File: fftlib.f

package info (click to toggle)
libccp4 8.0.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,100 kB
  • sloc: ansic: 19,540; fortran: 18,766; sh: 11,561; makefile: 73
file content (1998 lines) | stat: -rw-r--r-- 60,858 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
C
C     fftlib.f: fast-fourier transform library routines
C     Copyright (C)  Lynn Ten Eyck
C
C     This library is free software: you can redistribute it and/or
C     modify it under the terms of the GNU Lesser General Public License
C     version 3, modified in accordance with the provisions of the 
C     license to address the requirements of UK law.
C 
C     You should have received a copy of the modified GNU Lesser General 
C     Public License along with this library.  If not, copies may be 
C     downloaded from http://www.ccp4.ac.uk/ccp4license.php
C 
C     This program is distributed in the hope that it will be useful,
C     but WITHOUT ANY WARRANTY; without even the implied warranty of
C     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
C     GNU Lesser General Public License for more details.
C
C-- FFT81       F77TRNFM.FOR                        13/09/85    JWC
C
C
C**** FOLLOWING ARE ROUTINES USED BY TEN EYCK'S FFT PROGRAMS***
C
C
      SUBROUTINE CMPLFT(X,Y,N,D)
C     ===============================
C
C
C     Complex finite discrete fourier transform
C     transforms one dimension of multi-dimensional data
C     modified by L. F. TEN EYCK from a one-dimensional version written
C     by G. T. SANDE, 1969.
C
C     This program calculates the transform
C               (X(T) + I*Y(T))*(COS(2*PI*T/N) - I*SIN(2*PI*T/N))
C
C     INDEXING -- the arrangement of the multi-dimensional data is
C     specified by the integer array D, the values of which are used as
C     control parameters in do loops.  when it is desired to cover all
C     elements of the data for which the subscript being transformed has
C     the value I0, the following is used.
C
C               I1 = (I0 - 1)*D(2) + 1
C               DO 100 I2 = I1, D(1), D(3)
C               I3 = I2 + D(4) - 1
C               DO 100 I = I2, I3, D(5)
C                  .
C                  .
C           100 CONTINUE
C
C     with this indexing it is possible to use a number of arrangements
C     of the data, including normal fortran complex numbers (d(5) = 2)
C     or separate storage of real and imaginary parts.
C
C
C---- PMAX is the largest prime factor that will be tolerated by this
C     program.
C
C---- TWOGRP is the largest power of two that is treated as a special
C     case.
C
C     .. Scalar Arguments ..
      INTEGER           N
C     ..
C     .. Array Arguments ..
      REAL              X(*),Y(*)
      INTEGER           D(5)
C     ..
C     .. Local Scalars ..
      INTEGER           PMAX,PSYM,TWOGRP
      LOGICAL           ERROR
      CHARACTER EMESS*80
C     ..
C     .. Local Arrays ..
      INTEGER           FACTOR(15),SYM(15),UNSYM(15)
C     ..
C     .. External Subroutines ..
      EXTERNAL          DIPRP,MDFTKD,SRFP
C     ..
      PMAX = 19
      TWOGRP = 8
C
      IF (N.GT.1) THEN
          CALL SRFP(N,PMAX,TWOGRP,FACTOR,SYM,PSYM,UNSYM,ERROR)
          IF (ERROR) THEN
C
              WRITE (EMESS,FMT=9000) N
              call ccperr(1, EMESS)
          ELSE
C
              CALL MDFTKD(N,FACTOR,D,X,Y)
              CALL DIPRP(N,SYM,PSYM,UNSYM,D,X,Y)
          END IF
      END IF
C
C---- Format statements
C
 9000 FORMAT ('FFTLIB: invalid number of points for CMPL FT.  N =',I10)
      END
C
C
      SUBROUTINE SRFP(PTS,PMAX,TWOGRP,FACTOR,SYM,PSYM,UNSYM,ERROR)
C     ==================================================================
C
C
C---- Symmetrized reordering factoring programme
C
C
C     .. Scalar Arguments ..
      INTEGER         PMAX,PSYM,PTS,TWOGRP
      LOGICAL         ERROR
C     ..
C     .. Array Arguments ..
      INTEGER         FACTOR(15),SYM(15),UNSYM(15)
C     ..
C     .. Local Scalars ..
      INTEGER         F,J,JJ,N,NEST,P,PTWO,Q,R
C     ..
C     .. Local Arrays ..
      INTEGER         PP(14),QQ(7)
C     ..
      NEST = 14
C
      N = PTS
      PSYM = 1
      F = 2
      P = 0
      Q = 0
   10 CONTINUE
      IF (N.LE.1) THEN
          GO TO 60
      ELSE
          DO 20 J = F,PMAX
              IF (N.EQ. (N/J)*J) GO TO 30
   20         CONTINUE
          GO TO 40
   30     IF (2*P+Q.GE.NEST) THEN
              GO TO 50
          ELSE
              F = J
              N = N/F
              IF (N.EQ. (N/F)*F) THEN
                  N = N/F
                  P = P + 1
                  PP(P) = F
                  PSYM = PSYM*F
              ELSE
                  Q = Q + 1
                  QQ(Q) = F
              END IF
              GO TO 10
          END IF
      END IF
C
   40 CONTINUE
      WRITE (6,FMT=9000) PMAX,PTS
      ERROR = .TRUE.
      GO TO 100
C
   50 CONTINUE
      WRITE (6,FMT=9010) NEST,PTS
      ERROR = .TRUE.
      GO TO 100
C
   60 CONTINUE
      R = 1
      IF (Q.EQ.0) R = 0
      IF (P.GE.1) THEN
          DO 70 J = 1,P
              JJ = P + 1 - J
              SYM(J) = PP(JJ)
              FACTOR(J) = PP(JJ)
              JJ = P + Q + J
              FACTOR(JJ) = PP(J)
              JJ = P + R + J
              SYM(JJ) = PP(J)
   70         CONTINUE
      END IF
      IF (Q.GE.1) THEN
          DO 80 J = 1,Q
              JJ = P + J
              UNSYM(J) = QQ(J)
              FACTOR(JJ) = QQ(J)
   80         CONTINUE
          SYM(P+1) = PTS/PSYM**2
      END IF
      JJ = 2*P + Q
      FACTOR(JJ+1) = 0
      PTWO = 1
      J = 0
   90 CONTINUE
      J = J + 1
      IF (FACTOR(J).NE.0) THEN
          IF (FACTOR(J).EQ.2) THEN
              PTWO = PTWO*2
              FACTOR(J) = 1
              IF (PTWO.LT.TWOGRP) THEN
                  IF (FACTOR(J+1).EQ.2) GO TO 90
              END IF
              FACTOR(J) = PTWO
              PTWO = 1
          END IF
          GO TO 90
      END IF
      IF (P.EQ.0) R = 0
      JJ = 2*P + R
      SYM(JJ+1) = 0
      IF (Q.LE.1) Q = 0
      UNSYM(Q+1) = 0
      ERROR = .FALSE.
C
  100 CONTINUE
C
C---- Format statements
C
 9000 FORMAT (' FFTLIB: Largest factor exceeds ',I3,'.  N = ',I6,'.')
 9010 FORMAT (' FFTLIB: Factor count exceeds ',I3,'.  N = ',I6,'.')
      END
C
C
      SUBROUTINE MDFTKD(N,FACTOR,DIM,X,Y)
C     ==========================================
C
C
C---- Multi-dimensional complex fourier transform kernel driver
C
C
C     .. Scalar Arguments ..
      INTEGER           N
C     ..
C     .. Array Arguments ..
      REAL              X(*),Y(*)
      INTEGER           DIM(5),FACTOR(15)
C     ..
C     .. Local Scalars ..
      INTEGER           F,M,P,R,S
C     ..
C     .. External Subroutines ..
      EXTERNAL          R2CFTK,R3CFTK,R4CFTK,R5CFTK,R8CFTK,RPCFTK
C     ..
      S = DIM(2)
      F = 0
      M = N
   10 CONTINUE
      F = F + 1
      P = FACTOR(F)
      IF (P.EQ.0) THEN
          RETURN
      ELSE
          M = M/P
          R = M*S
          IF (P.LE.8) THEN
              GO TO (10,20,30,40,50,80,70,60) P
              GO TO 80
C
   20         CONTINUE
              CALL R2CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),DIM)
              GO TO 10
C
   30         CONTINUE
              CALL R3CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),X(2*R+1),Y(2*R+1),
     +                    DIM)
              GO TO 10
C
   40         CONTINUE
              CALL R4CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),X(2*R+1),Y(2*R+1),
     +                    X(3*R+1),Y(3*R+1),DIM)
              GO TO 10
C
   50         CONTINUE
              CALL R5CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),X(2*R+1),Y(2*R+1),
     +                    X(3*R+1),Y(3*R+1),X(4*R+1),Y(4*R+1),DIM)
              GO TO 10
C
   60         CONTINUE
              CALL R8CFTK(N,M,X(1),Y(1),X(R+1),Y(R+1),X(2*R+1),Y(2*R+1),
     +                    X(3*R+1),Y(3*R+1),X(4*R+1),Y(4*R+1),X(5*R+1),
     +                    Y(5*R+1),X(6*R+1),Y(6*R+1),X(7*R+1),Y(7*R+1),
     +                    DIM)
              GO TO 10
          END IF
C
   70     CONTINUE
          CALL RPCFTK(N,M,P,R,X,Y,DIM)
          GO TO 10
      END IF
C
   80 CONTINUE
      WRITE (6,FMT=9000)
C
C---- Format statements
C
 9000 FORMAT ('0TRANSFER ERROR DETECTED IN MDFTKD',//)
      END
C
C
      SUBROUTINE R2CFTK(N,M,X0,Y0,X1,Y1,DIM)
C     ==============================================
C
C
C---- Radix 2 multi-dimensional complex fourier transform kernel
C
C     .. Scalar Arguments ..
      INTEGER           M,N
C     ..
C     .. Array Arguments ..
      REAL              X0(*),X1(*),Y0(*),Y1(*)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              ANGLE,C,FM2,IS,IU,RS,RU,S,TWOPI
      INTEGER           J,K,K0,K1,K2,KK,L,L1,M2,MM2,MOVER2,NS,NT,SEP,
     +                  SIZE
      LOGICAL           FOLD,ZERO
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
C     .. Data statements ..
      DATA              TWOPI/6.283185/
C     ..
C
      NT = DIM(1)
      SEP = DIM(2)
      L1 = DIM(3)
      SIZE = DIM(4) - 1
      K2 = DIM(5)
      NS = N*SEP
      M2 = M*2
      FM2 = REAL(M2)
      MOVER2 = M/2 + 1
      MM2 = SEP*M2
C
      DO 50 J = 1,MOVER2
          FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
          K0 = (J-1)*SEP + 1
          ZERO = j. eq. 1
          IF (.NOT.ZERO) THEN
              ANGLE = TWOPI*REAL(j-1)/FM2
              C = COS(ANGLE)
              S = SIN(ANGLE)
          END IF
   10     CONTINUE
C
          DO 40 KK = K0,NS,MM2
              DO 30 L = KK,NT,L1
                  K1 = L + SIZE
                  DO 20 K = L,K1,K2
                      RS = X0(K) + X1(K)
                      IS = Y0(K) + Y1(K)
                      RU = X0(K) - X1(K)
                      IU = Y0(K) - Y1(K)
                      X0(K) = RS
                      Y0(K) = IS
                      IF (ZERO) THEN
                          X1(K) = RU
                          Y1(K) = IU
                      ELSE
                          X1(K) = RU*C + IU*S
                          Y1(K) = IU*C - RU*S
                      END IF
   20                 CONTINUE
   30             CONTINUE
   40         CONTINUE
          IF (FOLD) THEN
              FOLD = .FALSE.
              K0 = (M+1-J)*SEP + 1
              C = -C
              GO TO 10
          END IF
   50     CONTINUE
C
      END
C
C
      SUBROUTINE R3CFTK(N,M,X0,Y0,X1,Y1,X2,Y2,DIM)
C     ======================================================
C
C
C---- Radix 3 multi-dimensional complex fourier transform kernel
C
C     .. Scalar Arguments ..
      INTEGER           M,N
C     ..
C     .. Array Arguments ..
      REAL              X0(*),X1(*),X2(*),Y0(*),Y1(*),Y2(*)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              A,ANGLE,B,C1,C2,FM3,I0,I1,I2,IA,IB,IS,R0,
     +                  R1,R2,RA,RB,RS,S1,S2,T,TWOPI
      INTEGER           J,K,K0,K1,K2,KK,L,L1,M3,MM3,MOVER2,NS,NT,SEP,
     +                  SIZE
      LOGICAL           FOLD,ZERO
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
C     .. Data statements ..
      DATA              TWOPI/6.283185/,A/-0.5/,B/0.86602540/
C     ..
C
      NT = DIM(1)
      SEP = DIM(2)
      L1 = DIM(3)
      SIZE = DIM(4) - 1
      K2 = DIM(5)
      NS = N*SEP
      M3 = M*3
      FM3 = REAL(M3)
      MM3 = SEP*M3
      MOVER2 = M/2 + 1
C
      DO 50 J = 1,MOVER2
          FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
          K0 = (J-1)*SEP + 1
          ZERO = j .eq. 1
          IF (.NOT.ZERO) THEN
              ANGLE = TWOPI*REAL(j-1)/FM3
              C1 = COS(ANGLE)
              S1 = SIN(ANGLE)
              C2 = C1*C1 - S1*S1
              S2 = S1*C1 + C1*S1
          END IF
   10     CONTINUE
C
          DO 40 KK = K0,NS,MM3
              DO 30 L = KK,NT,L1
                  K1 = L + SIZE
                  DO 20 K = L,K1,K2
                      R0 = X0(K)
                      I0 = Y0(K)
                      RS = X1(K) + X2(K)
                      IS = Y1(K) + Y2(K)
                      X0(K) = R0 + RS
                      Y0(K) = I0 + IS
                      RA = RS*A + R0
                      IA = IS*A + I0
                      RB = (X1(K)-X2(K))*B
                      IB = (Y1(K)-Y2(K))*B
                      IF (ZERO) THEN
                          X1(K) = RA + IB
                          Y1(K) = IA - RB
                          X2(K) = RA - IB
                          Y2(K) = IA + RB
                      ELSE
                          R1 = RA + IB
                          I1 = IA - RB
                          R2 = RA - IB
                          I2 = IA + RB
                          X1(K) = R1*C1 + I1*S1
                          Y1(K) = I1*C1 - R1*S1
                          X2(K) = R2*C2 + I2*S2
                          Y2(K) = I2*C2 - R2*S2
                      END IF
   20                 CONTINUE
   30             CONTINUE
   40         CONTINUE
          IF (FOLD) THEN
              FOLD = .FALSE.
              K0 = (M+1-J)*SEP + 1
              T = C1*A + S1*B
              S1 = C1*B - S1*A
              C1 = T
              T = C2*A - S2*B
              S2 = -C2*B - S2*A
              C2 = T
              GO TO 10
          END IF
   50     CONTINUE
C
      END
C
C
      SUBROUTINE R4CFTK(N,M,X0,Y0,X1,Y1,X2,Y2,X3,Y3,DIM)
C     ==============================================================
C
C
C---- Radix 4 multi-dimensional complex fourier transform kernel
C
C     .. Scalar Arguments ..
      INTEGER           M,N
C     ..
C     .. Array Arguments ..
      REAL              X0(*),X1(*),X2(*),X3(*),Y0(*),Y1(*),
     +                  Y2(*),Y3(*)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              ANGLE,C1,C2,C3,FM4,I1,I2,I3,IS0,IS1,IU0,
     +                  IU1,R1,R2,R3,RS0,RS1,RU0,RU1,S1,S2,S3,T,TWOPI
      INTEGER           J,K,K0,K1,K2,KK,L,L1,M4,MM4,MOVER2,NS,NT,SEP,
     +                  SIZE
      LOGICAL           FOLD,ZERO
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
C     .. Data statements ..
      DATA              TWOPI/6.283185/
C     ..
C
      NT = DIM(1)
      SEP = DIM(2)
      L1 = DIM(3)
      SIZE = DIM(4) - 1
      K2 = DIM(5)
      NS = N*SEP
      M4 = M*4
      FM4 = REAL(M4)
      MM4 = SEP*M4
      MOVER2 = M/2 + 1
C
      DO 50 J = 1,MOVER2
          FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
          K0 = (J-1)*SEP + 1
          ZERO = j .eq. 1
          IF (.NOT.ZERO) THEN
              ANGLE = TWOPI*REAL(j-1)/FM4
              C1 = COS(ANGLE)
              S1 = SIN(ANGLE)
              C2 = C1*C1 - S1*S1
              S2 = S1*C1 + C1*S1
              C3 = C2*C1 - S2*S1
              S3 = S2*C1 + C2*S1
          END IF
   10     CONTINUE
C
          DO 40 KK = K0,NS,MM4
              DO 30 L = KK,NT,L1
                  K1 = L + SIZE
                  DO 20 K = L,K1,K2
                      RS0 = X0(K) + X2(K)
                      IS0 = Y0(K) + Y2(K)
                      RU0 = X0(K) - X2(K)
                      IU0 = Y0(K) - Y2(K)
                      RS1 = X1(K) + X3(K)
                      IS1 = Y1(K) + Y3(K)
                      RU1 = X1(K) - X3(K)
                      IU1 = Y1(K) - Y3(K)
                      X0(K) = RS0 + RS1
                      Y0(K) = IS0 + IS1
                      IF (ZERO) THEN
                          X2(K) = RU0 + IU1
                          Y2(K) = IU0 - RU1
                          X1(K) = RS0 - RS1
                          Y1(K) = IS0 - IS1
                          X3(K) = RU0 - IU1
                          Y3(K) = IU0 + RU1
                      ELSE
                          R1 = RU0 + IU1
                          I1 = IU0 - RU1
                          R2 = RS0 - RS1
                          I2 = IS0 - IS1
                          R3 = RU0 - IU1
                          I3 = IU0 + RU1
                          X2(K) = R1*C1 + I1*S1
                          Y2(K) = I1*C1 - R1*S1
                          X1(K) = R2*C2 + I2*S2
                          Y1(K) = I2*C2 - R2*S2
                          X3(K) = R3*C3 + I3*S3
                          Y3(K) = I3*C3 - R3*S3
                      END IF
   20                 CONTINUE
   30             CONTINUE
   40         CONTINUE
          IF (FOLD) THEN
              FOLD = .FALSE.
              K0 = (M+1-J)*SEP + 1
              T = C1
              C1 = S1
              S1 = T
              C2 = -C2
              T = C3
              C3 = -S3
              S3 = -T
              GO TO 10
          END IF
   50     CONTINUE
C
      END
C
C
      SUBROUTINE R5CFTK(N,M,X0,Y0,X1,Y1,X2,Y2,X3,Y3,X4,Y4,DIM)
C     =================================================================
C
C
C---- Radix 5 multi-dimensional complex fourier transform kernel
C
C     .. Scalar Arguments ..
      INTEGER           M,N
C     ..
C     .. Array Arguments ..
      REAL              X0(*),X1(*),X2(*),X3(*),X4(*),Y0(*),
     +                  Y1(*),Y2(*),Y3(*),Y4(*)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              A1,A2,ANGLE,B1,B2,C1,C2,C3,C4,FM5,I0,I1,I2,
     +                  I3,I4,IA1,IA2,IB1,IB2,IS1,IS2,IU1,IU2,R0,R1,R2,
     +                  R3,R4,RA1,RA2,RB1,RB2,RS1,RS2,RU1,RU2,S1,S2,S3,
     +                  S4,T,TWOPI
      INTEGER           J,K,K0,K1,K2,KK,L,L1,M5,MM5,MOVER2,NS,NT,SEP,
     +                  SIZE
      LOGICAL           FOLD,ZERO
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
C     .. Data statements ..
      DATA              TWOPI/6.283185/,A1/0.30901699/,B1/0.95105652/,
     +                  A2/-0.80901699/,B2/0.58778525/
C     ..
C
      NT = DIM(1)
      SEP = DIM(2)
      L1 = DIM(3)
      SIZE = DIM(4) - 1
      K2 = DIM(5)
      NS = N*SEP
      M5 = M*5
      FM5 = REAL(M5)
      MM5 = SEP*M5
      MOVER2 = M/2 + 1
C
      DO 50 J = 1,MOVER2
          FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
          K0 = (J-1)*SEP + 1
          ZERO = j .eq. 1
          IF (.NOT.ZERO) THEN
              ANGLE = TWOPI*REAL(j-1)/FM5
              C1 = COS(ANGLE)
              S1 = SIN(ANGLE)
              C2 = C1*C1 - S1*S1
              S2 = S1*C1 + C1*S1
              C3 = C2*C1 - S2*S1
              S3 = S2*C1 + C2*S1
              C4 = C2*C2 - S2*S2
              S4 = S2*C2 + C2*S2
          END IF
   10     CONTINUE
C
          DO 40 KK = K0,NS,MM5
              DO 30 L = KK,NT,L1
                  K1 = L + SIZE
                  DO 20 K = L,K1,K2
                      R0 = X0(K)
                      I0 = Y0(K)
                      RS1 = X1(K) + X4(K)
                      IS1 = Y1(K) + Y4(K)
                      RU1 = X1(K) - X4(K)
                      IU1 = Y1(K) - Y4(K)
                      RS2 = X2(K) + X3(K)
                      IS2 = Y2(K) + Y3(K)
                      RU2 = X2(K) - X3(K)
                      IU2 = Y2(K) - Y3(K)
                      X0(K) = R0 + RS1 + RS2
                      Y0(K) = I0 + IS1 + IS2
                      RA1 = RS1*A1 + R0 + RS2*A2
                      IA1 = IS1*A1 + I0 + IS2*A2
                      RA2 = RS1*A2 + R0 + RS2*A1
                      IA2 = IS1*A2 + I0 + IS2*A1
                      RB1 = RU1*B1 + RU2*B2
                      IB1 = IU1*B1 + IU2*B2
                      RB2 = RU1*B2 - RU2*B1
                      IB2 = IU1*B2 - IU2*B1
                      IF (ZERO) THEN
                          X1(K) = RA1 + IB1
                          Y1(K) = IA1 - RB1
                          X2(K) = RA2 + IB2
                          Y2(K) = IA2 - RB2
                          X3(K) = RA2 - IB2
                          Y3(K) = IA2 + RB2
                          X4(K) = RA1 - IB1
                          Y4(K) = IA1 + RB1
                      ELSE
                          R1 = RA1 + IB1
                          I1 = IA1 - RB1
                          R2 = RA2 + IB2
                          I2 = IA2 - RB2
                          R3 = RA2 - IB2
                          I3 = IA2 + RB2
                          R4 = RA1 - IB1
                          I4 = IA1 + RB1
                          X1(K) = R1*C1 + I1*S1
                          Y1(K) = I1*C1 - R1*S1
                          X2(K) = R2*C2 + I2*S2
                          Y2(K) = I2*C2 - R2*S2
                          X3(K) = R3*C3 + I3*S3
                          Y3(K) = I3*C3 - R3*S3
                          X4(K) = R4*C4 + I4*S4
                          Y4(K) = I4*C4 - R4*S4
                      END IF
   20                 CONTINUE
   30             CONTINUE
   40         CONTINUE
          IF (FOLD) THEN
              FOLD = .FALSE.
              K0 = (M+1-J)*SEP + 1
              T = C1*A1 + S1*B1
              S1 = C1*B1 - S1*A1
              C1 = T
              T = C2*A2 + S2*B2
              S2 = C2*B2 - S2*A2
              C2 = T
              T = C3*A2 - S3*B2
              S3 = -C3*B2 - S3*A2
              C3 = T
              T = C4*A1 - S4*B1
              S4 = -C4*B1 - S4*A1
              C4 = T
              GO TO 10
          END IF
   50     CONTINUE
C
      END
C
C
      SUBROUTINE R8CFTK(N,M,X0,Y0,X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X6,Y6,
     +                  X7,Y7,DIM)
C      ===============================================================
C
C
C---- Radix 8 multi-dimensional complex fourier transform kernel
C
C     .. Scalar Arguments ..
      INTEGER           M,N
C     ..
C     .. Array Arguments ..
      REAL              X0(*),X1(*),X2(*),X3(*),X4(*),X5(*),
     +                  X6(*),X7(*),Y0(*),Y1(*),Y2(*),Y3(*),
     +                  Y4(*),Y5(*),Y6(*),Y7(*)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              ANGLE,C1,C2,C3,C4,C5,C6,C7,E,FM8,I1,I2,I3,
     +                  I4,I5,I6,I7,IS0,IS1,IS2,IS3,ISS0,ISS1,ISU0,ISU1,
     +                  IU0,IU1,IU2,IU3,IUS0,IUS1,IUU0,IUU1,R1,R2,R3,R4,
     +                  R5,R6,R7,RS0,RS1,RS2,RS3,RSS0,RSS1,RSU0,RSU1,
     +                  RU0,RU1,RU2,RU3,RUS0,RUS1,RUU0,RUU1,S1,S2,S3,S4,
     +                  S5,S6,S7,T,TWOPI
      INTEGER           J,K,K0,K1,K2,KK,L,L1,M8,MM8,MOVER2,NS,NT,SEP,
     +                  SIZE
      LOGICAL           FOLD,ZERO
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
C     .. Data statements ..
      DATA              TWOPI/6.283185/,E/0.70710678/
C     ..
C
      NT = DIM(1)
      SEP = DIM(2)
      L1 = DIM(3)
      SIZE = DIM(4) - 1
      K2 = DIM(5)
      NS = N*SEP
      M8 = M*8
      FM8 = REAL(M8)
      MM8 = SEP*M8
      MOVER2 = M/2 + 1
C
      DO 50 J = 1,MOVER2
          FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
          K0 = (J-1)*SEP + 1
          ZERO = j .eq. 1
          IF (.NOT.ZERO) THEN
              ANGLE = TWOPI*REAL(j-1)/FM8
              C1 = COS(ANGLE)
              S1 = SIN(ANGLE)
              C2 = C1*C1 - S1*S1
              S2 = S1*C1 + C1*S1
              C3 = C2*C1 - S2*S1
              S3 = S2*C1 + C2*S1
              C4 = C2*C2 - S2*S2
              S4 = S2*C2 + C2*S2
              C5 = C4*C1 - S4*S1
              S5 = S4*C1 + C4*S1
              C6 = C4*C2 - S4*S2
              S6 = S4*C2 + C4*S2
              C7 = C4*C3 - S4*S3
              S7 = S4*C3 + C4*S3
          END IF
   10     CONTINUE
C
          DO 40 KK = K0,NS,MM8
              DO 30 L = KK,NT,L1
                  K1 = L + SIZE
                  DO 20 K = L,K1,K2
                      RS0 = X0(K) + X4(K)
                      IS0 = Y0(K) + Y4(K)
                      RU0 = X0(K) - X4(K)
                      IU0 = Y0(K) - Y4(K)
                      RS1 = X1(K) + X5(K)
                      IS1 = Y1(K) + Y5(K)
                      RU1 = X1(K) - X5(K)
                      IU1 = Y1(K) - Y5(K)
                      RS2 = X2(K) + X6(K)
                      IS2 = Y2(K) + Y6(K)
                      RU2 = X2(K) - X6(K)
                      IU2 = Y2(K) - Y6(K)
                      RS3 = X3(K) + X7(K)
                      IS3 = Y3(K) + Y7(K)
                      RU3 = X3(K) - X7(K)
                      IU3 = Y3(K) - Y7(K)
                      RSS0 = RS0 + RS2
                      ISS0 = IS0 + IS2
                      RSU0 = RS0 - RS2
                      ISU0 = IS0 - IS2
                      RSS1 = RS1 + RS3
                      ISS1 = IS1 + IS3
                      RSU1 = RS1 - RS3
                      ISU1 = IS1 - IS3
                      RUS0 = RU0 - IU2
                      IUS0 = IU0 + RU2
                      RUU0 = RU0 + IU2
                      IUU0 = IU0 - RU2
                      RUS1 = RU1 - IU3
                      IUS1 = IU1 + RU3
                      RUU1 = RU1 + IU3
                      IUU1 = IU1 - RU3
                      T = (RUS1+IUS1)*E
                      IUS1 = (IUS1-RUS1)*E
                      RUS1 = T
                      T = (RUU1+IUU1)*E
                      IUU1 = (IUU1-RUU1)*E
                      RUU1 = T
                      X0(K) = RSS0 + RSS1
                      Y0(K) = ISS0 + ISS1
                      IF (ZERO) THEN
                          X4(K) = RUU0 + RUU1
                          Y4(K) = IUU0 + IUU1
                          X2(K) = RSU0 + ISU1
                          Y2(K) = ISU0 - RSU1
                          X6(K) = RUS0 + IUS1
                          Y6(K) = IUS0 - RUS1
                          X1(K) = RSS0 - RSS1
                          Y1(K) = ISS0 - ISS1
                          X5(K) = RUU0 - RUU1
                          Y5(K) = IUU0 - IUU1
                          X3(K) = RSU0 - ISU1
                          Y3(K) = ISU0 + RSU1
                          X7(K) = RUS0 - IUS1
                          Y7(K) = IUS0 + RUS1
                      ELSE
                          R1 = RUU0 + RUU1
                          I1 = IUU0 + IUU1
                          R2 = RSU0 + ISU1
                          I2 = ISU0 - RSU1
                          R3 = RUS0 + IUS1
                          I3 = IUS0 - RUS1
                          R4 = RSS0 - RSS1
                          I4 = ISS0 - ISS1
                          R5 = RUU0 - RUU1
                          I5 = IUU0 - IUU1
                          R6 = RSU0 - ISU1
                          I6 = ISU0 + RSU1
                          R7 = RUS0 - IUS1
                          I7 = IUS0 + RUS1
                          X4(K) = R1*C1 + I1*S1
                          Y4(K) = I1*C1 - R1*S1
                          X2(K) = R2*C2 + I2*S2
                          Y2(K) = I2*C2 - R2*S2
                          X6(K) = R3*C3 + I3*S3
                          Y6(K) = I3*C3 - R3*S3
                          X1(K) = R4*C4 + I4*S4
                          Y1(K) = I4*C4 - R4*S4
                          X5(K) = R5*C5 + I5*S5
                          Y5(K) = I5*C5 - R5*S5
                          X3(K) = R6*C6 + I6*S6
                          Y3(K) = I6*C6 - R6*S6
                          X7(K) = R7*C7 + I7*S7
                          Y7(K) = I7*C7 - R7*S7
                      END IF
   20                 CONTINUE
   30             CONTINUE
   40         CONTINUE
          IF (FOLD) THEN
              FOLD = .FALSE.
              K0 = (M+1-J)*SEP + 1
              T = (C1+S1)*E
              S1 = (C1-S1)*E
              C1 = T
              T = S2
              S2 = C2
              C2 = T
              T = (-C3+S3)*E
              S3 = (C3+S3)*E
              C3 = T
              C4 = -C4
              T = - (C5+S5)*E
              S5 = (-C5+S5)*E
              C5 = T
              T = -S6
              S6 = -C6
              C6 = T
              T = (C7-S7)*E
              S7 = - (C7+S7)*E
              C7 = T
              GO TO 10
          END IF
   50     CONTINUE
C
      END
C
C
      SUBROUTINE RPCFTK(N,M,P,R,X,Y,DIM)
C     ==========================================
C
C
C---- Radix prime multi-dimensional complex fourier transform kernel
C
CMDW: Note, routine works beyond the nominal bounds of X and Y.
C     We think this is deliberate, so don't be tempted to "fix" it.
C     This routine is therefore incompatible with "bounds-checking" 
C     options of compilers.
C
C     .. Scalar Arguments ..
      INTEGER           M,N,P,R
C     ..
C     .. Array Arguments ..
      REAL              X(R,P),Y(R,P)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              ANGLE,FMP,FP,FU,IS,IU,RS,RU,T,TWOPI,XT,YT
      INTEGER           J,JJ,K,K0,K1,K2,KK,L,L1,MMP,MOVER2,MP,NS,NT,PM,
     +                  PP,SEP,SIZE,U,V
      LOGICAL           FOLD,ZERO
C     ..
C     .. Local Arrays ..
      REAL              A(18),AA(9,9),B(18),BB(9,9),C(18),IA(9),IB(9),
     +                  RA(9),RB(9),S(18)
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
C     .. Data statements ..
      DATA              TWOPI/6.283185/
C     ..
C
C
      NT = DIM(1)
      SEP = DIM(2)
      L1 = DIM(3)
      SIZE = DIM(4) - 1
      K2 = DIM(5)
      NS = N*SEP
      MOVER2 = M/2 + 1
      MP = M*P
      FMP = REAL(MP)
      MMP = SEP*MP
      PP = P/2
      PM = P - 1
      FP = REAL(P)
      FU = 0.0
      DO 10 U = 1,PP
          FU = FU + 1.0
          ANGLE = TWOPI*FU/FP
          JJ = P - U
          A(U) = COS(ANGLE)
          B(U) = SIN(ANGLE)
          A(JJ) = A(U)
          B(JJ) = -B(U)
   10     CONTINUE
      DO 30 U = 1,PP
          DO 20 V = 1,PP
              JJ = U*V - U*V/P*P
              AA(V,U) = A(JJ)
              BB(V,U) = B(JJ)
   20         CONTINUE
   30     CONTINUE
C
      DO 140 J = 1,MOVER2
          FOLD = J .GT. 1 .AND. 2*J .LT. M + 2
          K0 = (J-1)*SEP + 1
          ZERO = j .eq. 1
          IF (.NOT.ZERO) THEN
              ANGLE = TWOPI*REAL(j-1)/FMP
              C(1) = COS(ANGLE)
              S(1) = SIN(ANGLE)
              DO 40 U = 2,PM
                  C(U) = C(U-1)*C(1) - S(U-1)*S(1)
                  S(U) = S(U-1)*C(1) + C(U-1)*S(1)
   40             CONTINUE
          END IF
   50     CONTINUE
C
          DO 120 KK = K0,NS,MMP
              DO 110 L = KK,NT,L1
                  K1 = L + SIZE
                  DO 100 K = L,K1,K2
                      XT = X(K,1)
                      YT = Y(K,1)
                      RS = X(K,2) + X(K,P)
                      IS = Y(K,2) + Y(K,P)
                      RU = X(K,2) - X(K,P)
                      IU = Y(K,2) - Y(K,P)
                      DO 60 U = 1,PP
                          RA(U) = AA(U,1)*RS + XT
                          IA(U) = AA(U,1)*IS + YT
                          RB(U) = BB(U,1)*RU
                          IB(U) = BB(U,1)*IU
   60                     CONTINUE
                      XT = XT + RS
                      YT = YT + IS
                      DO 80 U = 2,PP
                          JJ = P - U
                          RS = X(K,U+1) + X(K,JJ+1)
                          IS = Y(K,U+1) + Y(K,JJ+1)
                          RU = X(K,U+1) - X(K,JJ+1)
                          IU = Y(K,U+1) - Y(K,JJ+1)
                          XT = XT + RS
                          YT = YT + IS
                          DO 70 V = 1,PP
                              RA(V) = AA(V,U)*RS + RA(V)
                              IA(V) = AA(V,U)*IS + IA(V)
                              RB(V) = BB(V,U)*RU + RB(V)
                              IB(V) = BB(V,U)*IU + IB(V)
   70                         CONTINUE
   80                     CONTINUE
                      X(K,1) = XT
                      Y(K,1) = YT
                      DO 90 U = 1,PP
                          JJ = P - U
                          IF (ZERO) THEN
                              X(K,U+1) = RA(U) + IB(U)
                              Y(K,U+1) = IA(U) - RB(U)
                              X(K,JJ+1) = RA(U) - IB(U)
                              Y(K,JJ+1) = IA(U) + RB(U)
                          ELSE
                              XT = RA(U) + IB(U)
                              YT = IA(U) - RB(U)
                              X(K,U+1) = C(U)*XT + S(U)*YT
                              Y(K,U+1) = C(U)*YT - S(U)*XT
                              XT = RA(U) - IB(U)
                              YT = IA(U) + RB(U)
                              X(K,JJ+1) = C(JJ)*XT + S(JJ)*YT
                              Y(K,JJ+1) = C(JJ)*YT - S(JJ)*XT
                          END IF
   90                     CONTINUE
  100                 CONTINUE
  110             CONTINUE
  120         CONTINUE
          IF (FOLD) THEN
              FOLD = .FALSE.
              K0 = (M+1-J)*SEP + 1
              DO 130 U = 1,PM
                  T = C(U)*A(U) + S(U)*B(U)
                  S(U) = -S(U)*A(U) + C(U)*B(U)
                  C(U) = T
  130             CONTINUE
              GO TO 50
          END IF
  140     CONTINUE
C
      END
C
C
      SUBROUTINE HERMFT(X,Y,N,DIM)
C     ==================================
C
C
C
C---- Hermitian symmetric fourier transform
C
C     Given the unique terms of a hermitian symmetric sequence of length
C     2N this subroutine calculates the 2N real numbers which are its
C     fourier transform.  The even numbered elements of the transform
C     (0, 2, 4, . . ., 2n-2) are returned in X and the odd numbered
C     elements (1, 3, 5, . . ., 2n-1) in Y.
C
C     A finite hermitian sequence of length 2n contains n + 1 unique
C     real numbers and n - 1 unique imaginary numbers.  For convenience
C     the real value for X(n) is stored at Y(0).
C
C
C     .. Scalar Arguments ..
      INTEGER           N
C     ..
C     .. Array Arguments ..
      REAL              X(*),Y(*)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              A,ANGLE,B,C,CO,D,E,F,SI,TWON,TWOPI
      INTEGER           D2,D3,D4,D5,I,I0,I1,I2,J,K,K1,NOVER2,NT
C     ..
C     .. External Subroutines ..
      EXTERNAL          CMPLFT
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
      TWOPI = 6.283185
      TWON = REAL(2*N)
C
      NT = DIM(1)
      D2 = DIM(2)
      D3 = DIM(3)
      D4 = DIM(4) - 1
      D5 = DIM(5)
C
      DO 20 I0 = 1,NT,D3
          I1 = I0 + D4
          DO 10 I = I0,I1,D5
              A = X(I)
              B = Y(I)
              X(I) = A + B
              Y(I) = A - B
   10         CONTINUE
   20     CONTINUE
C
      NOVER2 = N/2 + 1
      IF (NOVER2.GE.2) THEN
          DO 50 I0 = 2,NOVER2
              ANGLE = REAL(I0-1)*TWOPI/TWON
              CO = COS(ANGLE)
              SI = SIN(ANGLE)
              K = (N+2-2*I0)*D2
              K1 = (I0-1)*D2 + 1
              DO 40 I1 = K1,NT,D3
                  I2 = I1 + D4
                  DO 30 I = I1,I2,D5
                      J = I + K
                      A = X(I) + X(J)
                      B = X(I) - X(J)
                      C = Y(I) + Y(J)
                      D = Y(I) - Y(J)
                      E = B*CO + C*SI
                      F = B*SI - C*CO
                      X(I) = A + F
                      X(J) = A - F
                      Y(I) = E + D
                      Y(J) = E - D
   30                 CONTINUE
   40             CONTINUE
   50         CONTINUE
C
          CALL CMPLFT(X,Y,N,DIM)
      END IF
C
C
      END
C
C
      SUBROUTINE INV21(X,Y,N,D)
C      =========================
C
C
C
C---- Inverts fourier transform along a screw
C     diad. the result is scaled by n.
C
C
C     .. Scalar Arguments ..
      INTEGER          N
C     ..
C     .. Array Arguments ..
      REAL             X(*),Y(*)
      INTEGER          D(5)
C     ..
C     .. Local Scalars ..
      REAL             A,B,C,C1,PI,R,S,S1
      INTEGER          D1,D2,D3,D4,D5,I,J,J1,J2,J3,K,KK,L,LL,M,NOVER2
C     ..
C     .. External Subroutines ..
      EXTERNAL         CMPLFT
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC        COS,REAL,SIN
C     ..
      PI = 3.141593
C
      D1 = D(1)
      D2 = D(2)
      D3 = D(3)
      D4 = D(4) - 1
      D5 = D(5)
C
      NOVER2 = N/2
      LL = N*D2
      KK = NOVER2*D2
      DO 20 J1 = 1,D1,D3
          J2 = J1 + D4
          DO 10 J = J1,J2,D5
              L = LL + J
              K = KK + J
              X(L) = X(J) + X(K)
              X(K) = X(K) + Y(K)
              Y(L) = 0.0
              Y(K) = 0.0
   10         CONTINUE
   20     CONTINUE
C
      C1 = COS(PI/REAL(N))
      S1 = SIN(PI/REAL(N))
      C = 1.0
      S = 0.0
      DO 50 I = 2,NOVER2
          KK = (N+2-2*I)*D2
          LL = (N+1-I)*D2
          R = C*C1 - S*S1
          S = C*S1 + S*C1
          C = R
          J1 = (I-1)*D2 + 1
          DO 40 J2 = J1,D1,D3
              J3 = J2 + D4
              DO 30 J = J2,J3,D5
                  L = J + LL
                  K = J + KK
                  X(L) = X(L) + X(J) + X(K)
                  X(J) = Y(J)*S + X(J)
                  X(K) = Y(K)*S + X(K)
                  Y(J) = Y(J)*C
                  Y(K) = -Y(K)*C
   30             CONTINUE
   40         CONTINUE
   50     CONTINUE
C
      CALL CMPLFT(X,Y,N,D)
C
      DO 80 I = 1,NOVER2
          KK = (N+1-2*I)*D2
          LL = I*D2 + KK
          J1 = (I-1)*D2 + 1
          DO 70 J2 = J1,D1,D3
              J3 = J2 + D4
              DO 60 J = J2,J3,D5
                  K = J + KK
                  L = J + LL
                  A = X(J) - X(L)
                  B = Y(J) + Y(L)
                  X(J) = X(L)
                  Y(J) = -Y(L)
                  X(L) = X(K) + A
                  Y(L) = Y(K) - B
                  X(K) = A
                  Y(K) = B
   60             CONTINUE
   70         CONTINUE
   80     CONTINUE
C
      M = N - 2
      DO 130 I = 1,M
          K = I
   90     CONTINUE
          J = K
          K = J/2
          IF (2*K.NE.J) K = N - 1 - K
          IF (K-I) 90,130,100
  100     KK = (K-I)*D2
          J1 = I*D2 + 1
          DO 120 J2 = J1,D1,D3
              J3 = J2 + D4
              DO 110 J = J2,J3,D5
                  K = J + KK
                  A = X(K)
                  B = Y(K)
                  X(K) = X(J)
                  Y(K) = Y(J)
                  X(J) = A
                  Y(J) = B
  110             CONTINUE
  120         CONTINUE
  130     CONTINUE
C
C
      END
C
C
      SUBROUTINE REALFT(EVEN,ODD,N,DIM)
C      ======================================
C
C
C
C     REAL FOURIER TRANSFORM
C
C     Given a real sequence of length 2n this subroutine calculates the
C     unique part of the fourier transform.  The fourier transform has
C     n + 1 unique real parts and n - 1 unique imaginary parts.  Since
C     the real part at x(n) is frequently of interest, this subroutine
C     stores it at x(n) rather than in y(0).  Therefore x and y must be
C     of length n + 1 instead of n.  Note that this storage arrangement
C     is different from that employed by the hermitian fourier transform
C     subroutine.
C
C     For convenience the data is presented in two parts, the first
C     containing the even numbered real terms and the second containing
C     the odd numbered terms (numbering starting at 0).  On return the
C     real part of the transform replaces the even terms and the
C     imaginary part of the transform replaces the odd terms.
C
C
C     .. Scalar Arguments ..
      INTEGER           N
C     ..
C     .. Array Arguments ..
      REAL              EVEN(*),ODD(*)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              A,ANGLE,B,C,CO,D,E,F,SI,TWON,TWOPI
      INTEGER           D2,D3,D4,D5,I,I0,I1,I2,J,K,L,NOVER2,NT
C     ..
C     .. External Subroutines ..
      EXTERNAL          CMPLFT
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
      TWOPI = 6.283185
      TWON = REAL(2*N)
C
      CALL CMPLFT(EVEN,ODD,N,DIM)
C
      NT = DIM(1)
      D2 = DIM(2)
      D3 = DIM(3)
      D4 = DIM(4) - 1
      D5 = DIM(5)
      NOVER2 = N/2 + 1
C
      IF (NOVER2.GE.2) THEN
          DO 30 I = 2,NOVER2
              ANGLE = REAL(I-1)*TWOPI/TWON
              CO = COS(ANGLE)
              SI = SIN(ANGLE)
              I0 = (I-1)*D2 + 1
              J = (N+2-2*I)*D2
              DO 20 I1 = I0,NT,D3
                  I2 = I1 + D4
                  DO 10 K = I1,I2,D5
                      L = K + J
                      A = (EVEN(L)+EVEN(K))/2.0
                      C = (EVEN(L)-EVEN(K))/2.0
                      B = (ODD(L)+ODD(K))/2.0
                      D = (ODD(L)-ODD(K))/2.0
                      E = C*SI + B*CO
                      F = C*CO - B*SI
                      EVEN(K) = A + E
                      EVEN(L) = A - E
                      ODD(K) = F - D
                      ODD(L) = F + D
   10                 CONTINUE
   20             CONTINUE
   30         CONTINUE
      END IF
C
      IF (N.GE.1) THEN
          J = N*D2
          DO 50 I1 = 1,NT,D3
              I2 = I1 + D4
              DO 40 K = I1,I2,D5
                  L = K + J
                  EVEN(L) = EVEN(K) - ODD(K)
                  ODD(L) = 0.0
                  EVEN(K) = EVEN(K) + ODD(K)
                  ODD(K) = 0.0
   40             CONTINUE
   50         CONTINUE
      END IF
C
C
      END
C
C
      SUBROUTINE RSYMFT(X,N,DIM)
C      ===============================
C
C
C
C     REAL SYMMETRIC MULTIDIMENSIONAL FOURIER TRANSFORM
C
C     N must be a multiple of 4.  The two unique elements are stored at
C     X(1) and X(n+1).
C
C     Decimation in frequency applied to a real symmetric sequence of
C     length 2n gives a real symmetric sequence of length n, the
C     transform of which gives the even numbered fourier coefficients,
C     and a hermitian symmetric sequence of length n, the transform of
C     which gives the odd numbered fourier coefficients.  The sum of
C     the two sequences is a hermitian symmetric sequence of length n,
C     which may be stored in n/2 complex locations.  The transform of
C     this sequence is n real numbers representing the term by term sum
C     of the even and odd numbered fourier coefficients.  This symmetric
C     sequence may be solved if any of the fourier coefficients are
C     known.  For this purpose x0, which is simply the sum of the
C     original sequence, is computed and saved in x(n+1).
C
C
C     .. Scalar Arguments ..
      INTEGER           N
C     ..
C     .. Array Arguments ..
      REAL              X(*)
      INTEGER           DIM(5)
C     ..
C     .. Local Scalars ..
      REAL              A,ANGLE,B,C,CO,D,SI,TWON,TWOPI
      INTEGER           D1,D2,D3,D4,D5,I,I0,I1,I2,II,J,J0,J1,K,K0,K1,
     +                  K2,L,M,MJ,MK,ML,MM,NN,NOVER2,NOVER4,
     +                  TWOD2
      CHARACTER EMESS*80
C     ..
C     .. External Subroutines ..
      EXTERNAL          HERMFT
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC         COS,REAL,SIN
C     ..
      IF (N.NE.1) THEN
          NOVER2 = N/2
          NOVER4 = N/4
          IF (4*NOVER4.NE.N) THEN
C
              WRITE (EMESS,FMT=9000) N
              call ccperr(1, EMESS)
          ELSE
              D1 = DIM(1)
              D2 = DIM(2)
              D3 = DIM(3)
              D4 = DIM(4) - 1
              D5 = DIM(5)
              TWOPI = 6.283185
              TWON = REAL(2*N)
              TWOD2 = 2*D2
C
              K0 = N*D2 + 1
              DO 20 K1 = K0,D1,D3
                  K2 = K1 + D4
                  DO 10 K = K1,K2,D5
                      X(K) = X(K)/2.0
   10                 CONTINUE
   20             CONTINUE
C
              DO 50 I = 2,NOVER2
                  ANGLE = REAL(I-1)*TWOPI/TWON
                  CO = COS(ANGLE)
                  SI = SIN(ANGLE)
                  K0 = (I-1)*D2 + 1
                  J0 = (N+2-2*I)*D2
                  J1 = (N+1-I)*D2
                  DO 40 K1 = K0,D1,D3
                      K2 = K1 + D4
                      DO 30 K = K1,K2,D5
                          L = K + J0
                          NN = K + J1
                          A = X(L) + X(K)
                          B = X(L) - X(K)
                          X(K) = A - B*CO
                          X(L) = B*SI
                          X(NN) = X(NN) + A
   30                     CONTINUE
   40                 CONTINUE
   50             CONTINUE
C
              IF (NOVER4.NE.1) THEN
                  J0 = NOVER4 - 1
                  DO 80 I = 1,J0
                      K0 = (NOVER2+I)*D2 + 1
                      J1 = (NOVER2-2*I)*D2
                      DO 70 K1 = K0,D1,D3
                          K2 = K1 + D4
                          DO 60 K = K1,K2,D5
                              L = K + J1
                              A = X(K)
                              X(K) = X(L)
                              X(L) = A
   60                         CONTINUE
   70                     CONTINUE
   80                 CONTINUE
              END IF
C
              J0 = NOVER2*D2
              J1 = N*D2
              DO 100 K1 = 1,D1,D3
                  K2 = K1 + D4
                  DO 90 K = K1,K2,D5
                      I = K + J0
                      L = K + J1
                      X(I) = X(I)*2.0
                      X(L) = X(K) + X(I) + X(L)*2.0
                      X(K) = X(K)*2.0
   90                 CONTINUE
  100             CONTINUE
C
              K = NOVER2*D2 + 1
              CALL HERMFT(X(1),X(K),NOVER2,DIM)
C
C---- Solve the equations for all of the sequences
C
              I0 = 1 - D2
              MK = NOVER2*D2
              MJ = MK + D2
              ML = N*D2 + D2
              MM = ML
              DO 130 II = 1,NOVER4
                  I0 = I0 + D2
                  MJ = MJ - TWOD2
                  ML = ML - TWOD2
                  MM = MM - D2
                  DO 120 I1 = I0,D1,D3
                      I2 = I1 + D4
                      DO 110 I = I1,I2,D5
                          J = I + MJ
                          K = I + MK
                          L = I + ML
                          M = I + MM
                          A = X(I) - X(M)
                          B = X(L) - A
                          C = X(K) - B
                          D = X(J) - C
                          X(I) = X(M)
                          X(J) = A
                          X(K) = B
                          X(L) = C
                          X(M) = D
  110                     CONTINUE
  120                 CONTINUE
  130             CONTINUE
C
C---- The results are now in a scrambled digit reversed order, i.e.
C     x(1), x(5), x(9), ..., x(10), x(6), x(2), ..., x(3), x(7), x(11),
C     ..., x(12), x(8), x(4).  the following section of program follows
C     the permutation cycles and does the necessary interchanges.
C
              IF (NOVER4.NE.1) THEN
                  NN = N - 2
                  DO 170 I = 1,NN
                      K = I
  140                 CONTINUE
C
                      K0 = K/4
                      L = K - K0*4
                      IF (L.NE. (L/2)*2) K0 = NOVER4 - 1 - K0
                      K = L*NOVER4 + K0
                      IF (K.LT.I) GO TO 140
                      IF (K.NE.I) THEN
C
                          K0 = I*D2 + 1
                          J0 = (K-I)*D2
                          DO 160 K1 = K0,D1,D3
                              K2 = K1 + D4
                              DO 150 K = K1,K2,D5
                                  L = K + J0
                                  A = X(K)
                                  X(K) = X(L)
                                  X(L) = A
  150                             CONTINUE
  160                         CONTINUE
                      END IF
  170                 CONTINUE
              END IF
          END IF
      END IF
C
C---- Format statements
C
 9000 FORMAT ('FFTLIB: N not a multiple of 4 in R SYM FT.  N =',I10,//)
      END
C
C
      SUBROUTINE SDIAD(X,Y,N,DIM)
C      ===============================
C
C
C
C     This subroutine computes half the fourier synthesis along a screw
C     diad lying along a crystallographic axis given half the fourier
C     coefficients.  That is, it assumes that f(t) = conjg(f(-t)) for t
C     even and f(t) = -conjg(f(-t)) for t odd.  n is the length of the
C     desired half of the transform.  The location x(n+1) is required as
C     a scratch location and therefore a value is also returned in
C     x(n+1) and y(n+1).  The value of the second half of the transform
C     may be generated from the first half by the formula x(n+t) = x(t),
C     y(n+t) = -y(t).  In other words, the last half of the transform is
C     the complex conjugate of the first half.
C
C     The transform is calculated by forming the sum of the even terms
C     and the odd terms in place, using the symmetry relations to
C     obtain the values for negative subscripts.  The transform of the
C     resulting sequence may be separated by using the fact that the
C     transform of the even terms is real, while the prodct of the
C     transform of the odd terms and (cos(pi*t/n) - i*sin(pi*t/n)) is
C     imaginary.  The scratch location is required because the formula
C     for separating the two transforms breaks down when t = n/2.
C
C
C Corrections from A.D.MCLACHLAN 1980, put here sep 1985
C errors in original algorithm for the scratch location which
C assumed f(n)=0
C
C
C
C     .. Scalar Arguments ..
      INTEGER          N
C     ..
C     .. Array Arguments ..
      REAL             X(*),Y(*)
      INTEGER          DIM(5)
C     ..
C     .. Local Scalars ..
      REAL             A,ANGLE,C,S,TWON,TWOPI
      INTEGER          D1,D2,D3,D4,D5,I,J,K,K0,K1,K2,L,M,MN,NN,NOVER2
      LOGICAL          FOLD
      CHARACTER EMESS*80
C     ..
C     .. External Subroutines ..
      EXTERNAL         CMPLFT
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC        COS,REAL,SIN
C     ..
      NOVER2 = N/2
      IF (2*NOVER2.NE.N) THEN
C
          WRITE (EMESS,FMT=9000) N
          call ccperr(1, EMESS)
      ELSE
          TWON = REAL(2*N)
          TWOPI = 6.2831852
          D1 = DIM(1)
          D2 = DIM(2)
          D3 = DIM(3)
          D4 = DIM(4) - 1
          D5 = DIM(5)
C
          S = -1.0
          IF (NOVER2.EQ. (2* (NOVER2/2))) S = -S
          K0 = (N-1)*D2 + 1
          DO 20 K1 = K0,D1,D3
              K2 = K1 + D4
              DO 10 K = K1,K2,D5
                  L = K + D2
                  Y(L) = X(K)*S
   10             CONTINUE
   20         CONTINUE
          S = 1.0
          NN = N - 2
          DO 50 I = 1,NN,2
              S = -S
              MN = (N+1-I)*D2
              K0 = (I-1)*D2 + 1
              DO 40 K1 = K0,D1,D3
                  K2 = K1 + D4
                  DO 30 K = K1,K2,D5
                      J = K + D2
                      L = 2*D2 + K
                      M = K + MN
                      Y(M) = X(J)*S + Y(M)
                      X(K) = X(K) + X(J)
                      X(J) = X(L) - X(J)
                      Y(K) = Y(K) + Y(J)
                      Y(J) = Y(J) - Y(L)
   30                 CONTINUE
   40             CONTINUE
   50         CONTINUE
          K0 = (N-2)*D2 + 1
          DO 70 K1 = K0,D1,D3
              K2 = K1 + D4
              DO 60 K = K1,K2,D5
                  L = K + D2
                  X(K) = X(K) + X(L)
                  Y(K) = Y(K) + Y(L)
                  J = L + D2
                  X(L) = X(J) - X(L)
   60             CONTINUE
   70         CONTINUE
C
C---- Reorder scrambled fourier coefficients
C
          DO 110 I = 1,NN
              K = I
   80         CONTINUE
              K = 2*K
              IF (K.GT.N-1) K = 2*N - 1 - K
              IF (K.LT.I) GO TO 80
              IF (K.NE.I) THEN
                  J = (K-I)*D2
                  K0 = I*D2 + 1
                  DO 100 K1 = K0,D1,D3
                      K2 = K1 + D4
                      DO 90 K = K1,K2,D5
                          L = K + J
                          A = X(K)
                          X(K) = X(L)
                          X(L) = A
                          A = Y(K)
                          Y(K) = Y(L)
                          Y(L) = A
   90                     CONTINUE
  100                 CONTINUE
              END IF
  110         CONTINUE
C
          CALL CMPLFT(X,Y,N,DIM)
C
          M = NOVER2 - 1
          DO 150 I = 1,M
              ANGLE = REAL(I)*TWOPI/TWON
              C = COS(ANGLE)
              S = SIN(ANGLE)
              K0 = I*D2 + 1
              FOLD = .TRUE.
  120         CONTINUE
C
              DO 140 K1 = K0,D1,D3
                  K2 = K1 + D4
                  DO 130 K = K1,K2,D5
                      A = Y(K)/C
                      X(K) = X(K) + S*A
                      Y(K) = A
  130                 CONTINUE
  140             CONTINUE
              IF (FOLD) THEN
C
                  C = -C
                  K0 = (N-I)*D2 + 1
                  FOLD = .FALSE.
                  GO TO 120
              END IF
  150         CONTINUE
C
          M = NOVER2*D2
          K0 = M + 1
          DO 170 K1 = K0,D1,D3
              K2 = K1 + D4
              DO 160 K = K1,K2,D5
                  J = K - M
                  L = K + M
                  A = Y(L)*2.0
                  X(K) = X(K) + A
                  Y(K) = A
                  X(L) = X(J)
                  Y(L) = -Y(J)
  160             CONTINUE
  170         CONTINUE
C
      END IF
C
C---- Format statements
C
 9000 FORMAT ('FFT error: SDIAD: N odd.  N =',I10)
      END
C
C
      SUBROUTINE DIPRP(PTS,SYM,PSYM,UNSYM,DIM,X,Y)
C     =================================================
C
C
C---- Double in place reordering programme
C
C
C     .. Scalar Arguments ..
      INTEGER          PSYM,PTS
C     ..
C     .. Array Arguments ..
      REAL             X(*),Y(*)
      INTEGER          DIM(5),SYM(15),UNSYM(15)
C     ..
C     .. Local Scalars ..
      REAL             T
      INTEGER          A,AL,B,BL,BS,C,CL,CS,D,DELTA,DK,DL,DS,E,EL,ES,F,
     +                 FL,FS,G,GL,GS,H,HL,HS,I,IL,IS,J,JJ,JL,JS,K,KK,KL,
     +                 KS,L,LK,LL,LS,M,ML,MODS,MS,MULT,N,NEST,NL,NS,NT,
     +                 P,P0,P1,P2,P3,P4,P5,PUNSYM,SEP,SIZE,TEST
      LOGICAL          ONEMOD
C     ..
C     .. Local Arrays ..
      INTEGER          MODULO(14),S(14),U(14)
C     ..
C     .. Equivalences ..
      EQUIVALENCE      (AL,U(1)), (BS,S(2)), (BL,U(2))
      EQUIVALENCE      (CS,S(3)), (CL,U(3)), (DS,S(4)), (DL,U(4))
      EQUIVALENCE      (ES,S(5)), (EL,U(5)), (FS,S(6)), (FL,U(6))
      EQUIVALENCE      (GS,S(7)), (GL,U(7)), (HS,S(8)), (HL,U(8))
      EQUIVALENCE      (IS,S(9)), (IL,U(9)), (JS,S(10)), (JL,U(10))
      EQUIVALENCE      (KS,S(11)), (KL,U(11)), (LS,S(12)), (LL,U(12))
      EQUIVALENCE      (MS,S(13)), (ML,U(13)), (NS,S(14)), (NL,U(14))
C     ..
      NEST = 14
C
      NT = DIM(1)
      SEP = DIM(2)
      P2 = DIM(3)
      SIZE = DIM(4) - 1
      P4 = DIM(5)
      IF (SYM(1).NE.0) THEN
          DO 10 J = 1,NEST
              U(J) = 1
              S(J) = 1
   10         CONTINUE
          N = PTS
          DO 20 J = 1,NEST
              IF (SYM(J).EQ.0) THEN
                  GO TO 30
              ELSE
                  JJ = NEST + 1 - J
                  U(JJ) = N
                  S(JJ) = N/SYM(J)
                  N = N/SYM(J)
              END IF
   20         CONTINUE
C
   30     JJ = 0
          DO 190 A = 1,AL
              DO 180 B = A,BL,BS
                  DO 170 C = B,CL,CS
                      DO 160 D = C,DL,DS
                          DO 150 E = D,EL,ES
                              DO 140 F = E,FL,FS
                                  DO 130 G = F,GL,GS
                                      DO 120 H = G,HL,HS
                                          DO 110 I = H,IL,IS
                                              DO 100 J = I,JL,JS
                                                 DO 90 K = J,KL,KS
                                                 DO 80 L = K,LL,LS
                                                 DO 70 M = L,ML,MS
                                                 DO 60 N = M,NL,NS
                                                 JJ = JJ + 1
                                                 IF (JJ.LT.N) THEN
                                                 DELTA = (N-JJ)*SEP
                                                 P1 = (JJ-1)*SEP + 1
                                                 DO 50 P0 = P1,NT,P2
                                                 P3 = P0 + SIZE
                                                 DO 40 P = P0,P3,P4
                                                 P5 = P + DELTA
                                                 T = X(P)
                                                 X(P) = X(P5)
                                                 X(P5) = T
                                                 T = Y(P)
                                                 Y(P) = Y(P5)
                                                 Y(P5) = T
   40                                            CONTINUE
   50                                            CONTINUE
                                                 END IF
   60                                            CONTINUE
   70                                            CONTINUE
   80                                            CONTINUE
   90                                            CONTINUE
  100                                            CONTINUE
  110                                         CONTINUE
  120                                     CONTINUE
  130                                 CONTINUE
  140                             CONTINUE
  150                         CONTINUE
  160                     CONTINUE
  170                 CONTINUE
  180             CONTINUE
  190         CONTINUE
      END IF
C
      IF (UNSYM(1).NE.0) THEN
          PUNSYM = PTS/PSYM**2
          MULT = PUNSYM/UNSYM(1)
          TEST = (UNSYM(1)*UNSYM(2)-1)*MULT*PSYM
          LK = MULT
          DK = MULT
          DO 200 K = 2,NEST
              IF (UNSYM(K).EQ.0) THEN
                  GO TO 210
              ELSE
                  LK = UNSYM(K-1)*LK
                  DK = DK/UNSYM(K)
                  U(K) = (LK-DK)*PSYM
                  MODS = K
              END IF
  200         CONTINUE
  210     ONEMOD = MODS .LT. 3
          IF (.NOT.ONEMOD) THEN
              DO 220 J = 3,MODS
                  JJ = MODS + 3 - J
                  MODULO(JJ) = U(J)
  220             CONTINUE
          END IF
          MODULO(2) = U(2)
          JL = (PUNSYM-3)*PSYM
          MS = PUNSYM*PSYM
C
          DO 290 J = PSYM,JL,PSYM
              K = J
  230         CONTINUE
C
              K = K*MULT
              IF (.NOT.ONEMOD) THEN
                  DO 240 I = 3,MODS
                      K = K - (K/MODULO(I))*MODULO(I)
  240                 CONTINUE
              END IF
              IF (K.GE.TEST) THEN
                  K = K - (K/MODULO(2))*MODULO(2) + MODULO(2)
              ELSE
                  K = K - (K/MODULO(2))*MODULO(2)
              END IF
              IF (K.LT.J) GO TO 230
C
              IF (K.NE.J) THEN
                  DELTA = (K-J)*SEP
                  DO 280 L = 1,PSYM
                      DO 270 M = L,PTS,MS
                          P1 = (M+J-1)*SEP + 1
                          DO 260 P0 = P1,NT,P2
                              P3 = P0 + SIZE
                              DO 250 JJ = P0,P3,P4
                                  KK = JJ + DELTA
                                  T = X(JJ)
                                  X(JJ) = X(KK)
                                  X(KK) = T
                                  T = Y(JJ)
                                  Y(JJ) = Y(KK)
                                  Y(KK) = T
  250                             CONTINUE
  260                         CONTINUE
  270                     CONTINUE
  280                 CONTINUE
              END IF
  290         CONTINUE
      END IF
C
      END
C
C Obscure routines only used by SFALL
C     ===============================
      SUBROUTINE PRMVCI(PERM,JV,N,N1)
C     ===============================
C
C---- Permute vector JV(N,3) by permutation matrix PERM
C      N1 is first dimension of JV
C
C     .. Scalar Arguments ..
      INTEGER N,N1
C     ..
C     .. Array Arguments ..
      REAL PERM(4,4)
      INTEGER JV(N1,3)
C     ..
C     .. Local Scalars ..
      INTEGER I
C     ..
C     .. Local Arrays ..
      REAL BV(3)
C     ..
C     .. Intrinsic Functions ..
      INTRINSIC NINT
C     ..
C
C---- Permute
C
      DO 10 I = 1,3
        BV(I) = PERM(I,1)*FLOAT(JV(N,1)) + PERM(I,2)*FLOAT(JV(N,2)) +
     +          PERM(I,3)*FLOAT(JV(N,3))
   10 CONTINUE
C
C---- Copy back
C
      DO 20 I = 1,3
        JV(N,I) = NINT(BV(I))
   20 CONTINUE
C
      END
C
C     ===============================
      SUBROUTINE PRMVCR(PERM,AV,N,N1)
C     ===============================
C
C---- Permute vector AV(N,3) by permutation vector KP
C           N1 is first dimension of AV
C
C     .. Scalar Arguments ..
      INTEGER N,N1
C     ..
C     .. Array Arguments ..
      REAL AV(N1,3),PERM(4,4)
C     ..
C     .. Local Scalars ..
      INTEGER I
C     ..
C     .. Local Arrays ..
      REAL BV(3)
C     ..
C
C---- Permute
C
      DO 10 I = 1,3
        BV(I) = PERM(I,1)*AV(N,1) + PERM(I,2)*AV(N,2) +
     +          PERM(I,3)*AV(N,3)
   10 CONTINUE
C
C---- Copy back
C
      DO 20 I = 1,3
        AV(N,I) = BV(I)
   20 CONTINUE
C
      END
C