1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
|
C
C fftlib.f: fast-fourier transform library routines
C Copyright (C) Lynn Ten Eyck
C
C This library is free software: you can redistribute it and/or
C modify it under the terms of the GNU Lesser General Public License
C version 3, modified in accordance with the provisions of the
C license to address the requirements of UK law.
C
C You should have received a copy of the modified GNU Lesser General
C Public License along with this library. If not, copies may be
C downloaded from http://www.ccp4.ac.uk/ccp4license.php
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU Lesser General Public License for more details.
C
C-- FFT81 F77TRNFM.FOR 13/09/85 JWC
C
C
C**** FOLLOWING ARE ROUTINES USED BY TEN EYCK'S FFT PROGRAMS***
C
C
SUBROUTINE CMPLFT(X,Y,N,D)
C ===============================
C
C
C Complex finite discrete fourier transform
C transforms one dimension of multi-dimensional data
C modified by L. F. TEN EYCK from a one-dimensional version written
C by G. T. SANDE, 1969.
C
C This program calculates the transform
C (X(T) + I*Y(T))*(COS(2*PI*T/N) - I*SIN(2*PI*T/N))
C
C INDEXING -- the arrangement of the multi-dimensional data is
C specified by the integer array D, the values of which are used as
C control parameters in do loops. when it is desired to cover all
C elements of the data for which the subscript being transformed has
C the value I0, the following is used.
C
C I1 = (I0 - 1)*D(2) + 1
C DO 100 I2 = I1, D(1), D(3)
C I3 = I2 + D(4) - 1
C DO 100 I = I2, I3, D(5)
C .
C .
C 100 CONTINUE
C
C with this indexing it is possible to use a number of arrangements
C of the data, including normal fortran complex numbers (d(5) = 2)
C or separate storage of real and imaginary parts.
C
C
C---- PMAX is the largest prime factor that will be tolerated by this
C program.
C
C---- TWOGRP is the largest power of two that is treated as a special
C case.
C
C .. Scalar Arguments ..
INTEGER N
C ..
C .. Array Arguments ..
REAL X(*),Y(*)
INTEGER D(5)
C ..
C .. Local Scalars ..
INTEGER PMAX,PSYM,TWOGRP
LOGICAL ERROR
CHARACTER EMESS*80
C ..
C .. Local Arrays ..
INTEGER FACTOR(15),SYM(15),UNSYM(15)
C ..
C .. External Subroutines ..
EXTERNAL DIPRP,MDFTKD,SRFP
C ..
PMAX = 19
TWOGRP = 8
C
IF (N.GT.1) THEN
CALL SRFP(N,PMAX,TWOGRP,FACTOR,SYM,PSYM,UNSYM,ERROR)
IF (ERROR) THEN
C
WRITE (EMESS,FMT=9000) N
call ccperr(1, EMESS)
ELSE
C
CALL MDFTKD(N,FACTOR,D,X,Y)
CALL DIPRP(N,SYM,PSYM,UNSYM,D,X,Y)
END IF
END IF
C
C---- Format statements
C
9000 FORMAT ('FFTLIB: invalid number of points for CMPL FT. N =',I10)
END
C
C
SUBROUTINE SRFP(PTS,PMAX,TWOGRP,FACTOR,SYM,PSYM,UNSYM,ERROR)
C ==================================================================
C
C
C---- Symmetrized reordering factoring programme
C
C
C .. Scalar Arguments ..
INTEGER PMAX,PSYM,PTS,TWOGRP
LOGICAL ERROR
C ..
C .. Array Arguments ..
INTEGER FACTOR(15),SYM(15),UNSYM(15)
C ..
C .. Local Scalars ..
INTEGER F,J,JJ,N,NEST,P,PTWO,Q,R
C ..
C .. Local Arrays ..
INTEGER PP(14),QQ(7)
C ..
NEST = 14
C
N = PTS
PSYM = 1
F = 2
P = 0
Q = 0
10 CONTINUE
IF (N.LE.1) THEN
GO TO 60
ELSE
DO 20 J = F,PMAX
IF (N.EQ. (N/J)*J) GO TO 30
20 CONTINUE
GO TO 40
30 IF (2*P+Q.GE.NEST) THEN
GO TO 50
ELSE
F = J
N = N/F
IF (N.EQ. (N/F)*F) THEN
N = N/F
P = P + 1
PP(P) = F
PSYM = PSYM*F
ELSE
Q = Q + 1
QQ(Q) = F
END IF
GO TO 10
END IF
END IF
C
40 CONTINUE
WRITE (6,FMT=9000) PMAX,PTS
ERROR = .TRUE.
GO TO 100
C
50 CONTINUE
WRITE (6,FMT=9010) NEST,PTS
ERROR = .TRUE.
GO TO 100
C
60 CONTINUE
R = 1
IF (Q.EQ.0) R = 0
IF (P.GE.1) THEN
DO 70 J = 1,P
JJ = P + 1 - J
SYM(J) = PP(JJ)
FACTOR(J) = PP(JJ)
JJ = P + Q + J
FACTOR(JJ) = PP(J)
JJ = P + R + J
SYM(JJ) = PP(J)
70 CONTINUE
END IF
IF (Q.GE.1) THEN
DO 80 J = 1,Q
JJ = P + J
UNSYM(J) = QQ(J)
FACTOR(JJ) = QQ(J)
80 CONTINUE
SYM(P+1) = PTS/PSYM**2
END IF
JJ = 2*P + Q
FACTOR(JJ+1) = 0
PTWO = 1
J = 0
90 CONTINUE
J = J + 1
IF (FACTOR(J).NE.0) THEN
IF (FACTOR(J).EQ.2) THEN
PTWO = PTWO*2
FACTOR(J) = 1
IF (PTWO.LT.TWOGRP) THEN
IF (FACTOR(J+1).EQ.2) GO TO 90
END IF
FACTOR(J) = PTWO
PTWO = 1
END IF
GO TO 90
END IF
IF (P.EQ.0) R = 0
JJ = 2*P + R
SYM(JJ+1) = 0
IF (Q.LE.1) Q = 0
UNSYM(Q+1) = 0
ERROR = .FALSE.
C
100 CONTINUE
C
C---- Format statements
C
9000 FORMAT (' FFTLIB: Largest factor exceeds ',I3,'. N = ',I6,'.')
9010 FORMAT (' FFTLIB: Factor count exceeds ',I3,'. N = ',I6,'.')
END
C
C
SUBROUTINE MDFTKD(N,FACTOR,DIM,X,Y)
C ==========================================
C
C
C---- Multi-dimensional complex fourier transform kernel driver
C
C
C .. Scalar Arguments ..
INTEGER N
C ..
C .. Array Arguments ..
REAL X(*),Y(*)
INTEGER DIM(5),FACTOR(15)
C ..
C .. Local Scalars ..
INTEGER F,M,P,R,S
C ..
C .. External Subroutines ..
EXTERNAL R2CFTK,R3CFTK,R4CFTK,R5CFTK,R8CFTK,RPCFTK
C ..
S = DIM(2)
F = 0
M = N
10 CONTINUE
F = F + 1
P = FACTOR(F)
IF (P.EQ.0) THEN
RETURN
ELSE
M = M/P
R = M*S
IF (P.LE.8) THEN
GO TO (10,20,30,40,50,80,70,60) P
GO TO 80
C
20 CONTINUE
CALL R2CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),DIM)
GO TO 10
C
30 CONTINUE
CALL R3CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),X(2*R+1),Y(2*R+1),
+ DIM)
GO TO 10
C
40 CONTINUE
CALL R4CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),X(2*R+1),Y(2*R+1),
+ X(3*R+1),Y(3*R+1),DIM)
GO TO 10
C
50 CONTINUE
CALL R5CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),X(2*R+1),Y(2*R+1),
+ X(3*R+1),Y(3*R+1),X(4*R+1),Y(4*R+1),DIM)
GO TO 10
C
60 CONTINUE
CALL R8CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),X(2*R+1),Y(2*R+1),
+ X(3*R+1),Y(3*R+1),X(4*R+1),Y(4*R+1),X(5*R+1),
+ Y(5*R+1),X(6*R+1),Y(6*R+1),X(7*R+1),Y(7*R+1),
+ DIM)
GO TO 10
END IF
C
70 CONTINUE
CALL RPCFTK(N,M,P,R,X,Y,DIM)
GO TO 10
END IF
C
80 CONTINUE
WRITE (6,FMT=9000)
C
C---- Format statements
C
9000 FORMAT ('0TRANSFER ERROR DETECTED IN MDFTKD',//)
END
C
C
SUBROUTINE R2CFTK(N,M,X0,Y0,X1,Y1,DIM)
C ==============================================
C
C
C---- Radix 2 multi-dimensional complex fourier transform kernel
C
C .. Scalar Arguments ..
INTEGER M,N
C ..
C .. Array Arguments ..
REAL X0(*),X1(*),Y0(*),Y1(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL ANGLE,C,FM2,IS,IU,RS,RU,S,TWOPI
INTEGER J,K,K0,K1,K2,KK,L,L1,M2,MM2,MOVER2,NS,NT,SEP,
+ SIZE
LOGICAL FOLD,ZERO
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
C .. Data statements ..
DATA TWOPI/6.283185/
C ..
C
NT = DIM(1)
SEP = DIM(2)
L1 = DIM(3)
SIZE = DIM(4) - 1
K2 = DIM(5)
NS = N*SEP
M2 = M*2
FM2 = REAL(M2)
MOVER2 = M/2 + 1
MM2 = SEP*M2
C
DO 50 J = 1,MOVER2
FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
K0 = (J-1)*SEP + 1
ZERO = j. eq. 1
IF (.NOT.ZERO) THEN
ANGLE = TWOPI*REAL(j-1)/FM2
C = COS(ANGLE)
S = SIN(ANGLE)
END IF
10 CONTINUE
C
DO 40 KK = K0,NS,MM2
DO 30 L = KK,NT,L1
K1 = L + SIZE
DO 20 K = L,K1,K2
RS = X0(K) + X1(K)
IS = Y0(K) + Y1(K)
RU = X0(K) - X1(K)
IU = Y0(K) - Y1(K)
X0(K) = RS
Y0(K) = IS
IF (ZERO) THEN
X1(K) = RU
Y1(K) = IU
ELSE
X1(K) = RU*C + IU*S
Y1(K) = IU*C - RU*S
END IF
20 CONTINUE
30 CONTINUE
40 CONTINUE
IF (FOLD) THEN
FOLD = .FALSE.
K0 = (M+1-J)*SEP + 1
C = -C
GO TO 10
END IF
50 CONTINUE
C
END
C
C
SUBROUTINE R3CFTK(N,M,X0,Y0,X1,Y1,X2,Y2,DIM)
C ======================================================
C
C
C---- Radix 3 multi-dimensional complex fourier transform kernel
C
C .. Scalar Arguments ..
INTEGER M,N
C ..
C .. Array Arguments ..
REAL X0(*),X1(*),X2(*),Y0(*),Y1(*),Y2(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL A,ANGLE,B,C1,C2,FM3,I0,I1,I2,IA,IB,IS,R0,
+ R1,R2,RA,RB,RS,S1,S2,T,TWOPI
INTEGER J,K,K0,K1,K2,KK,L,L1,M3,MM3,MOVER2,NS,NT,SEP,
+ SIZE
LOGICAL FOLD,ZERO
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
C .. Data statements ..
DATA TWOPI/6.283185/,A/-0.5/,B/0.86602540/
C ..
C
NT = DIM(1)
SEP = DIM(2)
L1 = DIM(3)
SIZE = DIM(4) - 1
K2 = DIM(5)
NS = N*SEP
M3 = M*3
FM3 = REAL(M3)
MM3 = SEP*M3
MOVER2 = M/2 + 1
C
DO 50 J = 1,MOVER2
FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
K0 = (J-1)*SEP + 1
ZERO = j .eq. 1
IF (.NOT.ZERO) THEN
ANGLE = TWOPI*REAL(j-1)/FM3
C1 = COS(ANGLE)
S1 = SIN(ANGLE)
C2 = C1*C1 - S1*S1
S2 = S1*C1 + C1*S1
END IF
10 CONTINUE
C
DO 40 KK = K0,NS,MM3
DO 30 L = KK,NT,L1
K1 = L + SIZE
DO 20 K = L,K1,K2
R0 = X0(K)
I0 = Y0(K)
RS = X1(K) + X2(K)
IS = Y1(K) + Y2(K)
X0(K) = R0 + RS
Y0(K) = I0 + IS
RA = RS*A + R0
IA = IS*A + I0
RB = (X1(K)-X2(K))*B
IB = (Y1(K)-Y2(K))*B
IF (ZERO) THEN
X1(K) = RA + IB
Y1(K) = IA - RB
X2(K) = RA - IB
Y2(K) = IA + RB
ELSE
R1 = RA + IB
I1 = IA - RB
R2 = RA - IB
I2 = IA + RB
X1(K) = R1*C1 + I1*S1
Y1(K) = I1*C1 - R1*S1
X2(K) = R2*C2 + I2*S2
Y2(K) = I2*C2 - R2*S2
END IF
20 CONTINUE
30 CONTINUE
40 CONTINUE
IF (FOLD) THEN
FOLD = .FALSE.
K0 = (M+1-J)*SEP + 1
T = C1*A + S1*B
S1 = C1*B - S1*A
C1 = T
T = C2*A - S2*B
S2 = -C2*B - S2*A
C2 = T
GO TO 10
END IF
50 CONTINUE
C
END
C
C
SUBROUTINE R4CFTK(N,M,X0,Y0,X1,Y1,X2,Y2,X3,Y3,DIM)
C ==============================================================
C
C
C---- Radix 4 multi-dimensional complex fourier transform kernel
C
C .. Scalar Arguments ..
INTEGER M,N
C ..
C .. Array Arguments ..
REAL X0(*),X1(*),X2(*),X3(*),Y0(*),Y1(*),
+ Y2(*),Y3(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL ANGLE,C1,C2,C3,FM4,I1,I2,I3,IS0,IS1,IU0,
+ IU1,R1,R2,R3,RS0,RS1,RU0,RU1,S1,S2,S3,T,TWOPI
INTEGER J,K,K0,K1,K2,KK,L,L1,M4,MM4,MOVER2,NS,NT,SEP,
+ SIZE
LOGICAL FOLD,ZERO
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
C .. Data statements ..
DATA TWOPI/6.283185/
C ..
C
NT = DIM(1)
SEP = DIM(2)
L1 = DIM(3)
SIZE = DIM(4) - 1
K2 = DIM(5)
NS = N*SEP
M4 = M*4
FM4 = REAL(M4)
MM4 = SEP*M4
MOVER2 = M/2 + 1
C
DO 50 J = 1,MOVER2
FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
K0 = (J-1)*SEP + 1
ZERO = j .eq. 1
IF (.NOT.ZERO) THEN
ANGLE = TWOPI*REAL(j-1)/FM4
C1 = COS(ANGLE)
S1 = SIN(ANGLE)
C2 = C1*C1 - S1*S1
S2 = S1*C1 + C1*S1
C3 = C2*C1 - S2*S1
S3 = S2*C1 + C2*S1
END IF
10 CONTINUE
C
DO 40 KK = K0,NS,MM4
DO 30 L = KK,NT,L1
K1 = L + SIZE
DO 20 K = L,K1,K2
RS0 = X0(K) + X2(K)
IS0 = Y0(K) + Y2(K)
RU0 = X0(K) - X2(K)
IU0 = Y0(K) - Y2(K)
RS1 = X1(K) + X3(K)
IS1 = Y1(K) + Y3(K)
RU1 = X1(K) - X3(K)
IU1 = Y1(K) - Y3(K)
X0(K) = RS0 + RS1
Y0(K) = IS0 + IS1
IF (ZERO) THEN
X2(K) = RU0 + IU1
Y2(K) = IU0 - RU1
X1(K) = RS0 - RS1
Y1(K) = IS0 - IS1
X3(K) = RU0 - IU1
Y3(K) = IU0 + RU1
ELSE
R1 = RU0 + IU1
I1 = IU0 - RU1
R2 = RS0 - RS1
I2 = IS0 - IS1
R3 = RU0 - IU1
I3 = IU0 + RU1
X2(K) = R1*C1 + I1*S1
Y2(K) = I1*C1 - R1*S1
X1(K) = R2*C2 + I2*S2
Y1(K) = I2*C2 - R2*S2
X3(K) = R3*C3 + I3*S3
Y3(K) = I3*C3 - R3*S3
END IF
20 CONTINUE
30 CONTINUE
40 CONTINUE
IF (FOLD) THEN
FOLD = .FALSE.
K0 = (M+1-J)*SEP + 1
T = C1
C1 = S1
S1 = T
C2 = -C2
T = C3
C3 = -S3
S3 = -T
GO TO 10
END IF
50 CONTINUE
C
END
C
C
SUBROUTINE R5CFTK(N,M,X0,Y0,X1,Y1,X2,Y2,X3,Y3,X4,Y4,DIM)
C =================================================================
C
C
C---- Radix 5 multi-dimensional complex fourier transform kernel
C
C .. Scalar Arguments ..
INTEGER M,N
C ..
C .. Array Arguments ..
REAL X0(*),X1(*),X2(*),X3(*),X4(*),Y0(*),
+ Y1(*),Y2(*),Y3(*),Y4(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL A1,A2,ANGLE,B1,B2,C1,C2,C3,C4,FM5,I0,I1,I2,
+ I3,I4,IA1,IA2,IB1,IB2,IS1,IS2,IU1,IU2,R0,R1,R2,
+ R3,R4,RA1,RA2,RB1,RB2,RS1,RS2,RU1,RU2,S1,S2,S3,
+ S4,T,TWOPI
INTEGER J,K,K0,K1,K2,KK,L,L1,M5,MM5,MOVER2,NS,NT,SEP,
+ SIZE
LOGICAL FOLD,ZERO
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
C .. Data statements ..
DATA TWOPI/6.283185/,A1/0.30901699/,B1/0.95105652/,
+ A2/-0.80901699/,B2/0.58778525/
C ..
C
NT = DIM(1)
SEP = DIM(2)
L1 = DIM(3)
SIZE = DIM(4) - 1
K2 = DIM(5)
NS = N*SEP
M5 = M*5
FM5 = REAL(M5)
MM5 = SEP*M5
MOVER2 = M/2 + 1
C
DO 50 J = 1,MOVER2
FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
K0 = (J-1)*SEP + 1
ZERO = j .eq. 1
IF (.NOT.ZERO) THEN
ANGLE = TWOPI*REAL(j-1)/FM5
C1 = COS(ANGLE)
S1 = SIN(ANGLE)
C2 = C1*C1 - S1*S1
S2 = S1*C1 + C1*S1
C3 = C2*C1 - S2*S1
S3 = S2*C1 + C2*S1
C4 = C2*C2 - S2*S2
S4 = S2*C2 + C2*S2
END IF
10 CONTINUE
C
DO 40 KK = K0,NS,MM5
DO 30 L = KK,NT,L1
K1 = L + SIZE
DO 20 K = L,K1,K2
R0 = X0(K)
I0 = Y0(K)
RS1 = X1(K) + X4(K)
IS1 = Y1(K) + Y4(K)
RU1 = X1(K) - X4(K)
IU1 = Y1(K) - Y4(K)
RS2 = X2(K) + X3(K)
IS2 = Y2(K) + Y3(K)
RU2 = X2(K) - X3(K)
IU2 = Y2(K) - Y3(K)
X0(K) = R0 + RS1 + RS2
Y0(K) = I0 + IS1 + IS2
RA1 = RS1*A1 + R0 + RS2*A2
IA1 = IS1*A1 + I0 + IS2*A2
RA2 = RS1*A2 + R0 + RS2*A1
IA2 = IS1*A2 + I0 + IS2*A1
RB1 = RU1*B1 + RU2*B2
IB1 = IU1*B1 + IU2*B2
RB2 = RU1*B2 - RU2*B1
IB2 = IU1*B2 - IU2*B1
IF (ZERO) THEN
X1(K) = RA1 + IB1
Y1(K) = IA1 - RB1
X2(K) = RA2 + IB2
Y2(K) = IA2 - RB2
X3(K) = RA2 - IB2
Y3(K) = IA2 + RB2
X4(K) = RA1 - IB1
Y4(K) = IA1 + RB1
ELSE
R1 = RA1 + IB1
I1 = IA1 - RB1
R2 = RA2 + IB2
I2 = IA2 - RB2
R3 = RA2 - IB2
I3 = IA2 + RB2
R4 = RA1 - IB1
I4 = IA1 + RB1
X1(K) = R1*C1 + I1*S1
Y1(K) = I1*C1 - R1*S1
X2(K) = R2*C2 + I2*S2
Y2(K) = I2*C2 - R2*S2
X3(K) = R3*C3 + I3*S3
Y3(K) = I3*C3 - R3*S3
X4(K) = R4*C4 + I4*S4
Y4(K) = I4*C4 - R4*S4
END IF
20 CONTINUE
30 CONTINUE
40 CONTINUE
IF (FOLD) THEN
FOLD = .FALSE.
K0 = (M+1-J)*SEP + 1
T = C1*A1 + S1*B1
S1 = C1*B1 - S1*A1
C1 = T
T = C2*A2 + S2*B2
S2 = C2*B2 - S2*A2
C2 = T
T = C3*A2 - S3*B2
S3 = -C3*B2 - S3*A2
C3 = T
T = C4*A1 - S4*B1
S4 = -C4*B1 - S4*A1
C4 = T
GO TO 10
END IF
50 CONTINUE
C
END
C
C
SUBROUTINE R8CFTK(N,M,X0,Y0,X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X6,Y6,
+ X7,Y7,DIM)
C ===============================================================
C
C
C---- Radix 8 multi-dimensional complex fourier transform kernel
C
C .. Scalar Arguments ..
INTEGER M,N
C ..
C .. Array Arguments ..
REAL X0(*),X1(*),X2(*),X3(*),X4(*),X5(*),
+ X6(*),X7(*),Y0(*),Y1(*),Y2(*),Y3(*),
+ Y4(*),Y5(*),Y6(*),Y7(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL ANGLE,C1,C2,C3,C4,C5,C6,C7,E,FM8,I1,I2,I3,
+ I4,I5,I6,I7,IS0,IS1,IS2,IS3,ISS0,ISS1,ISU0,ISU1,
+ IU0,IU1,IU2,IU3,IUS0,IUS1,IUU0,IUU1,R1,R2,R3,R4,
+ R5,R6,R7,RS0,RS1,RS2,RS3,RSS0,RSS1,RSU0,RSU1,
+ RU0,RU1,RU2,RU3,RUS0,RUS1,RUU0,RUU1,S1,S2,S3,S4,
+ S5,S6,S7,T,TWOPI
INTEGER J,K,K0,K1,K2,KK,L,L1,M8,MM8,MOVER2,NS,NT,SEP,
+ SIZE
LOGICAL FOLD,ZERO
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
C .. Data statements ..
DATA TWOPI/6.283185/,E/0.70710678/
C ..
C
NT = DIM(1)
SEP = DIM(2)
L1 = DIM(3)
SIZE = DIM(4) - 1
K2 = DIM(5)
NS = N*SEP
M8 = M*8
FM8 = REAL(M8)
MM8 = SEP*M8
MOVER2 = M/2 + 1
C
DO 50 J = 1,MOVER2
FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
K0 = (J-1)*SEP + 1
ZERO = j .eq. 1
IF (.NOT.ZERO) THEN
ANGLE = TWOPI*REAL(j-1)/FM8
C1 = COS(ANGLE)
S1 = SIN(ANGLE)
C2 = C1*C1 - S1*S1
S2 = S1*C1 + C1*S1
C3 = C2*C1 - S2*S1
S3 = S2*C1 + C2*S1
C4 = C2*C2 - S2*S2
S4 = S2*C2 + C2*S2
C5 = C4*C1 - S4*S1
S5 = S4*C1 + C4*S1
C6 = C4*C2 - S4*S2
S6 = S4*C2 + C4*S2
C7 = C4*C3 - S4*S3
S7 = S4*C3 + C4*S3
END IF
10 CONTINUE
C
DO 40 KK = K0,NS,MM8
DO 30 L = KK,NT,L1
K1 = L + SIZE
DO 20 K = L,K1,K2
RS0 = X0(K) + X4(K)
IS0 = Y0(K) + Y4(K)
RU0 = X0(K) - X4(K)
IU0 = Y0(K) - Y4(K)
RS1 = X1(K) + X5(K)
IS1 = Y1(K) + Y5(K)
RU1 = X1(K) - X5(K)
IU1 = Y1(K) - Y5(K)
RS2 = X2(K) + X6(K)
IS2 = Y2(K) + Y6(K)
RU2 = X2(K) - X6(K)
IU2 = Y2(K) - Y6(K)
RS3 = X3(K) + X7(K)
IS3 = Y3(K) + Y7(K)
RU3 = X3(K) - X7(K)
IU3 = Y3(K) - Y7(K)
RSS0 = RS0 + RS2
ISS0 = IS0 + IS2
RSU0 = RS0 - RS2
ISU0 = IS0 - IS2
RSS1 = RS1 + RS3
ISS1 = IS1 + IS3
RSU1 = RS1 - RS3
ISU1 = IS1 - IS3
RUS0 = RU0 - IU2
IUS0 = IU0 + RU2
RUU0 = RU0 + IU2
IUU0 = IU0 - RU2
RUS1 = RU1 - IU3
IUS1 = IU1 + RU3
RUU1 = RU1 + IU3
IUU1 = IU1 - RU3
T = (RUS1+IUS1)*E
IUS1 = (IUS1-RUS1)*E
RUS1 = T
T = (RUU1+IUU1)*E
IUU1 = (IUU1-RUU1)*E
RUU1 = T
X0(K) = RSS0 + RSS1
Y0(K) = ISS0 + ISS1
IF (ZERO) THEN
X4(K) = RUU0 + RUU1
Y4(K) = IUU0 + IUU1
X2(K) = RSU0 + ISU1
Y2(K) = ISU0 - RSU1
X6(K) = RUS0 + IUS1
Y6(K) = IUS0 - RUS1
X1(K) = RSS0 - RSS1
Y1(K) = ISS0 - ISS1
X5(K) = RUU0 - RUU1
Y5(K) = IUU0 - IUU1
X3(K) = RSU0 - ISU1
Y3(K) = ISU0 + RSU1
X7(K) = RUS0 - IUS1
Y7(K) = IUS0 + RUS1
ELSE
R1 = RUU0 + RUU1
I1 = IUU0 + IUU1
R2 = RSU0 + ISU1
I2 = ISU0 - RSU1
R3 = RUS0 + IUS1
I3 = IUS0 - RUS1
R4 = RSS0 - RSS1
I4 = ISS0 - ISS1
R5 = RUU0 - RUU1
I5 = IUU0 - IUU1
R6 = RSU0 - ISU1
I6 = ISU0 + RSU1
R7 = RUS0 - IUS1
I7 = IUS0 + RUS1
X4(K) = R1*C1 + I1*S1
Y4(K) = I1*C1 - R1*S1
X2(K) = R2*C2 + I2*S2
Y2(K) = I2*C2 - R2*S2
X6(K) = R3*C3 + I3*S3
Y6(K) = I3*C3 - R3*S3
X1(K) = R4*C4 + I4*S4
Y1(K) = I4*C4 - R4*S4
X5(K) = R5*C5 + I5*S5
Y5(K) = I5*C5 - R5*S5
X3(K) = R6*C6 + I6*S6
Y3(K) = I6*C6 - R6*S6
X7(K) = R7*C7 + I7*S7
Y7(K) = I7*C7 - R7*S7
END IF
20 CONTINUE
30 CONTINUE
40 CONTINUE
IF (FOLD) THEN
FOLD = .FALSE.
K0 = (M+1-J)*SEP + 1
T = (C1+S1)*E
S1 = (C1-S1)*E
C1 = T
T = S2
S2 = C2
C2 = T
T = (-C3+S3)*E
S3 = (C3+S3)*E
C3 = T
C4 = -C4
T = - (C5+S5)*E
S5 = (-C5+S5)*E
C5 = T
T = -S6
S6 = -C6
C6 = T
T = (C7-S7)*E
S7 = - (C7+S7)*E
C7 = T
GO TO 10
END IF
50 CONTINUE
C
END
C
C
SUBROUTINE RPCFTK(N,M,P,R,X,Y,DIM)
C ==========================================
C
C
C---- Radix prime multi-dimensional complex fourier transform kernel
C
CMDW: Note, routine works beyond the nominal bounds of X and Y.
C We think this is deliberate, so don't be tempted to "fix" it.
C This routine is therefore incompatible with "bounds-checking"
C options of compilers.
C
C .. Scalar Arguments ..
INTEGER M,N,P,R
C ..
C .. Array Arguments ..
REAL X(R,P),Y(R,P)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL ANGLE,FMP,FP,FU,IS,IU,RS,RU,T,TWOPI,XT,YT
INTEGER J,JJ,K,K0,K1,K2,KK,L,L1,MMP,MOVER2,MP,NS,NT,PM,
+ PP,SEP,SIZE,U,V
LOGICAL FOLD,ZERO
C ..
C .. Local Arrays ..
REAL A(18),AA(9,9),B(18),BB(9,9),C(18),IA(9),IB(9),
+ RA(9),RB(9),S(18)
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
C .. Data statements ..
DATA TWOPI/6.283185/
C ..
C
C
NT = DIM(1)
SEP = DIM(2)
L1 = DIM(3)
SIZE = DIM(4) - 1
K2 = DIM(5)
NS = N*SEP
MOVER2 = M/2 + 1
MP = M*P
FMP = REAL(MP)
MMP = SEP*MP
PP = P/2
PM = P - 1
FP = REAL(P)
FU = 0.0
DO 10 U = 1,PP
FU = FU + 1.0
ANGLE = TWOPI*FU/FP
JJ = P - U
A(U) = COS(ANGLE)
B(U) = SIN(ANGLE)
A(JJ) = A(U)
B(JJ) = -B(U)
10 CONTINUE
DO 30 U = 1,PP
DO 20 V = 1,PP
JJ = U*V - U*V/P*P
AA(V,U) = A(JJ)
BB(V,U) = B(JJ)
20 CONTINUE
30 CONTINUE
C
DO 140 J = 1,MOVER2
FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
K0 = (J-1)*SEP + 1
ZERO = j .eq. 1
IF (.NOT.ZERO) THEN
ANGLE = TWOPI*REAL(j-1)/FMP
C(1) = COS(ANGLE)
S(1) = SIN(ANGLE)
DO 40 U = 2,PM
C(U) = C(U-1)*C(1) - S(U-1)*S(1)
S(U) = S(U-1)*C(1) + C(U-1)*S(1)
40 CONTINUE
END IF
50 CONTINUE
C
DO 120 KK = K0,NS,MMP
DO 110 L = KK,NT,L1
K1 = L + SIZE
DO 100 K = L,K1,K2
XT = X(K,1)
YT = Y(K,1)
RS = X(K,2) + X(K,P)
IS = Y(K,2) + Y(K,P)
RU = X(K,2) - X(K,P)
IU = Y(K,2) - Y(K,P)
DO 60 U = 1,PP
RA(U) = AA(U,1)*RS + XT
IA(U) = AA(U,1)*IS + YT
RB(U) = BB(U,1)*RU
IB(U) = BB(U,1)*IU
60 CONTINUE
XT = XT + RS
YT = YT + IS
DO 80 U = 2,PP
JJ = P - U
RS = X(K,U+1) + X(K,JJ+1)
IS = Y(K,U+1) + Y(K,JJ+1)
RU = X(K,U+1) - X(K,JJ+1)
IU = Y(K,U+1) - Y(K,JJ+1)
XT = XT + RS
YT = YT + IS
DO 70 V = 1,PP
RA(V) = AA(V,U)*RS + RA(V)
IA(V) = AA(V,U)*IS + IA(V)
RB(V) = BB(V,U)*RU + RB(V)
IB(V) = BB(V,U)*IU + IB(V)
70 CONTINUE
80 CONTINUE
X(K,1) = XT
Y(K,1) = YT
DO 90 U = 1,PP
JJ = P - U
IF (ZERO) THEN
X(K,U+1) = RA(U) + IB(U)
Y(K,U+1) = IA(U) - RB(U)
X(K,JJ+1) = RA(U) - IB(U)
Y(K,JJ+1) = IA(U) + RB(U)
ELSE
XT = RA(U) + IB(U)
YT = IA(U) - RB(U)
X(K,U+1) = C(U)*XT + S(U)*YT
Y(K,U+1) = C(U)*YT - S(U)*XT
XT = RA(U) - IB(U)
YT = IA(U) + RB(U)
X(K,JJ+1) = C(JJ)*XT + S(JJ)*YT
Y(K,JJ+1) = C(JJ)*YT - S(JJ)*XT
END IF
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
IF (FOLD) THEN
FOLD = .FALSE.
K0 = (M+1-J)*SEP + 1
DO 130 U = 1,PM
T = C(U)*A(U) + S(U)*B(U)
S(U) = -S(U)*A(U) + C(U)*B(U)
C(U) = T
130 CONTINUE
GO TO 50
END IF
140 CONTINUE
C
END
C
C
SUBROUTINE HERMFT(X,Y,N,DIM)
C ==================================
C
C
C
C---- Hermitian symmetric fourier transform
C
C Given the unique terms of a hermitian symmetric sequence of length
C 2N this subroutine calculates the 2N real numbers which are its
C fourier transform. The even numbered elements of the transform
C (0, 2, 4, . . ., 2n-2) are returned in X and the odd numbered
C elements (1, 3, 5, . . ., 2n-1) in Y.
C
C A finite hermitian sequence of length 2n contains n + 1 unique
C real numbers and n - 1 unique imaginary numbers. For convenience
C the real value for X(n) is stored at Y(0).
C
C
C .. Scalar Arguments ..
INTEGER N
C ..
C .. Array Arguments ..
REAL X(*),Y(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL A,ANGLE,B,C,CO,D,E,F,SI,TWON,TWOPI
INTEGER D2,D3,D4,D5,I,I0,I1,I2,J,K,K1,NOVER2,NT
C ..
C .. External Subroutines ..
EXTERNAL CMPLFT
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
TWOPI = 6.283185
TWON = REAL(2*N)
C
NT = DIM(1)
D2 = DIM(2)
D3 = DIM(3)
D4 = DIM(4) - 1
D5 = DIM(5)
C
DO 20 I0 = 1,NT,D3
I1 = I0 + D4
DO 10 I = I0,I1,D5
A = X(I)
B = Y(I)
X(I) = A + B
Y(I) = A - B
10 CONTINUE
20 CONTINUE
C
NOVER2 = N/2 + 1
IF (NOVER2.GE.2) THEN
DO 50 I0 = 2,NOVER2
ANGLE = REAL(I0-1)*TWOPI/TWON
CO = COS(ANGLE)
SI = SIN(ANGLE)
K = (N+2-2*I0)*D2
K1 = (I0-1)*D2 + 1
DO 40 I1 = K1,NT,D3
I2 = I1 + D4
DO 30 I = I1,I2,D5
J = I + K
A = X(I) + X(J)
B = X(I) - X(J)
C = Y(I) + Y(J)
D = Y(I) - Y(J)
E = B*CO + C*SI
F = B*SI - C*CO
X(I) = A + F
X(J) = A - F
Y(I) = E + D
Y(J) = E - D
30 CONTINUE
40 CONTINUE
50 CONTINUE
C
CALL CMPLFT(X,Y,N,DIM)
END IF
C
C
END
C
C
SUBROUTINE INV21(X,Y,N,D)
C =========================
C
C
C
C---- Inverts fourier transform along a screw
C diad. the result is scaled by n.
C
C
C .. Scalar Arguments ..
INTEGER N
C ..
C .. Array Arguments ..
REAL X(*),Y(*)
INTEGER D(5)
C ..
C .. Local Scalars ..
REAL A,B,C,C1,PI,R,S,S1
INTEGER D1,D2,D3,D4,D5,I,J,J1,J2,J3,K,KK,L,LL,M,NOVER2
C ..
C .. External Subroutines ..
EXTERNAL CMPLFT
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
PI = 3.141593
C
D1 = D(1)
D2 = D(2)
D3 = D(3)
D4 = D(4) - 1
D5 = D(5)
C
NOVER2 = N/2
LL = N*D2
KK = NOVER2*D2
DO 20 J1 = 1,D1,D3
J2 = J1 + D4
DO 10 J = J1,J2,D5
L = LL + J
K = KK + J
X(L) = X(J) + X(K)
X(K) = X(K) + Y(K)
Y(L) = 0.0
Y(K) = 0.0
10 CONTINUE
20 CONTINUE
C
C1 = COS(PI/REAL(N))
S1 = SIN(PI/REAL(N))
C = 1.0
S = 0.0
DO 50 I = 2,NOVER2
KK = (N+2-2*I)*D2
LL = (N+1-I)*D2
R = C*C1 - S*S1
S = C*S1 + S*C1
C = R
J1 = (I-1)*D2 + 1
DO 40 J2 = J1,D1,D3
J3 = J2 + D4
DO 30 J = J2,J3,D5
L = J + LL
K = J + KK
X(L) = X(L) + X(J) + X(K)
X(J) = Y(J)*S + X(J)
X(K) = Y(K)*S + X(K)
Y(J) = Y(J)*C
Y(K) = -Y(K)*C
30 CONTINUE
40 CONTINUE
50 CONTINUE
C
CALL CMPLFT(X,Y,N,D)
C
DO 80 I = 1,NOVER2
KK = (N+1-2*I)*D2
LL = I*D2 + KK
J1 = (I-1)*D2 + 1
DO 70 J2 = J1,D1,D3
J3 = J2 + D4
DO 60 J = J2,J3,D5
K = J + KK
L = J + LL
A = X(J) - X(L)
B = Y(J) + Y(L)
X(J) = X(L)
Y(J) = -Y(L)
X(L) = X(K) + A
Y(L) = Y(K) - B
X(K) = A
Y(K) = B
60 CONTINUE
70 CONTINUE
80 CONTINUE
C
M = N - 2
DO 130 I = 1,M
K = I
90 CONTINUE
J = K
K = J/2
IF (2*K.NE.J) K = N - 1 - K
IF (K-I) 90,130,100
100 KK = (K-I)*D2
J1 = I*D2 + 1
DO 120 J2 = J1,D1,D3
J3 = J2 + D4
DO 110 J = J2,J3,D5
K = J + KK
A = X(K)
B = Y(K)
X(K) = X(J)
Y(K) = Y(J)
X(J) = A
Y(J) = B
110 CONTINUE
120 CONTINUE
130 CONTINUE
C
C
END
C
C
SUBROUTINE REALFT(EVEN,ODD,N,DIM)
C ======================================
C
C
C
C REAL FOURIER TRANSFORM
C
C Given a real sequence of length 2n this subroutine calculates the
C unique part of the fourier transform. The fourier transform has
C n + 1 unique real parts and n - 1 unique imaginary parts. Since
C the real part at x(n) is frequently of interest, this subroutine
C stores it at x(n) rather than in y(0). Therefore x and y must be
C of length n + 1 instead of n. Note that this storage arrangement
C is different from that employed by the hermitian fourier transform
C subroutine.
C
C For convenience the data is presented in two parts, the first
C containing the even numbered real terms and the second containing
C the odd numbered terms (numbering starting at 0). On return the
C real part of the transform replaces the even terms and the
C imaginary part of the transform replaces the odd terms.
C
C
C .. Scalar Arguments ..
INTEGER N
C ..
C .. Array Arguments ..
REAL EVEN(*),ODD(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL A,ANGLE,B,C,CO,D,E,F,SI,TWON,TWOPI
INTEGER D2,D3,D4,D5,I,I0,I1,I2,J,K,L,NOVER2,NT
C ..
C .. External Subroutines ..
EXTERNAL CMPLFT
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
TWOPI = 6.283185
TWON = REAL(2*N)
C
CALL CMPLFT(EVEN,ODD,N,DIM)
C
NT = DIM(1)
D2 = DIM(2)
D3 = DIM(3)
D4 = DIM(4) - 1
D5 = DIM(5)
NOVER2 = N/2 + 1
C
IF (NOVER2.GE.2) THEN
DO 30 I = 2,NOVER2
ANGLE = REAL(I-1)*TWOPI/TWON
CO = COS(ANGLE)
SI = SIN(ANGLE)
I0 = (I-1)*D2 + 1
J = (N+2-2*I)*D2
DO 20 I1 = I0,NT,D3
I2 = I1 + D4
DO 10 K = I1,I2,D5
L = K + J
A = (EVEN(L)+EVEN(K))/2.0
C = (EVEN(L)-EVEN(K))/2.0
B = (ODD(L)+ODD(K))/2.0
D = (ODD(L)-ODD(K))/2.0
E = C*SI + B*CO
F = C*CO - B*SI
EVEN(K) = A + E
EVEN(L) = A - E
ODD(K) = F - D
ODD(L) = F + D
10 CONTINUE
20 CONTINUE
30 CONTINUE
END IF
C
IF (N.GE.1) THEN
J = N*D2
DO 50 I1 = 1,NT,D3
I2 = I1 + D4
DO 40 K = I1,I2,D5
L = K + J
EVEN(L) = EVEN(K) - ODD(K)
ODD(L) = 0.0
EVEN(K) = EVEN(K) + ODD(K)
ODD(K) = 0.0
40 CONTINUE
50 CONTINUE
END IF
C
C
END
C
C
SUBROUTINE RSYMFT(X,N,DIM)
C ===============================
C
C
C
C REAL SYMMETRIC MULTIDIMENSIONAL FOURIER TRANSFORM
C
C N must be a multiple of 4. The two unique elements are stored at
C X(1) and X(n+1).
C
C Decimation in frequency applied to a real symmetric sequence of
C length 2n gives a real symmetric sequence of length n, the
C transform of which gives the even numbered fourier coefficients,
C and a hermitian symmetric sequence of length n, the transform of
C which gives the odd numbered fourier coefficients. The sum of
C the two sequences is a hermitian symmetric sequence of length n,
C which may be stored in n/2 complex locations. The transform of
C this sequence is n real numbers representing the term by term sum
C of the even and odd numbered fourier coefficients. This symmetric
C sequence may be solved if any of the fourier coefficients are
C known. For this purpose x0, which is simply the sum of the
C original sequence, is computed and saved in x(n+1).
C
C
C .. Scalar Arguments ..
INTEGER N
C ..
C .. Array Arguments ..
REAL X(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL A,ANGLE,B,C,CO,D,SI,TWON,TWOPI
INTEGER D1,D2,D3,D4,D5,I,I0,I1,I2,II,J,J0,J1,K,K0,K1,
+ K2,L,M,MJ,MK,ML,MM,NN,NOVER2,NOVER4,
+ TWOD2
CHARACTER EMESS*80
C ..
C .. External Subroutines ..
EXTERNAL HERMFT
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
IF (N.NE.1) THEN
NOVER2 = N/2
NOVER4 = N/4
IF (4*NOVER4.NE.N) THEN
C
WRITE (EMESS,FMT=9000) N
call ccperr(1, EMESS)
ELSE
D1 = DIM(1)
D2 = DIM(2)
D3 = DIM(3)
D4 = DIM(4) - 1
D5 = DIM(5)
TWOPI = 6.283185
TWON = REAL(2*N)
TWOD2 = 2*D2
C
K0 = N*D2 + 1
DO 20 K1 = K0,D1,D3
K2 = K1 + D4
DO 10 K = K1,K2,D5
X(K) = X(K)/2.0
10 CONTINUE
20 CONTINUE
C
DO 50 I = 2,NOVER2
ANGLE = REAL(I-1)*TWOPI/TWON
CO = COS(ANGLE)
SI = SIN(ANGLE)
K0 = (I-1)*D2 + 1
J0 = (N+2-2*I)*D2
J1 = (N+1-I)*D2
DO 40 K1 = K0,D1,D3
K2 = K1 + D4
DO 30 K = K1,K2,D5
L = K + J0
NN = K + J1
A = X(L) + X(K)
B = X(L) - X(K)
X(K) = A - B*CO
X(L) = B*SI
X(NN) = X(NN) + A
30 CONTINUE
40 CONTINUE
50 CONTINUE
C
IF (NOVER4.NE.1) THEN
J0 = NOVER4 - 1
DO 80 I = 1,J0
K0 = (NOVER2+I)*D2 + 1
J1 = (NOVER2-2*I)*D2
DO 70 K1 = K0,D1,D3
K2 = K1 + D4
DO 60 K = K1,K2,D5
L = K + J1
A = X(K)
X(K) = X(L)
X(L) = A
60 CONTINUE
70 CONTINUE
80 CONTINUE
END IF
C
J0 = NOVER2*D2
J1 = N*D2
DO 100 K1 = 1,D1,D3
K2 = K1 + D4
DO 90 K = K1,K2,D5
I = K + J0
L = K + J1
X(I) = X(I)*2.0
X(L) = X(K) + X(I) + X(L)*2.0
X(K) = X(K)*2.0
90 CONTINUE
100 CONTINUE
C
K = NOVER2*D2 + 1
CALL HERMFT(X(1),X(K),NOVER2,DIM)
C
C---- Solve the equations for all of the sequences
C
I0 = 1 - D2
MK = NOVER2*D2
MJ = MK + D2
ML = N*D2 + D2
MM = ML
DO 130 II = 1,NOVER4
I0 = I0 + D2
MJ = MJ - TWOD2
ML = ML - TWOD2
MM = MM - D2
DO 120 I1 = I0,D1,D3
I2 = I1 + D4
DO 110 I = I1,I2,D5
J = I + MJ
K = I + MK
L = I + ML
M = I + MM
A = X(I) - X(M)
B = X(L) - A
C = X(K) - B
D = X(J) - C
X(I) = X(M)
X(J) = A
X(K) = B
X(L) = C
X(M) = D
110 CONTINUE
120 CONTINUE
130 CONTINUE
C
C---- The results are now in a scrambled digit reversed order, i.e.
C x(1), x(5), x(9), ..., x(10), x(6), x(2), ..., x(3), x(7), x(11),
C ..., x(12), x(8), x(4). the following section of program follows
C the permutation cycles and does the necessary interchanges.
C
IF (NOVER4.NE.1) THEN
NN = N - 2
DO 170 I = 1,NN
K = I
140 CONTINUE
C
K0 = K/4
L = K - K0*4
IF (L.NE. (L/2)*2) K0 = NOVER4 - 1 - K0
K = L*NOVER4 + K0
IF (K.LT.I) GO TO 140
IF (K.NE.I) THEN
C
K0 = I*D2 + 1
J0 = (K-I)*D2
DO 160 K1 = K0,D1,D3
K2 = K1 + D4
DO 150 K = K1,K2,D5
L = K + J0
A = X(K)
X(K) = X(L)
X(L) = A
150 CONTINUE
160 CONTINUE
END IF
170 CONTINUE
END IF
END IF
END IF
C
C---- Format statements
C
9000 FORMAT ('FFTLIB: N not a multiple of 4 in R SYM FT. N =',I10,//)
END
C
C
SUBROUTINE SDIAD(X,Y,N,DIM)
C ===============================
C
C
C
C This subroutine computes half the fourier synthesis along a screw
C diad lying along a crystallographic axis given half the fourier
C coefficients. That is, it assumes that f(t) = conjg(f(-t)) for t
C even and f(t) = -conjg(f(-t)) for t odd. n is the length of the
C desired half of the transform. The location x(n+1) is required as
C a scratch location and therefore a value is also returned in
C x(n+1) and y(n+1). The value of the second half of the transform
C may be generated from the first half by the formula x(n+t) = x(t),
C y(n+t) = -y(t). In other words, the last half of the transform is
C the complex conjugate of the first half.
C
C The transform is calculated by forming the sum of the even terms
C and the odd terms in place, using the symmetry relations to
C obtain the values for negative subscripts. The transform of the
C resulting sequence may be separated by using the fact that the
C transform of the even terms is real, while the prodct of the
C transform of the odd terms and (cos(pi*t/n) - i*sin(pi*t/n)) is
C imaginary. The scratch location is required because the formula
C for separating the two transforms breaks down when t = n/2.
C
C
C Corrections from A.D.MCLACHLAN 1980, put here sep 1985
C errors in original algorithm for the scratch location which
C assumed f(n)=0
C
C
C
C .. Scalar Arguments ..
INTEGER N
C ..
C .. Array Arguments ..
REAL X(*),Y(*)
INTEGER DIM(5)
C ..
C .. Local Scalars ..
REAL A,ANGLE,C,S,TWON,TWOPI
INTEGER D1,D2,D3,D4,D5,I,J,K,K0,K1,K2,L,M,MN,NN,NOVER2
LOGICAL FOLD
CHARACTER EMESS*80
C ..
C .. External Subroutines ..
EXTERNAL CMPLFT
C ..
C .. Intrinsic Functions ..
INTRINSIC COS,REAL,SIN
C ..
NOVER2 = N/2
IF (2*NOVER2.NE.N) THEN
C
WRITE (EMESS,FMT=9000) N
call ccperr(1, EMESS)
ELSE
TWON = REAL(2*N)
TWOPI = 6.2831852
D1 = DIM(1)
D2 = DIM(2)
D3 = DIM(3)
D4 = DIM(4) - 1
D5 = DIM(5)
C
S = -1.0
IF (NOVER2.EQ. (2* (NOVER2/2))) S = -S
K0 = (N-1)*D2 + 1
DO 20 K1 = K0,D1,D3
K2 = K1 + D4
DO 10 K = K1,K2,D5
L = K + D2
Y(L) = X(K)*S
10 CONTINUE
20 CONTINUE
S = 1.0
NN = N - 2
DO 50 I = 1,NN,2
S = -S
MN = (N+1-I)*D2
K0 = (I-1)*D2 + 1
DO 40 K1 = K0,D1,D3
K2 = K1 + D4
DO 30 K = K1,K2,D5
J = K + D2
L = 2*D2 + K
M = K + MN
Y(M) = X(J)*S + Y(M)
X(K) = X(K) + X(J)
X(J) = X(L) - X(J)
Y(K) = Y(K) + Y(J)
Y(J) = Y(J) - Y(L)
30 CONTINUE
40 CONTINUE
50 CONTINUE
K0 = (N-2)*D2 + 1
DO 70 K1 = K0,D1,D3
K2 = K1 + D4
DO 60 K = K1,K2,D5
L = K + D2
X(K) = X(K) + X(L)
Y(K) = Y(K) + Y(L)
J = L + D2
X(L) = X(J) - X(L)
60 CONTINUE
70 CONTINUE
C
C---- Reorder scrambled fourier coefficients
C
DO 110 I = 1,NN
K = I
80 CONTINUE
K = 2*K
IF (K.GT.N-1) K = 2*N - 1 - K
IF (K.LT.I) GO TO 80
IF (K.NE.I) THEN
J = (K-I)*D2
K0 = I*D2 + 1
DO 100 K1 = K0,D1,D3
K2 = K1 + D4
DO 90 K = K1,K2,D5
L = K + J
A = X(K)
X(K) = X(L)
X(L) = A
A = Y(K)
Y(K) = Y(L)
Y(L) = A
90 CONTINUE
100 CONTINUE
END IF
110 CONTINUE
C
CALL CMPLFT(X,Y,N,DIM)
C
M = NOVER2 - 1
DO 150 I = 1,M
ANGLE = REAL(I)*TWOPI/TWON
C = COS(ANGLE)
S = SIN(ANGLE)
K0 = I*D2 + 1
FOLD = .TRUE.
120 CONTINUE
C
DO 140 K1 = K0,D1,D3
K2 = K1 + D4
DO 130 K = K1,K2,D5
A = Y(K)/C
X(K) = X(K) + S*A
Y(K) = A
130 CONTINUE
140 CONTINUE
IF (FOLD) THEN
C
C = -C
K0 = (N-I)*D2 + 1
FOLD = .FALSE.
GO TO 120
END IF
150 CONTINUE
C
M = NOVER2*D2
K0 = M + 1
DO 170 K1 = K0,D1,D3
K2 = K1 + D4
DO 160 K = K1,K2,D5
J = K - M
L = K + M
A = Y(L)*2.0
X(K) = X(K) + A
Y(K) = A
X(L) = X(J)
Y(L) = -Y(J)
160 CONTINUE
170 CONTINUE
C
END IF
C
C---- Format statements
C
9000 FORMAT ('FFT error: SDIAD: N odd. N =',I10)
END
C
C
SUBROUTINE DIPRP(PTS,SYM,PSYM,UNSYM,DIM,X,Y)
C =================================================
C
C
C---- Double in place reordering programme
C
C
C .. Scalar Arguments ..
INTEGER PSYM,PTS
C ..
C .. Array Arguments ..
REAL X(*),Y(*)
INTEGER DIM(5),SYM(15),UNSYM(15)
C ..
C .. Local Scalars ..
REAL T
INTEGER A,AL,B,BL,BS,C,CL,CS,D,DELTA,DK,DL,DS,E,EL,ES,F,
+ FL,FS,G,GL,GS,H,HL,HS,I,IL,IS,J,JJ,JL,JS,K,KK,KL,
+ KS,L,LK,LL,LS,M,ML,MODS,MS,MULT,N,NEST,NL,NS,NT,
+ P,P0,P1,P2,P3,P4,P5,PUNSYM,SEP,SIZE,TEST
LOGICAL ONEMOD
C ..
C .. Local Arrays ..
INTEGER MODULO(14),S(14),U(14)
C ..
C .. Equivalences ..
EQUIVALENCE (AL,U(1)), (BS,S(2)), (BL,U(2))
EQUIVALENCE (CS,S(3)), (CL,U(3)), (DS,S(4)), (DL,U(4))
EQUIVALENCE (ES,S(5)), (EL,U(5)), (FS,S(6)), (FL,U(6))
EQUIVALENCE (GS,S(7)), (GL,U(7)), (HS,S(8)), (HL,U(8))
EQUIVALENCE (IS,S(9)), (IL,U(9)), (JS,S(10)), (JL,U(10))
EQUIVALENCE (KS,S(11)), (KL,U(11)), (LS,S(12)), (LL,U(12))
EQUIVALENCE (MS,S(13)), (ML,U(13)), (NS,S(14)), (NL,U(14))
C ..
NEST = 14
C
NT = DIM(1)
SEP = DIM(2)
P2 = DIM(3)
SIZE = DIM(4) - 1
P4 = DIM(5)
IF (SYM(1).NE.0) THEN
DO 10 J = 1,NEST
U(J) = 1
S(J) = 1
10 CONTINUE
N = PTS
DO 20 J = 1,NEST
IF (SYM(J).EQ.0) THEN
GO TO 30
ELSE
JJ = NEST + 1 - J
U(JJ) = N
S(JJ) = N/SYM(J)
N = N/SYM(J)
END IF
20 CONTINUE
C
30 JJ = 0
DO 190 A = 1,AL
DO 180 B = A,BL,BS
DO 170 C = B,CL,CS
DO 160 D = C,DL,DS
DO 150 E = D,EL,ES
DO 140 F = E,FL,FS
DO 130 G = F,GL,GS
DO 120 H = G,HL,HS
DO 110 I = H,IL,IS
DO 100 J = I,JL,JS
DO 90 K = J,KL,KS
DO 80 L = K,LL,LS
DO 70 M = L,ML,MS
DO 60 N = M,NL,NS
JJ = JJ + 1
IF (JJ.LT.N) THEN
DELTA = (N-JJ)*SEP
P1 = (JJ-1)*SEP + 1
DO 50 P0 = P1,NT,P2
P3 = P0 + SIZE
DO 40 P = P0,P3,P4
P5 = P + DELTA
T = X(P)
X(P) = X(P5)
X(P5) = T
T = Y(P)
Y(P) = Y(P5)
Y(P5) = T
40 CONTINUE
50 CONTINUE
END IF
60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
180 CONTINUE
190 CONTINUE
END IF
C
IF (UNSYM(1).NE.0) THEN
PUNSYM = PTS/PSYM**2
MULT = PUNSYM/UNSYM(1)
TEST = (UNSYM(1)*UNSYM(2)-1)*MULT*PSYM
LK = MULT
DK = MULT
DO 200 K = 2,NEST
IF (UNSYM(K).EQ.0) THEN
GO TO 210
ELSE
LK = UNSYM(K-1)*LK
DK = DK/UNSYM(K)
U(K) = (LK-DK)*PSYM
MODS = K
END IF
200 CONTINUE
210 ONEMOD = MODS .LT. 3
IF (.NOT.ONEMOD) THEN
DO 220 J = 3,MODS
JJ = MODS + 3 - J
MODULO(JJ) = U(J)
220 CONTINUE
END IF
MODULO(2) = U(2)
JL = (PUNSYM-3)*PSYM
MS = PUNSYM*PSYM
C
DO 290 J = PSYM,JL,PSYM
K = J
230 CONTINUE
C
K = K*MULT
IF (.NOT.ONEMOD) THEN
DO 240 I = 3,MODS
K = K - (K/MODULO(I))*MODULO(I)
240 CONTINUE
END IF
IF (K.GE.TEST) THEN
K = K - (K/MODULO(2))*MODULO(2) + MODULO(2)
ELSE
K = K - (K/MODULO(2))*MODULO(2)
END IF
IF (K.LT.J) GO TO 230
C
IF (K.NE.J) THEN
DELTA = (K-J)*SEP
DO 280 L = 1,PSYM
DO 270 M = L,PTS,MS
P1 = (M+J-1)*SEP + 1
DO 260 P0 = P1,NT,P2
P3 = P0 + SIZE
DO 250 JJ = P0,P3,P4
KK = JJ + DELTA
T = X(JJ)
X(JJ) = X(KK)
X(KK) = T
T = Y(JJ)
Y(JJ) = Y(KK)
Y(KK) = T
250 CONTINUE
260 CONTINUE
270 CONTINUE
280 CONTINUE
END IF
290 CONTINUE
END IF
C
END
C
C Obscure routines only used by SFALL
C ===============================
SUBROUTINE PRMVCI(PERM,JV,N,N1)
C ===============================
C
C---- Permute vector JV(N,3) by permutation matrix PERM
C N1 is first dimension of JV
C
C .. Scalar Arguments ..
INTEGER N,N1
C ..
C .. Array Arguments ..
REAL PERM(4,4)
INTEGER JV(N1,3)
C ..
C .. Local Scalars ..
INTEGER I
C ..
C .. Local Arrays ..
REAL BV(3)
C ..
C .. Intrinsic Functions ..
INTRINSIC NINT
C ..
C
C---- Permute
C
DO 10 I = 1,3
BV(I) = PERM(I,1)*FLOAT(JV(N,1)) + PERM(I,2)*FLOAT(JV(N,2)) +
+ PERM(I,3)*FLOAT(JV(N,3))
10 CONTINUE
C
C---- Copy back
C
DO 20 I = 1,3
JV(N,I) = NINT(BV(I))
20 CONTINUE
C
END
C
C ===============================
SUBROUTINE PRMVCR(PERM,AV,N,N1)
C ===============================
C
C---- Permute vector AV(N,3) by permutation vector KP
C N1 is first dimension of AV
C
C .. Scalar Arguments ..
INTEGER N,N1
C ..
C .. Array Arguments ..
REAL AV(N1,3),PERM(4,4)
C ..
C .. Local Scalars ..
INTEGER I
C ..
C .. Local Arrays ..
REAL BV(3)
C ..
C
C---- Permute
C
DO 10 I = 1,3
BV(I) = PERM(I,1)*AV(N,1) + PERM(I,2)*AV(N,2) +
+ PERM(I,3)*AV(N,3)
10 CONTINUE
C
C---- Copy back
C
DO 20 I = 1,3
AV(N,I) = BV(I)
20 CONTINUE
C
END
C
|