;
CSYMLIB_DEBUG(puts("CSYMLIB_F: MSYMLB2");)
FORTRAN_CALL ( MSYMLB3, msymlb3,
(ist, lspgrp, namspg_cif, &namspg_cifs, nampg, nsymp, nsym,
rlsymmmatrx, namspg_cif_len, namspg_cifs_len, nampg_len),
(ist, lspgrp, namspg_cif, &namspg_cifs, nampg, nsymp, nsym,
rlsymmmatrx),
(ist, lspgrp, namspg_cif, namspg_cif_len, &namspg_cifs,
namspg_cifs_len, nampg, nampg_len, nsymp, nsym, rlsymmmatrx));
}
FORTRAN_SUBR ( MSYGET, msyget,
(const int *ist, int *lspgrp, int *nsym,
float rlsymmmatrx[192][4][4]),
(const int *ist, int *lspgrp, int *nsym,
float rlsymmmatrx[192][4][4]),
(const int *ist, int *lspgrp, int *nsym,
float rlsymmmatrx[192][4][4]))
{
char namspg_cif, namspg_cifs, nampg;
int namspg_cif_len=0, namspg_cifs_len=0, nampg_len=0, nsymp=0;
CSYMLIB_DEBUG(puts("CSYMLIB_F: MSYGET");)
FORTRAN_CALL ( MSYMLB3, msymlb3,
(ist, lspgrp, &namspg_cif, &namspg_cifs, &nampg, &nsymp, nsym,
rlsymmmatrx, namspg_cif_len, namspg_cifs_len, nampg_len),
(ist, lspgrp, &namspg_cif, &namspg_cifs, &nampg, &nsymp, nsym,
rlsymmmatrx),
(ist, lspgrp, &namspg_cif, namspg_cif_len, &namspg_cifs,
namspg_cifs_len, &nampg, nampg_len, &nsymp, nsym, rlsymmmatrx));
}
/** Epsilon zones currently set up in ccp4spg_load_spacegroup
* If these are not available, use lookup by symops.
* @param nsm number of symmetry operators.
* @param nsmp number of primitive symmetry operators.
* @param rsm symmetry matrices.
* @param iprint If iprint > 0 then a summary of epsilon zones is printed.
*/
FORTRAN_SUBR ( EPSLN, epsln,
(const int *nsm, const int *nsmp, const float rsm[192][4][4],
const int *iprint),
(const int *nsm, const int *nsmp, const float rsm[192][4][4],
const int *iprint),
(const int *nsm, const int *nsmp, const float rsm[192][4][4],
const int *iprint))
{
int i,k,l;
ccp4_symop *op1;
CSYMLIB_DEBUG(puts("CSYMLIB_F: EPSLN");)
/* identify spacegroup from supplied symops */
op1 = (ccp4_symop *) ccp4_utils_malloc(*nsm*sizeof(ccp4_symop));
for (i = 0; i < *nsm; ++i) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l) {
op1[i].rot[k][l] = rsm[i][l][k];
}
op1[i].trn[k] = rsm[i][3][k];
}
}
spacegroup = ccp4_spgrp_reverse_lookup(*nsm,op1);
if (spacegroup && *iprint > 0) ccp4spg_print_epsilon_zones(spacegroup);
free(op1);
}
FORTRAN_SUBR ( EPSLON, epslon,
(const int ih[3], float *epsi, int *isysab),
(const int ih[3], float *epsi, int *isysab),
(const int ih[3], float *epsi, int *isysab))
{
int h,k,l;
CSYMLIB_DEBUG(puts("CSYMLIB_F: EPSLON");)
if (!spacegroup) {
ccperror(2,"EPSLON: No spacegroup loaded yet! \n");
return;
}
h = ih[0]; k = ih[1]; l = ih[2];
*epsi = (float) ccp4spg_get_multiplicity(spacegroup, h, k, l);
*isysab = ccp4spg_is_sysabs(spacegroup, h, k, l);
}
FORTRAN_SUBR ( CCP4SPG_F_EPSLON, ccp4spg_f_epslon,
(const int *sindx, const int ih[3], float *epsi, int *isysab),
(const int *sindx, const int ih[3], float *epsi, int *isysab),
(const int *sindx, const int ih[3], float *epsi, int *isysab))
{
int h,k,l;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_EPSLON");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_EPSLON: sindx %d out of range!\n",*sindx);
return;
}
if ( ! spacegrp[*sindx-1] ) {
printf("CCP4SPG_F_EPSLON: No spacegroup loaded on channel %d ! \n",*sindx);
return;
}
h = ih[0]; k = ih[1]; l = ih[2];
*epsi = (float) ccp4spg_get_multiplicity(spacegrp[*sindx-1], h, k, l);
*isysab = ccp4spg_is_sysabs(spacegrp[*sindx-1], h, k, l);
}
FORTRAN_SUBR ( SYSAB, sysab,
(const int in[3], int *isysab),
(const int in[3], int *isysab),
(const int in[3], int *isysab))
{
int h,k,l;
CSYMLIB_DEBUG(puts("CSYMLIB_F: SYSAB");)
h = in[0]; k = in[1]; l = in[2];
*isysab = ccp4spg_is_sysabs(spacegroup, h, k, l);
}
FORTRAN_SUBR ( CCP4SPG_F_IS_SYSABS, ccp4spg_f_is_sysabs,
(const int *sindx, const int in[3], int *isysab),
(const int *sindx, const int in[3], int *isysab),
(const int *sindx, const int in[3], int *isysab))
{
int h,k,l;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_IS_SYSABS");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_IS_SYSABS: sindx %d out of range!\n",*sindx);
return;
}
if ( ! spacegrp[*sindx-1] ) {
printf("CCP4SPG_F_IS_SYSABS: No spacegroup loaded on channel %d ! \n",*sindx);
return;
}
h = in[0]; k = in[1]; l = in[2];
*isysab = ccp4spg_is_sysabs(spacegrp[*sindx-1], h, k, l);
}
/** Set up centric zones based on symmetry operators.
* Convention: translations are in rsm[isym][3][*]
* @param nsm number of symmetry matrices passed.
* @param rsm symmetry matrices.
* @param iprint If iprint > 0 then a summary of centric zones is printed.
*/
FORTRAN_SUBR ( CENTRIC, centric,
(const int *nsm, const float rsm[192][4][4],
const int *iprint),
(const int *nsm, const float rsm[192][4][4],
const int *iprint),
(const int *nsm, const float rsm[192][4][4],
const int *iprint))
{
int i,k,l;
ccp4_symop *op1=NULL;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CENTRIC");)
/* identify spacegroup from supplied symops */
op1 = (ccp4_symop *) ccp4_utils_malloc(*nsm*sizeof(ccp4_symop));
for (i = 0; i < *nsm; ++i) {
for (k = 0; k < 3; ++k) {
for (l = 0; l < 3; ++l) {
op1[i].rot[k][l] = rsm[i][l][k];
}
op1[i].trn[k] = rsm[i][3][k];
}
}
spacegroup = ccp4_spgrp_reverse_lookup(*nsm,op1);
if (spacegroup && *iprint > 0) ccp4spg_print_centric_zones(spacegroup);
free(op1);
}
FORTRAN_SUBR ( CENTR, centr,
(const int ih[3], int *ic),
(const int ih[3], int *ic),
(const int ih[3], int *ic))
{
int h,k,l;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CENTR");)
h = ih[0]; k = ih[1]; l = ih[2];
*ic = ccp4spg_is_centric(spacegroup, h, k, l);
if (*ic == -1) ccperror(1,"Fatal error in CENTR.");
}
FORTRAN_SUBR ( CCP4SPG_F_IS_CENTRIC, ccp4spg_f_is_centric,
(const int *sindx, const int ih[3], int *ic),
(const int *sindx, const int ih[3], int *ic),
(const int *sindx, const int ih[3], int *ic))
{
int h,k,l;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_IS_CENTRIC");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_IS_CENTRIC: sindx %d out of range!\n",*sindx);
return;
}
if ( ! spacegrp[*sindx-1] ) {
printf("CCP4SPG_F_IS_CENTRIC: No spacegroup loaded on channel %d ! \n",*sindx);
return;
}
h = ih[0]; k = ih[1]; l = ih[2];
*ic = ccp4spg_is_centric(spacegrp[*sindx-1], h, k, l);
if (*ic == -1) ccperror(1,"Fatal error in CCP4SPG_F_IS_CENTRIC.");
}
FORTRAN_SUBR ( CENTPHASE, centphase,
(const int ih[3], float *cenphs),
(const int ih[3], float *cenphs),
(const int ih[3], float *cenphs))
{
int h,k,l;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CENTPHASE");)
h = ih[0]; k = ih[1]; l = ih[2];
if (! ccp4spg_is_centric(spacegroup, h, k, l) ) {
printf("CENTPHASE: This is not a centric reflection!\n");
return;
}
*cenphs = ccp4spg_centric_phase(spacegroup, h, k, l);
}
FORTRAN_SUBR ( CCP4SPG_F_CENTPHASE, ccp4spg_f_centphase,
(const int *sindx, const int ih[3], float *cenphs),
(const int *sindx, const int ih[3], float *cenphs),
(const int *sindx, const int ih[3], float *cenphs))
{
int h,k,l;
CSYMLIB_DEBUG(puts("CSYMLIB_F: CCP4SPG_F_CENTPHASE");)
if (*sindx <= 0 || *sindx > MSPAC) {
printf("Error in CCP4SPG_F_IS_CENTPHASE: sindx %d out of range!\n",*sindx);
return;
}
if ( ! spacegrp[*sindx-1] ) {
printf("CCP4SPG_F_IS_CENTPHASE: No spacegroup loaded on channel %d ! \n",*sindx);
return;
}
h = ih[0]; k = ih[1]; l = ih[2];
if (! ccp4spg_is_centric(spacegrp[*sindx-1], h, k, l) ) {
printf("CCP4SPG_F_CENTPHASE: This is not a centric reflection!\n");
return;
}
*cenphs = ccp4spg_centric_phase(spacegrp[*sindx-1], h, k, l);
}
/* Returns map limits of a.s.u. in fractional units.
These are rounded up or down to mimic <= or < respectively.
In fact, these limits may be larger than 1 a.s.u. but always
have one corner at the origin */
FORTRAN_SUBR ( SETLIM, setlim,
(const int *lspgrp, float xyzlim[3][2]),
(const int *lspgrp, float xyzlim[3][2]),
(const int *lspgrp, float xyzlim[3][2]))
{
CCP4SPG *tmp_spacegroup;
CSYMLIB_DEBUG(puts("CSYMLIB_F: SETLIM");)
if (!spacegroup || spacegroup->spg_ccp4_num != *lspgrp) {
/* load spacegroup if necessary */
/* spacegroup only temporary, as setlim is not expected to
interact with other calls */
if ( ! (tmp_spacegroup = ccp4spg_load_by_ccp4_num(*lspgrp)) ) {
printf("SETLIM: failed to load spacegroup info from SYMINFO! \n");
return;
}
xyzlim[0][1] = tmp_spacegroup->mapasu_ccp4[0];
xyzlim[1][1] = tmp_spacegroup->mapasu_ccp4[1];
xyzlim[2][1] = tmp_spacegroup->mapasu_ccp4[2];
free(tmp_spacegroup);
} else {
xyzlim[0][1] = spacegroup->mapasu_ccp4[0];
xyzlim[1][1] = spacegroup->mapasu_ccp4[1];
xyzlim[2][1] = spacegroup->mapasu_ccp4[2];
}
xyzlim[0][0] = 0.0;
xyzlim[1][0] = 0.0;
xyzlim[2][0] = 0.0;
}
/* Returns map limits of a.s.u. in fractional units.
These are rounded up or down to mimic <= or < respectively.
In fact, these limits may be larger than 1 a.s.u. but always
have one corner at the origin.
This version uses mapasu_zero limits from sgtbx */
FORTRAN_SUBR ( SETLIM_ZERO, setlim_zero,
(const int *lspgrp, float xyzlim[3][2]),
(const int *lspgrp, float xyzlim[3][2]),
(const int *lspgrp, float xyzlim[3][2]))
{
CCP4SPG *tmp_spacegroup;
CSYMLIB_DEBUG(puts("CSYMLIB_F: SETLIM_ZERO");)
if (!spacegroup || spacegroup->spg_ccp4_num != *lspgrp) {
/* load spacegroup if necessary */
/* spacegroup only temporary, as setlim is not expected to
interact with other calls */
if ( ! (tmp_spacegroup = ccp4spg_load_by_ccp4_num(*lspgrp)) ) {
printf("SETLIM_ZERO: failed to load spacegroup info from SYMINFO! \n");
return;
}
xyzlim[0][1] = tmp_spacegroup->mapasu_zero[0];
xyzlim[1][1] = tmp_spacegroup->mapasu_zero[1];
xyzlim[2][1] = tmp_spacegroup->mapasu_zero[2];
free(tmp_spacegroup);
} else {
xyzlim[0][1] = spacegroup->mapasu_zero[0];
xyzlim[1][1] = spacegroup->mapasu_zero[1];
xyzlim[2][1] = spacegroup->mapasu_zero[2];
}
xyzlim[0][0] = 0.0;
xyzlim[1][0] = 0.0;
xyzlim[2][0] = 0.0;
}
FORTRAN_SUBR ( SETGRD, setgrd,
(const int *nlaue, const float *sample, const int *nxmin,
const int *nymin, const int *nzmin, int *nx, int *ny, int *nz),
(const int *nlaue, const float *sample, const int *nxmin,
const int *nymin, const int *nzmin, int *nx, int *ny, int *nz),
(const int *nlaue, const float *sample, const int *nxmin,
const int *nymin, const int *nzmin, int *nx, int *ny, int *nz))
{
int nlaue_save = -1;
if (!spacegroup) {
ccperror(2,"SETGRD: No spacegroup loaded yet! \n");
return;
}
if (spacegroup->nlaue != *nlaue) {
printf("SETGRD: supplied CCP4 Laue code is different from that currently stored\n");
printf("NLAUE (supplied) = %d\n",*nlaue);
printf("NLAUE (library) = %d\n",spacegroup->nlaue);
printf("(For program FFT and certain spacegroups, this is OK.)\n");
/* The requested Laue number is different to that for the
current spacegroup
Save the current Laue code and load the data for the requested code */
nlaue_save = spacegroup->nlaue;
if (ccp4spg_load_laue(spacegroup,*nlaue)) {
printf("SETGRD: unrecognised CCP4 Laue code, couldn't set FFT grid\n");
return;
}
}
set_fft_grid(spacegroup, *nxmin, *nymin, *nzmin, *sample, nx, ny, nz);
if (nlaue_save > -1) {
/* Restore previous settings */
ccp4spg_load_laue(spacegroup,nlaue_save);
}
return;
}
FORTRAN_SUBR ( FNDSMP, fndsmp,
(const int *minsmp, const int *nmul, const float *sample, int *nsampl),
(const int *minsmp, const int *nmul, const float *sample, int *nsampl),
(const int *minsmp, const int *nmul, const float *sample, int *nsampl))
{
*nsampl = get_grid_sample(*minsmp, *nmul, *sample);
}
FORTRAN_SUBR ( CALC_ORIG_PS, calc_orig_ps,
(fpstr namspg_cif, int *nsym, float rsym[192][4][4], int *norig,
float orig[96][3], ftn_logical *lpaxisx, ftn_logical *lpaxisy,
ftn_logical *lpaxisz, fpstr_size_t namspg_cif_len),
(fpstr namspg_cif, int *nsym, float rsym[192][4][4], int *norig,
float orig[96][3], ftn_logical *lpaxisx, ftn_logical *lpaxisy,
ftn_logical *lpaxisz),
(fpstr namspg_cif, fpstr_size_t namspg_cif_len, int *nsym, float rsym[192][4][4],
int *norig, float orig[96][3], ftn_logical *lpaxisx,
ftn_logical *lpaxisy, ftn_logical *lpaxisz))
{
char *temp_namspg;
int i,j,k;
int polarx, polary, polarz;
float crsym[192][4][4];
CSYMLIB_DEBUG(puts("CSYMLIB_F: CALC_ORIG_PS");)
temp_namspg = ccp4_FtoCString(FTN_STR(namspg_cif), FTN_LEN(namspg_cif));
for (i = 0; i < *nsym; ++i) {
for (j = 0; j < 4; ++j) {
for (k = 0; k < 4; ++k) {
crsym[i][k][j] = rsym[i][j][k];
}
}
}
*norig = ccp4spg_generate_origins(temp_namspg, *nsym, (const float (*)[4][4])crsym,
orig, &polarx, &polary, &polarz, 1);
*lpaxisx = polarx ? FORTRAN_LOGICAL_TRUE : FORTRAN_LOGICAL_FALSE;
*lpaxisy = polary ? FORTRAN_LOGICAL_TRUE : FORTRAN_LOGICAL_FALSE;
*lpaxisz = polarz ? FORTRAN_LOGICAL_TRUE : FORTRAN_LOGICAL_FALSE;
free(temp_namspg);
}
static double coefhkl[6];
FORTRAN_SUBR ( SETRSL, setrsl,
(const float *a, const float *b, const float *c,
const float *alpha, const float *beta, const float *gamma),
(const float *a, const float *b, const float *c,
const float *alpha, const float *beta, const float *gamma),
(const float *a, const float *b, const float *c,
const float *alpha, const float *beta, const float *gamma))
{
float cell[6];
CSYMLIB_DEBUG(puts("CSYMLIB_F: SETRSL");)
cell[0] = *a;
cell[1] = *b;
cell[2] = *c;
cell[3] = *alpha;
cell[4] = *beta;
cell[5] = *gamma;
MtzHklcoeffs(cell, coefhkl);
}
FORTRAN_SUBR (STHLSQ1, sthlsq1,
(float *reso, const int *ih, const int *ik, const int *il),
(float *reso, const int *ih, const int *ik, const int *il),
(float *reso, const int *ih, const int *ik, const int *il))
{
int in[3];
CSYMLIB_DEBUG(puts("CSYMLIB_F: STHLSQ");)
in[0] = *ih;
in[1] = *ik;
in[2] = *il;
(*reso) = 0.25*MtzInd2reso(in, coefhkl);
return;
}
FORTRAN_SUBR (STS3R41, sts3r41,
(float *reso, const int *ih, const int *ik, const int *il),
(float *reso, const int *ih, const int *ik, const int *il),
(float *reso, const int *ih, const int *ik, const int *il))
{
int in[3];
CSYMLIB_DEBUG(puts("CSYMLIB_F: STS3R4");)
in[0] = *ih;
in[1] = *ik;
in[2] = *il;
(*reso) = 0.25*MtzInd2reso(in, coefhkl);
return;
}
/* straight translation, needs to be done properly, used in phistats */
FORTRAN_SUBR ( HANDCHANGE, handchange,
(const int *lspgrp, float *cx, float *cy, float *cz),
(const int *lspgrp, float *cx, float *cy, float *cz),
(const int *lspgrp, float *cx, float *cy, float *cz))
{
CSYMLIB_DEBUG(puts("CSYMLIB_F: HANDCHANGE");)
switch (*lspgrp) {
case 80:
*cx=0.0;
*cy=0.5;
*cz=0.0;
break;
case 98:
*cx=0.0;
*cy=0.5;
*cz=0.25;
break;
case 210:
*cx=0.75;
*cy=0.25;
*cz=0.75;
break;
case 214:
*cx=0.25;
*cy=0.25;
*cz=0.25;
break;
}
}
|