1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
|
C
C modlib.f: grab-bag of mathematical functions
C
C This library is free software: you can redistribute it and/or
C modify it under the terms of the GNU Lesser General Public License
C version 3, modified in accordance with the provisions of the
C license to address the requirements of UK law.
C
C You should have received a copy of the modified GNU Lesser General
C Public License along with this library. If not, copies may be
C downloaded from http://www.ccp4.ac.uk/ccp4license.php
C
C This program is distributed in the hope that it will be useful,
C but WITHOUT ANY WARRANTY; without even the implied warranty of
C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
C GNU Lesser General Public License for more details.
C
C cross.f dot.f ea06c.f ea08c.f ea09c.f
C fa01as.f fa01bs.f fa01cs.f fa01ds.f fm02ad.f
C icross.f idot.f iminv3 match.f matmul.f
C matmulnm.f matmulgen.f
C matvec.f mc04b.f minvn.f minv3.f ranmar.f
C scalev.f transp.f unit.f vdif.f vset.f
C vsum.f zipin.f zipout.f
C
C Routines added by pjx (June 2000):
C
C GMPRD multiply two matrices (general)
C MATMUL4 multiply two 4x4 matrices
C MATMLN multiply two nxn matrices
C DETMAT calculate the determinant of 3x3 matrix
C MATVC4 matrix times vector (matrix is 4x4 array, treated as 3x3,
C vector is length 3)
C ML3MAT multiplies three matrices of any size
C INV44 invert 4x4 matrix
C MATMLI integer version of 3x3 matrix product MATMUL
C MATMULTRANS multiply 3x3 matrix by transpose of another 3x3 matrix
C IMATVEC integer version of MATVEC (post-multiply 3x3 matrix with a
C vector)
C TRANSFRM variant of MATVC4, same except that the input vector is
C overwritten by the output vector
C
C Routines added by mdw (April 2003)
C
C ZJVX Compute zero of Bessel function of 1st kind Jv(x)
C JDVX Compute Bessel functions of 1st kind Jv(x) and their derivatives
C JVX Compute Bessel functions of 1st kind Jv(x)
C GAMMA Compute gamma function GA(x)
C MSTA1 Determine the starting point for backward
C recurrence such that the magnitude of
C Jn(x) at that point is about 10^(-MP)
C MSTA2 Determine the starting point for backward
C recurrence such that all Jn(x) has MP
C significant digits
C
C_BEGIN_GMPRD
C
SUBROUTINE GMPRD(A,B,R,N,M,L)
C =============================
C
C
C---- Ssp general matrix product
C
C R(N,L) = A(N,M) * B(M,L)
C
C .. Scalar Arguments ..
INTEGER L,M,N
C ..
C .. Array Arguments ..
REAL A(N*M),B(M*L),R(N*L)
C ..
C .. Local Scalars ..
INTEGER I,IB,IK,IR,J,JI,K
C ..
C
C_END_GMPRD
C
IR = 0
IK = -M
DO 30 K = 1,L
IK = IK + M
DO 20 J = 1,N
IR = IR + 1
JI = J - N
IB = IK
R(IR) = 0.0
DO 10 I = 1,M
JI = JI + N
IB = IB + 1
R(IR) = A(JI)*B(IB) + R(IR)
10 CONTINUE
20 CONTINUE
30 CONTINUE
END
C
C_BEGIN_MATMUL4
C
C =========================
SUBROUTINE MATMUL4(A,B,C)
C =========================
C
C Multiply two 4x4 matrices, A=B*C
C
C
IMPLICIT NONE
C
C .. Array Arguments ..
REAL A(4,4),B(4,4),C(4,4)
C ..
C .. Local Scalars ..
REAL S
INTEGER I,J,K
C ..
C_END_MATMUL4
C
DO 30 I = 1,4
DO 20 J = 1,4
S = 0
DO 10 K = 1,4
S = B(I,K)*C(K,J) + S
10 CONTINUE
A(I,J) = S
20 CONTINUE
30 CONTINUE
RETURN
END
C
C_BEGIN_MATMLN
C
subroutine matmln(n,a,b,c)
C =========================
C
C Multiply two nxn matrices
C a = b . c
C
integer n
real a(n,n),b(n,n),c(n,n)
integer i,j,k
C
C_END_MATMLN
C
do 1 i=1,n
do 2 j=1,n
a(j,i)=0.
do 3 k=1,n
a(j,i)= b(j,k)*c(k,i)+a(j,i)
3 continue
2 continue
1 continue
return
end
C
C_BEGIN_DETMAT
C
C ===========================
SUBROUTINE DETMAT(RMAT,DET)
C ============================
C
C---- Calculate determinant DET of 3x3 matrix RMAT
C
C
C .. Scalar Arguments ..
REAL DET
C ..
C .. Array Arguments ..
REAL RMAT(3,3)
C ..
C_END_DETMAT
C
DET = RMAT(1,1)*RMAT(2,2)*RMAT(3,3) +
+ RMAT(1,2)*RMAT(2,3)*RMAT(3,1) +
+ RMAT(1,3)*RMAT(2,1)*RMAT(3,2) -
+ RMAT(1,3)*RMAT(2,2)*RMAT(3,1) -
+ RMAT(1,2)*RMAT(2,1)*RMAT(3,3) -
+ RMAT(1,1)*RMAT(2,3)*RMAT(3,2)
C
END
C
C
C_BEGIN_MATVC4
C
SUBROUTINE MATVC4(A,R,B)
C ========================
C
C Matrix x Vector
C A(3) = R(4x4) . B(3)
C
REAL A(3), R(4,4), B(3)
C
REAL AA(4), BB(4)
C
EXTERNAL GMPRD,VSET
C
C_END_MATVC4
C
CALL VSET(BB,B)
BB(4) = 1.0
CALL GMPRD(R,BB,AA,4,4,1)
CALL VSET(A,AA)
RETURN
END
C
C
C_BEGIN_ML3MAT
C
C 26-Nov-1988 J. W. Pflugrath Cold Spring Harbor Laboratory
C Edited to conform to Fortran 77. Renamed from Multiply_3_matrices to
C ML3MAT
C
C ==============================================================================
C
C! to multiply three matrices
C
SUBROUTINE ML3MAT
C ! input: 1st side of 1st matrix
1 (P
C ! input: first matrix
2 ,A
C ! input: 2nd side of 1st matrix & 1st side of 2nd matrix
3 ,Q
C ! input: second matrix
4 ,B
C ! input: 2nd side of 2nd matrix & 1st side of 3rd matrix
5 ,R
C ! input: third matrix
6 ,C
C ! input: 2nd side of 3rd matrix
7 ,S
C ! output: product matrix
8 ,D)
C
CEE Multiplies three real matrices of any dimensions. It is not optimised
C for very large matrices.
C Multiply_3_matrices
C*** this routine is inefficient!
C Multiply_3_matrices
Created: 15-NOV-1985 D.J.Thomas, MRC Laboratory of Molecular Biology,
C Hills Road, Cambridge, CB2 2QH, England
C
C ! loop counters
INTEGER I,J,K,L
C ! loop limits
INTEGER P,Q,R,S
C ! first input matrix
REAL A (1:P,1:Q)
C ! second input matrix
REAL B (1:Q,1:R)
C ! third input matrix
REAL C (1:R,1:S)
C ! output matrix
REAL D (1:P,1:S)
C
C_END_ML3MAT
C
DO 100 L = 1, S
DO 100 I = 1, P
D(I,L) = 0.0
DO 100 K = 1, R
DO 100 J = 1, Q
C
C ! accumulate product matrix D=ABC
C
100 D(I,L) = D(I,L) + A(I,J) * B(J,K) * C(K,L)
CONTINUE
CONTINUE
CONTINUE
CONTINUE
C Multiply_3_matrices
RETURN
END
C
C
C_BEGIN_INV44
C
C ======================
SUBROUTINE INV44(A,AI)
C ======================
C
C SUBROUTINE TO INVERT 4*4 MATRICES FOR CONVERSION BETWEEN
C FRACTIONAL AND ORTHOGONAL AXES
C PARAMETERS
C
C A (I) 4*4 MATRIX TO BE INVERTED
C AI (O) INVERSE MATRIX
C
C SPECIFICATION STATEMENTS
C ------------------------
C
C
C GET COFACTORS OF 'A' IN ARRAY 'C'
C ---------------------------------
C
IMPLICIT NONE
C
C .. Array Arguments ..
REAL A(4,4),AI(4,4)
C ..
C .. Local Scalars ..
REAL AM,D
INTEGER I,I1,II,J,J1,JJ
C ..
C .. Local Arrays ..
REAL C(4,4),X(3,3)
C ..
C
C_END_INV44
C
DO 40 II = 1,4
DO 30 JJ = 1,4
I = 0
DO 20 I1 = 1,4
IF (I1.EQ.II) GO TO 20
I = I + 1
J = 0
DO 10 J1 = 1,4
IF (J1.EQ.JJ) GO TO 10
J = J + 1
X(I,J) = A(I1,J1)
10 CONTINUE
20 CONTINUE
AM = X(1,1)*X(2,2)*X(3,3) - X(1,1)*X(2,3)*X(3,2) +
+ X(1,2)*X(2,3)*X(3,1) - X(1,2)*X(2,1)*X(3,3) +
+ X(1,3)*X(2,1)*X(3,2) - X(1,3)*X(2,2)*X(3,1)
C(II,JJ) = (-1)** (II+JJ)*AM
30 CONTINUE
40 CONTINUE
C
C---- calculate determinant
C
D = 0
DO 50 I = 1,4
D = A(I,1)*C(I,1) + D
50 CONTINUE
C
C---- get inverse matrix
C
DO 70 I = 1,4
DO 60 J = 1,4
AI(I,J) = C(J,I)/D
60 CONTINUE
70 CONTINUE
RETURN
END
C
C
C_BEGIN_MATMLI
C
SUBROUTINE MATMLI(A,B,C)
C ========================
C Integer matrix multiply
INTEGER A(3,3),B(3,3),C(3,3),I,J,K
C
C_END_MATMULI
C
DO 1 I=1,3
DO 2 J=1,3
A(I,J)=0
DO 3 K=1,3
A(I,J)=A(I,J)+B(I,K)*C(K,J)
3 CONTINUE
2 CONTINUE
1 CONTINUE
RETURN
END
C
C
C_BEGIN_MATMULTRANS
C
SUBROUTINE MATMULTrans(A,B,C)
C =============================
C
C A=B*C(transpose) for 3x3 matrices
C
IMPLICIT NONE
C
C ..Array arguments
REAL A(3,3),B(3,3),C(3,3)
C ..Local arrays
REAL CT(3,3)
C
EXTERNAL MATMUL
C
C_END_MATMULTRANS
C
CALL TRANSP(CT,C)
CALL MATMUL(A,B,CT)
RETURN
END
C
C
C_BEGIN_IMATVEC
C
SUBROUTINE IMATVEC(V,A,B)
C ========================
C
C---- Post-multiply a 3x3 matrix by a vector
C
C V=AB
C
C .. Array Arguments ..
INTEGER A(3,3),B(3),V(3)
C ..
C .. Local Scalars ..
INTEGER I,J,S
C
C_END_IMATVEC
C
DO 20 I = 1,3
S = 0
C
C
DO 10 J = 1,3
S = A(I,J)*B(J) + S
10 CONTINUE
C
C
V(I) = S
20 CONTINUE
C
C
END
C
C
C_BEGIN_TRANSFRM
C
SUBROUTINE TRANSFRM(X,MAT)
C ==========================
C
C Transform vector X(3) by quine matrix MAT(4,4)
C Return transformed vector in X.
C
IMPLICIT NONE
C
C ..Array arguments..
REAL X(3),MAT(4,4)
C ..Local arrays..
REAL TMP(3)
C
C_END_TRANSFRM
C
CALL MATVC4(TMP,MAT,X)
CALL VSET(X,TMP)
RETURN
END
C
C
C
C_BEGIN_CROSS
C
SUBROUTINE CROSS(A,B,C)
C =======================
C
C compute vector product A = B x C
C
C .. Array Arguments ..
REAL A(3),B(3),C(3)
C
C_END_CROSS
C ..
A(1) = B(2)*C(3) - C(2)*B(3)
A(2) = B(3)*C(1) - C(3)*B(1)
A(3) = B(1)*C(2) - C(1)*B(2)
END
C
C
C_BEGIN_DOT
C
REAL FUNCTION DOT(A,B)
C ======================
C
C dot product of two vectors
C
C .. Array Arguments ..
REAL A(3),B(3)
C
C_END_DOT
C ..
DOT = A(1)*B(1) + A(2)*B(2) + A(3)*B(3)
END
C
C ******************************************************************
SUBROUTINE EIGEN_RS_ASC(A, R, N, MV)
C ******************************************************************
C
C---- SUBROUTINE TO COMPUTE EIGENVALUES & EIGENVECTORS OF A REAL
C---- SYMMETRIC MATRIX, FROM IBM SSP MANUAL (SEE P165).
C---- DESCRIPTION OF PARAMETERS -
C---- A - ORIGINAL MATRIX STORED COLUMNWISE AS UPPER TRIANGLE ONLY,
C---- I.E. "STORAGE MODE" = 1. EIGENVALUES ARE WRITTEN INTO DIAGONAL
C---- ELEMENTS OF A I.E. A(1) A(3) A(6) FOR A 3*3 MATRIX.
C---- R - RESULTANT MATRIX OF EIGENVECTORS STORED COLUMNWISE IN SAME
C---- ORDER AS EIGENVALUES.
C---- N - ORDER OF MATRICES A & R.
C---- MV = 0 TO COMPUTE EIGENVALUES & EIGENVECTORS.
C
C
c IMPLICIT NONE
INTEGER NMAX
PARAMETER (NMAX=10)
REAL A(*), R(*)
INTEGER N, MV
C
INTEGER IQ, J, I, IJ, IA, IND, L, M, MQ, LQ, LM, LL, MM
INTEGER ILQ, IMQ, IM, IL, ILR, IMR
REAL ANORM, ANRMX, RANGE, THR, X, Y, SINX, SINX2,
& COSX, COSX2, SINCS
C Lapack variables
LOGICAL LAPACK
CHARACTER*1 JOBZ, LAPRANGE, UPLO
INTEGER INFO, NVECTORS
REAL ABSTOL
INTEGER ISUPPZ(2*NMAX), IWORK(10*NMAX)
REAL WORK(26*NMAX),EVALUES(NMAX),AM(NMAX,NMAX)
C
C-- FOR REAL
C DATA RANGE/1D-12/
DATA RANGE/1E-6/
C Alternative lapack routine - only marginally tested
LAPACK = .FALSE.
IF (LAPACK) THEN
NVECTORS = 0
IF (N.GT.NMAX)
+ CALL CCPERR(1,'s/r EIGEN_RS_ASC: redimension NMAX!')
IF (MV.EQ.0) JOBZ = 'V'
LAPRANGE = 'A'
UPLO = 'U'
ABSTOL = 0.0
IA = 0
DO I = 1,N
DO J = 1,I
IA = IA + 1
AM(J,I) = A(IA)
ENDDO
ENDDO
C CALL SSYEVR(JOBZ, LAPRANGE, UPLO, N, AM, N,
C + 1, N, 1, N, ABSTOL, NVECTORS, EVALUES, R,
C + N, ISUPPZ, WORK, 26*N, IWORK, 10*N, INFO)
IA = 0
DO I = 1,NVECTORS
DO J = 1,I
IA = IA + 1
IF (J.EQ.I) A(IA) = EVALUES(I)
ENDDO
ENDDO
RETURN
ENDIF
IF (MV.EQ.0) THEN
IQ=-N
DO J=1,N
IQ=IQ+N
DO I=1,N
IJ=IQ+I
IF (I.EQ.J) THEN
R(IJ)=1.
ELSE
R(IJ)=0.
ENDIF
ENDDO
ENDDO
ENDIF
C
C---- INITIAL AND FINAL NORMS (ANORM & ANRMX)
IA=0
ANORM=0.
DO I=1,N
DO J=1,I
IA=IA+1
IF (J.NE.I) ANORM=ANORM+A(IA)**2
ENDDO
ENDDO
C
IF (ANORM.LE.0.) GOTO 165
ANORM=SQRT(2.*ANORM)
ANRMX=ANORM*RANGE/N
C
C---- INITIALIZE INDICATORS AND COMPUTE THRESHOLD
IND=0
THR=ANORM
45 THR=THR/N
50 L=1
55 LQ=L*(L-1)/2
LL=L+LQ
M=L+1
ILQ=N*(L-1)
C
C---- COMPUTE SIN & COS
60 MQ=M*(M-1)/2
LM=L+MQ
IF (A(LM)*A(LM)-THR.LT.0.) GOTO 130
IND=1
MM=M+MQ
X=.5*(A(LL)-A(MM))
Y=-A(LM)/SQRT(A(LM)**2+X*X)
C---- Protect against rounding error. C. Flensburg 20080307.
IF (ABS(Y).GT.1.0) Y=SIGN(1.0,Y)
IF (X.LT.0.) Y=-Y
SINX=Y/SQRT(2.*(1.+(SQRT(1.-Y*Y))))
SINX2=SINX**2
COSX=SQRT(1.-SINX2)
COSX2=COSX**2
SINCS=SINX*COSX
C
C---- ROTATE L & M COLUMNS
IMQ=N*(M-1)
DO 125 I=1,N
IQ=I*(I-1)/2
IF (I.NE.L .AND. I.NE.M) THEN
IF (I.LT.M) THEN
IM=I+MQ
ELSE
IM=M+IQ
ENDIF
IF (I.LT.L) THEN
IL=I+LQ
ELSE
IL=L+IQ
ENDIF
X=A(IL)*COSX-A(IM)*SINX
A(IM)=A(IL)*SINX+A(IM)*COSX
A(IL)=X
ENDIF
IF (MV.EQ.0) THEN
ILR=ILQ+I
IMR=IMQ+I
X=R(ILR)*COSX-R(IMR)*SINX
R(IMR)=R(ILR)*SINX+R(IMR)*COSX
R(ILR)=X
ENDIF
125 CONTINUE
C
X=2.*A(LM)*SINCS
Y=A(LL)*COSX2+A(MM)*SINX2-X
X=A(LL)*SINX2+A(MM)*COSX2+X
A(LM)=(A(LL)-A(MM))*SINCS+A(LM)*(COSX2-SINX2)
A(LL)=Y
A(MM)=X
C
C---- TESTS FOR COMPLETION
C---- TEST FOR M = LAST COLUMN
130 IF (M.NE.N) THEN
M=M+1
GOTO 60
ENDIF
C
C---- TEST FOR L =PENULTIMATE COLUMN
IF (L.NE.N-1) THEN
L=L+1
GOTO55
ENDIF
IF (IND.EQ.1) THEN
IND=0
GOTO50
ENDIF
C
C---- COMPARE THRESHOLD WITH FINAL NORM
IF (THR.GT.ANRMX) GOTO 45
165 RETURN
END
C
C The routines ea06c, ea08c, ea09c, fa01as, fa01bs, fa01cs, fa01ds,
C fm02ad, mc04b, (and possibly others) are from the
C Harwell Subroutine library. The conditions on their external use,
C reproduced from the Harwell manual are:
C * due acknowledgement is made of the use of subroutines in any
C research publications resulting from their use.
C * the subroutines may be modified for use in research applications
C by external users. The nature of such modifiactions should be
C indicated in writing for information to the liaison officer. At
C no time however, shall the subroutines or modifications thereof
C become the property of the external user.
C The liaison officer for the library's external affairs is listed
C as: Mr. S. Marlow, Building 8.9, Harwell Laboratory, Didcot,
C Oxon OX11 0RA, UK.
C
C_BEGIN_EA06C
C
SUBROUTINE EA06C(A,VALUE,VECTOR,M,IA,IV,W)
C ==========================================
C
C** 18/03/70 LAST LIBRARY UPDATE
C
C ( Calls EA08C(W,W(M1),VALUE,VECTOR,M,IV,W(M+M1))
C and MC04B(A,W,W(M1),M,IA,W(M+M1)) )
C
C Given a real MxM symmetric matrix A = {aij} this routine
C finds all its eigenvalues (lambda)i i=1,2,.....,m and
C eigenvectors xj i=1,2,...,m. i.e. finds the non-trivial
C solutions of Ax=(lambda)x
C
C The matrix is reduced to tri-diagonal form by applying
C Householder transformations. The eigenvalue problem for
C the reduced problem is then solved using the QR algorithm
C by calling EA08C.
C
C Argument list
C -------------
C
C IA (I) (integer) should be set to the first dimension
C of the array A, i.e. if the allocation
C for the array A was specified by
C DIMENSION A(100,50)
C then IA would be set to 100
C
C M (I) (integer) should be set to the order m of the matrix
C
C IV (I) (integer) should be set to the first dimension
C of the 2-dimensional array VECTOR
C
C VECTOR(IV,M) (O) (real) 2-dimensional array, with first dimension IV,
C containing the eigenvectors. The components
C of the eigenvector vector(i) corresponding
C to the eigenvalue (lambda)i (in VALUE(I))
C are placed in VECTOR(J,I) J=1,2,...,M.
C The eigenvectors are normalized so that
C xT(i)x(i)=1 i=1,2,...,m.
C
C VALUE(M) (O) (real) array in which the routine puts
C the eigenvalues (lambda)i, i=1,2,...,m.
C These are not necessarily in any order.
C
C W (I) (real(*)) working array used by the routine for
C work space. The dimension must be set
C to at least 5*M.
C
C_END_EA06C
C
C
C .. Scalar Arguments ..
INTEGER IA,IV,M
C ..
C .. Array Arguments ..
REAL A(IA,M),VALUE(M),VECTOR(IV,M),W(*)
C ..
C .. Local Scalars ..
REAL PP
INTEGER I,I1,II,K,L,M1
C ..
C .. External Subroutines ..
EXTERNAL EA08C,MC04B
C ..
M1 = M + 1
W(1) = A(1,1)
IF (M-2) 30,10,20
10 W(2) = A(2,2)
W(4) = A(2,1)
GO TO 30
20 CALL MC04B(A,W,W(M1),M,IA,W(M+M1))
30 CALL EA08C(W,W(M1),VALUE,VECTOR,M,IV,W(M+M1))
IF (M.GT.2) THEN
DO 70 L = 1,M
DO 60 II = 3,M
I = M - II + 1
IF (W(M1+I).NE.0) THEN
PP = 0.0
I1 = I + 1
DO 40 K = I1,M
PP = A(I,K)*VECTOR(K,L) + PP
40 CONTINUE
PP = PP/ (A(I,I+1)*W(M1+I))
DO 50 K = I1,M
VECTOR(K,L) = A(I,K)*PP + VECTOR(K,L)
50 CONTINUE
END IF
60 CONTINUE
70 CONTINUE
END IF
END
C
C_BEGIN_EA08C
C
SUBROUTINE EA08C(A,B,VALUE,VEC,M,IV,W)
C =====================================
C
C (Calls EA09C(A,B,W(M+1),M,W))
C
C This uses QR iteration to find the all the eigenvalues and
C eigenvectors of the real symmetric tri-diagonal matrix
C whose diagonal elements are A(i), i=1,M and off-diagonal
C elements are B(i),i=2,M. The eigenvalues will have unit
C length. The array W is used for workspace and must have
C dimension at least 2*M. We treat VEC as if it had
C dimensions (IV,M).
C
C First EA09, which uses the QR algorithm, is used to find
C the eigenvalues; using these as shifts the QR algorithm is
C again applied but now using the plane rotations to generate
C the eigenvectors. Finally the eigenvalues are refined
C by taking Rayleigh quotients of the vectors.
C
C Argument list
C -------------
C
C A(M) (I) (real) Diagonal elements
C
C B(M) (I) (real) Off-diagonal elements
C
C IV (I) (integer) should be set to the first dimen-
C sion of the 2-dimensional array VEC
C
C M (I) (integer) should be set to the order m of the
C matrix
C
C VALUE(M) (O) (real) Eigenvalues
C
C VEC (O) (real) Eigenvectors. The dimensions
C should be set to (IV,M).
C
C W(*) (I) (real) Working array.The dimension must be
C set to at least 2*M.
C
C_END_EA08C
C
C .. Scalar Arguments ..
INTEGER IV,M
C ..
C .. Array Arguments ..
REAL A(M),B(M),VALUE(M),VEC(1),W(*)
C ..
C .. Local Scalars ..
REAL A11,A12,A13,A21,A22,A23,A33,A34,CO,EPS,ROOT,S,SI,
+ V1,V2,XAX,XX
INTEGER I,II,ITER,J,J1,J2,JI,JK,K,L,N1,N2,N2M1
C ..
C .. External Subroutines ..
EXTERNAL EA09C
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS,MIN,SIGN,SQRT
C ..
C .. Data statements ..
DATA EPS/1.0E-5/,A34/0.0/
C ..
C
C
CALL EA09C(A,B,W(M+1),M,W)
C
C---- Set vec to the identity matrix.
C
DO 20 I = 1,M
VALUE(I) = A(I)
W(I) = B(I)
K = (I-1)*IV + 1
L = K + M - 1
DO 10 J = K,L
VEC(J) = 0.0
10 CONTINUE
VEC(K+I-1) = 1.0
20 CONTINUE
ITER = 0
IF (M.NE.1) THEN
N2 = M
30 CONTINUE
C
C---- Each qr iteration is performed of rows and columns n1 to n2
C
DO 40 II = 2,N2
N1 = 2 + N2 - II
IF (ABS(W(N1)).LE. (ABS(VALUE(N1-1))+ABS(VALUE(N1)))*
+ EPS) GO TO 50
40 CONTINUE
N1 = 1
50 IF (N2.NE.N1) THEN
ROOT = W(M+N2)
ITER = ITER + 1
N2M1 = N2 - 1
A22 = VALUE(N1)
A12 = A22 - ROOT
A23 = W(N1+1)
A13 = A23
DO 70 I = N1,N2M1
A33 = VALUE(I+1)
IF (I.NE.N2M1) A34 = W(I+2)
S = SIGN(SQRT(A12*A12+A13*A13),A12)
SI = A13/S
CO = A12/S
JK = I*IV + 1
J1 = JK - IV
J2 = MIN(M,I+ITER) + J1 - 1
DO 60 JI = J1,J2
V1 = VEC(JI)
V2 = VEC(JK)
VEC(JI) = V1*CO + V2*SI
VEC(JK) = V2*CO - V1*SI
JK = JK + 1
60 CONTINUE
IF (I.NE.N1) W(I) = S
A11 = CO*A22 + SI*A23
A12 = CO*A23 + SI*A33
A13 = SI*A34
A21 = CO*A23 - SI*A22
A22 = CO*A33 - SI*A23
A23 = CO*A34
VALUE(I) = A11*CO + A12*SI
A12 = -A11*SI + A12*CO
W(I+1) = A12
A22 = A22*CO - A21*SI
70 CONTINUE
VALUE(N2) = A22
GO TO 30
ELSE
N2 = N2 - 1
IF (N2-1.GT.0) GO TO 30
END IF
C
C---- Rayleigh quotient
C
DO 90 J = 1,M
K = (J-1)*IV
XX = VEC(K+1)**2
XAX = A(1)*XX
DO 80 I = 2,M
XX = VEC(K+I)**2 + XX
XAX = (B(I)*2.0*VEC(K+I-1)+VEC(K+I)*A(I))*VEC(K+I) +
+ XAX
80 CONTINUE
VALUE(J) = XAX/XX
90 CONTINUE
END IF
END
C
C
SUBROUTINE EA09C(A,B,VALUE,M,OFF)
C =================================
C
C 18/03/70 LAST LIBRARY UPDATE
C
C .. Scalar Arguments ..
INTEGER M
C ..
C .. Array Arguments ..
REAL A(M),B(M),OFF(M),VALUE(M)
C ..
C .. Local Scalars ..
REAL A11,A12,A13,A21,A22,A23,A33,A34,BB,CC,CO,EPS,
+ ROOT,S,SBB,SI
INTEGER I,II,N1,N2,N2M1
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS,SQRT
C ..
C .. Data statements ..
DATA A34/0.0/,EPS/0.6E-7/
C ..
C
C
VALUE(1) = A(1)
IF (M.NE.1) THEN
DO 10 I = 2,M
VALUE(I) = A(I)
OFF(I) = B(I)
10 CONTINUE
C
C---- Each qr iteration is performed of rows and columns n1 to n2
C
N2 = M
20 CONTINUE
IF (N2.GT.1) THEN
DO 30 II = 2,N2
N1 = 2 + N2 - II
IF (ABS(OFF(N1)).LE. (ABS(VALUE(N1-1))+
+ ABS(VALUE(N1)))*EPS) GO TO 40
30 CONTINUE
N1 = 1
40 IF (N2.NE.N1) THEN
C
C---- Root is the eigenvalue of the bottom 2*2 matrix that is nearest
C to the last matrix element and is used to accelerate the
C convergence
C
BB = (VALUE(N2)-VALUE(N2-1))*0.5
CC = OFF(N2)*OFF(N2)
SBB = 1.0
IF (BB.LT.0.0) SBB = -1.0
ROOT = CC/ (SQRT(BB*BB+CC)*SBB+BB) + VALUE(N2)
N2M1 = N2 - 1
A22 = VALUE(N1)
A12 = A22 - ROOT
A23 = OFF(N1+1)
A13 = A23
DO 50 I = N1,N2M1
A33 = VALUE(I+1)
IF (I.NE.N2M1) A34 = OFF(I+2)
S = SQRT(A12*A12+A13*A13)
SI = A13/S
CO = A12/S
IF (I.NE.N1) OFF(I) = S
A11 = CO*A22 + SI*A23
A12 = CO*A23 + SI*A33
A13 = SI*A34
A21 = CO*A23 - SI*A22
A22 = CO*A33 - SI*A23
A23 = CO*A34
VALUE(I) = A11*CO + A12*SI
A12 = -A11*SI + A12*CO
OFF(I+1) = A12
A22 = A22*CO - A21*SI
50 CONTINUE
VALUE(N2) = A22
ELSE
N2 = N2 - 1
END IF
GO TO 20
END IF
END IF
END
C
C
C---- Changes put in to make it work on vax (this version has scaling)
C 1. 12 statements for calculation of over/underflow of determinant in ma21
C replaced by a simple one which will overflow more easily(entry ma21cd)
C 2. changes to mc10ad to replace 370-specific parts....
C a. u=floati (6 times)
C b. new alog16 procedure (twice)
C c. simpler 16**diag statement (once)
C 3. all double precision replaced by real*8 (not really necessary).
C 4. replace a(n),b(n) by a(1),b(1) in fm02ad to avoid vax array checking.
C
FUNCTION FA01AS(I)
C ==================
DOUBLE PRECISION G, FA01AS
INTEGER I
COMMON/FA01ES/G
G= 1431655765.D0
C
C
G=DMOD(G* 9228907.D0,4294967296.D0)
IF(I.GE.0)FA01AS=G/4294967296.D0
IF(I.LT.0)FA01AS=2.D0*G/4294967296.D0-1.D0
RETURN
END
C
SUBROUTINE FA01BS(MAX,NRAND)
C ============================
C
INTEGER NRAND, MAX
DOUBLE PRECISION FA01AS
EXTERNAL FA01AS
NRAND=INT(FA01AS(1)*FLOAT(MAX))+1
RETURN
END
C
SUBROUTINE FA01CS(IL,IR)
C ========================
C
DOUBLE PRECISION G
INTEGER IL,IR
COMMON/FA01ES/G
G= 1431655765.D0
C
IL=G/65536.D0
IR=G-65536.D0*FLOAT(IL)
RETURN
END
C
SUBROUTINE FA01DS(IL,IR)
C ========================
C
DOUBLE PRECISION G
INTEGER IL,IR
COMMON/FA01ES/G
G= 1431655765.D0
C
G=65536.D0*FLOAT(IL)+FLOAT(IR)
RETURN
END
C
C_BEGIN_FM02AD
C
DOUBLE PRECISION FUNCTION FM02AD(N,A,IA,B,IB)
C =============================================
C
C Compute the inner product of two double precision real
C vectors accumulating the result double precision, when the
C elements of each vector are stored at some fixed displacement
C from neighbouring elements. Given vectors A={a(j)},
C B={b(j)} of length N, evaluates w=a(j)b(j) summed over
C j=1..N. Can be used to evaluate inner products involving
C rows of multi-dimensional arrays.
C It can be used as an alternative to the assembler version,
C but note that it is likely to be significantly slower in execution.
C
C Argument list
C -------------
C
C N (I) (integer) The length of the vectors (if N <= 0 FM02AD = 0)
C
C A (I) (double precision) The first vector
C
C IA (I) (integer) Subscript displacement between elements of A
C
C B (I) (double precision) The second vector
C
C IB (I) (integer) Subscript displacement between elements of B
C
C FM02AD the result
C
C
C_END_FM02AD
C
DOUBLE PRECISION R1,A,B
C
C---- The following statement changed from a(n),b(n) to avoid vax dynamic
C array check failure.
C
DIMENSION A(1),B(1)
INTEGER N,JA,IA,JB,IB,I
C
R1=0D0
IF(N.LE.0) GO TO 2
JA=1
IF(IA.LT.0) JA=1-(N-1)*IA
JB=1
IF(IB.LT.0) JB=1-(N-1)*IB
I=0
1 I=I+1
R1=R1+A(JA)*B(JB)
JA=JA+IA
JB=JB+IB
IF(I.LT.N) GO TO 1
2 FM02AD=R1
RETURN
C
END
C
C
C_BEGIN_ICROSS
C
SUBROUTINE ICROSS(A,B,C)
C ========================
C
C Cross product (integer version)
C
C A = B x C
C
C .. Array Arguments ..
INTEGER A(3),B(3),C(3)
C
C_END_ICROSS
C ..
A(1) = B(2)*C(3) - C(2)*B(3)
A(2) = B(3)*C(1) - C(3)*B(1)
A(3) = B(1)*C(2) - C(1)*B(2)
END
C
C
C_BEGIN_IDOT
C
INTEGER FUNCTION IDOT(A,B)
C ==========================
C
C Dot product (integer version)
C
C IDOT = A . B
C
C .. Array Arguments ..
INTEGER A(3),B(3)
C
C_END_IDOT
C ..
IDOT = A(1)*B(1) + A(2)*B(2) + A(3)*B(3)
END
C
C
C_BEGIN_IMINV3
C
SUBROUTINE IMINV3(A,B,D)
C =======================
C
C Invert a general 3x3 matrix and return determinant in D
C (integer version)
C
C A = (B)-1
C
C .. Scalar Arguments ..
INTEGER D
C ..
C .. Array Arguments ..
INTEGER A(3,3),B(3,3)
C
C_END_IMINV3
C ..
C .. Local Scalars ..
INTEGER I,J
C ..
C .. Local Arrays ..
INTEGER C(3,3)
C ..
C .. External Functions ..
INTEGER IDOT
EXTERNAL IDOT
C ..
C .. External Subroutines ..
EXTERNAL ICROSS
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS
C ..
CALL ICROSS(C(1,1),B(1,2),B(1,3))
CALL ICROSS(C(1,2),B(1,3),B(1,1))
CALL ICROSS(C(1,3),B(1,1),B(1,2))
D = IDOT(B(1,1),C(1,1))
C
C---- Test determinant
C
IF (ABS(D).GT.0) THEN
C
C---- Determinant is non-zero
C
DO 20 I = 1,3
DO 10 J = 1,3
A(I,J) = C(J,I)/D
10 CONTINUE
20 CONTINUE
ELSE
D = 0
END IF
END
C
C
C_BEGIN_MATMUL
C
SUBROUTINE MATMUL(A,B,C)
C ========================
C
C Multiply two 3x3 matrices
C
C A = BC
C
C .. Array Arguments ..
REAL A(3,3),B(3,3),C(3,3)
C
C_END_MATMUL
C ..
C .. Local Scalars ..
INTEGER I,J,K
C ..
DO 30 I = 1,3
DO 20 J = 1,3
A(I,J) = 0.0
DO 10 K = 1,3
A(I,J) = B(I,K)*C(K,J) + A(I,J)
10 CONTINUE
20 CONTINUE
30 CONTINUE
END
C
C
C_BEGIN_MATMULNM
C
SUBROUTINE MATMULNM(N,M,A,B,C)
C ========================
C
C Multiply NxM MXN matrices
C
C A = BC
C
C .. Array Arguments ..
INTEGER N,M
REAL A(N,N),B(N,M),C(M,N)
C
C_END_MATMUL
C ..
C .. Local Scalars ..
INTEGER I,J,K
C ..
DO 30 I = 1,N
DO 20 J = 1,N
A(I,J) = 0.0
DO 10 K = 1,M
A(I,J) = B(I,K)*C(K,J) + A(I,J)
10 CONTINUE
20 CONTINUE
30 CONTINUE
END
C
C
C_BEGIN_MATVEC
C
SUBROUTINE MATVEC(V,A,B)
C ========================
C
C Post-multiply a 3x3 matrix by a vector
C
C V = AB
C
C .. Array Arguments ..
REAL A(3,3),B(3),V(3)
C
C_END_MATVEC
C ..
C .. Local Scalars ..
REAL S
INTEGER I,J
C ..
DO 20 I = 1,3
S = 0
DO 10 J = 1,3
S = A(I,J)*B(J) + S
10 CONTINUE
V(I) = S
20 CONTINUE
END
C
C
C_BEGIN_MATMULGEN
C
SUBROUTINE MATMULGEN(Nb,Mbc,Nc,A,B,C)
C =====================================
C
C Generalised matrix multiplication subroutine
C Multiplies a NbxMbc matrix (B) by a MbcXNc
C (C) matrix, so that
C
C A = BC
C
IMPLICIT NONE
C ..
C .. Scalar Arguments ..
INTEGER Nb,Mbc,Nc
C ..
C .. Array Arguments ..
REAL A(Nb,Nc),B(Nb,Mbc),C(Mbc,Nc)
C
C_END_MATMULGEN
C ..
C .. Local Scalars ..
INTEGER I,J,K
C ..
DO 30 J = 1,Nc
DO 20 I = 1,Nb
A(I,J) = 0.0
DO 10 K = 1,Mbc
A(I,J) = B(I,K)*C(K,J) + A(I,J)
10 CONTINUE
20 CONTINUE
30 CONTINUE
END
C
C
C_BEGIN_MC04B
C
SUBROUTINE MC04B(A,ALPHA,BETA,M,IA,Q)
C =====================================
C
C Transforms a real symmetric matrix A={a(i,j)}, i, j=1..IA
C into a tri-diagonal matrix having the same eigenvalues as A
C using Householder's method.
C
C .. Scalar Arguments ..
INTEGER IA,M
C ..
C .. Array Arguments ..
REAL A(IA,1),ALPHA(1),BETA(1),Q(1)
C
C_END_MC04B
C ..
C .. Local Scalars ..
REAL BIGK,H,PP,PP1,QJ
INTEGER I,I1,I2,J,J1,KI,KJ,M1,M2
C ..
C .. Intrinsic Functions ..
INTRINSIC SQRT
C ..
ALPHA(1) = A(1,1)
DO 20 J = 2,M
J1 = J - 1
DO 10 I = 1,J1
A(I,J) = A(J,I)
10 CONTINUE
ALPHA(J) = A(J,J)
20 CONTINUE
M1 = M - 1
M2 = M - 2
DO 110 I = 1,M2
PP = 0.0
I1 = I + 1
DO 30 J = I1,M
PP = A(I,J)**2 + PP
30 CONTINUE
PP1 = SQRT(PP)
IF (A(I,I+1).LT.0) THEN
BETA(I+1) = PP1
ELSE
BETA(I+1) = -PP1
END IF
IF (PP.GT.0) THEN
H = PP - BETA(I+1)*A(I,I+1)
A(I,I+1) = A(I,I+1) - BETA(I+1)
DO 60 KI = I1,M
QJ = 0.0
DO 40 KJ = I1,KI
QJ = A(KJ,KI)*A(I,KJ) + QJ
40 CONTINUE
IF (KI-M.LT.0) THEN
I2 = KI + 1
DO 50 KJ = I2,M
QJ = A(KI,KJ)*A(I,KJ) + QJ
50 CONTINUE
END IF
Q(KI) = QJ/H
60 CONTINUE
BIGK = 0.0
DO 70 KJ = I1,M
BIGK = A(I,KJ)*Q(KJ) + BIGK
70 CONTINUE
BIGK = BIGK/ (2.0*H)
DO 80 KJ = I1,M
Q(KJ) = Q(KJ) - A(I,KJ)*BIGK
80 CONTINUE
DO 100 KI = I1,M
DO 90 KJ = KI,M
A(KI,KJ) = A(KI,KJ) - Q(KI)*A(I,KJ) -
+ Q(KJ)*A(I,KI)
90 CONTINUE
100 CONTINUE
END IF
110 CONTINUE
DO 120 I = 2,M
H = ALPHA(I)
ALPHA(I) = A(I,I)
A(I,I) = H
120 CONTINUE
BETA(M) = A(M-1,M)
END
C
C
C_BEGIN_MINVN
C
SUBROUTINE MINVN(A,N,D,L,M)
C ===========================
C
C
C---- Purpose
C =======
C
C invert a matrix
C
C---- Usage
C ======
C
C CALL MINVN(A,N,D,L,M)
C
C---- Description of parameters
C =========================
C
C A - input matrix, destroyed in computation and replaced by
C resultant inverse.
C
C N - order of matrix A
C
C D - resultant determinant
C
C L - work vector of length n
C
C M - work vector of length n
C
C---- Remarks
C =======
C
C Matrix a must be a general matrix
C
C---- Subroutines and function subprograms required
C =============================================
C
C NONE
C
C---- Method
C ======
C
C The standard gauss-jordan method is used. the determinant
C is also calculated. a determinant of zero indicates that
C the matrix is singular.
C
C
C---- Note
C =====
C
C If a double precision version of this routine is desired, the
C c in column 1 should be removed from the double precision
C statement which follows.
C
C double precision a,d,biga,hold
C
C the c must also be removed from double precision statements
C appearing in other routines used in conjunction with this
C routine.
C
C The double precision version of this subroutine must also
C contain double precision fortran functions. abs in statement
C 10 must be changed to dabs.
C
ccc REAL*8 D
C
C_END_MINVN
C
C---- Search for largest element
C
C .. Scalar Arguments ..
REAL D
INTEGER N
C ..
C .. Array Arguments ..
REAL A(N*N)
INTEGER L(N),M(N)
C ..
C .. Local Scalars ..
REAL BIGA,HOLD
INTEGER I,IJ,IK,IZ,J,JI,JK,JP,JQ,JR,K,KI,KJ,KK,NK
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS
C ..
C
C
D = 1.0
NK = -N
DO 90 K = 1,N
NK = NK + N
L(K) = K
M(K) = K
KK = NK + K
BIGA = A(KK)
DO 20 J = K,N
IZ = (J-1)*N
DO 10 I = K,N
IJ = IZ + I
IF ((ABS(BIGA)-ABS(A(IJ))).LT.0.0) THEN
BIGA = A(IJ)
L(K) = I
M(K) = J
END IF
10 CONTINUE
20 CONTINUE
C
C---- Interchange rows
C
J = L(K)
IF ((J-K).GT.0) THEN
KI = K - N
DO 30 I = 1,N
KI = KI + N
HOLD = -A(KI)
JI = KI - K + J
A(KI) = A(JI)
A(JI) = HOLD
30 CONTINUE
END IF
C
C---- Interchange columns
C
I = M(K)
IF ((I-K).GT.0) THEN
JP = (I-1)*N
DO 40 J = 1,N
JK = NK + J
JI = JP + J
HOLD = -A(JK)
A(JK) = A(JI)
A(JI) = HOLD
40 CONTINUE
END IF
C
C---- Divide column by minus pivot (value of pivot element is
C contained in biga)
C
IF (BIGA.NE.0.0) THEN
DO 50 I = 1,N
IF ((I-K).NE.0) THEN
IK = NK + I
A(IK) = A(IK)/ (-BIGA)
END IF
50 CONTINUE
C
C---- Reduce matrix
C
DO 70 I = 1,N
IK = NK + I
HOLD = A(IK)
IJ = I - N
DO 60 J = 1,N
IJ = IJ + N
IF ((I-K).NE.0) THEN
IF ((J-K).NE.0) THEN
KJ = IJ - I + K
A(IJ) = A(KJ)*HOLD + A(IJ)
END IF
END IF
60 CONTINUE
70 CONTINUE
C
C---- Divide row by pivot
C
KJ = K - N
DO 80 J = 1,N
KJ = KJ + N
IF ((J-K).NE.0) A(KJ) = A(KJ)/BIGA
80 CONTINUE
C
C---- Product of pivots
C
D = D*BIGA
C
C---- Replace pivot by reciprocal
C
A(KK) = 1.0/BIGA
ELSE
GO TO 130
END IF
90 CONTINUE
C
C---- Final row and column interchange
C
K = N
100 CONTINUE
K = (K-1)
IF (K.GT.0) THEN
I = L(K)
IF ((I-K).GT.0) THEN
JQ = (K-1)*N
JR = (I-1)*N
DO 110 J = 1,N
JK = JQ + J
HOLD = A(JK)
JI = JR + J
A(JK) = -A(JI)
A(JI) = HOLD
110 CONTINUE
END IF
J = M(K)
IF ((J-K).GT.0) THEN
KI = K - N
DO 120 I = 1,N
KI = KI + N
HOLD = A(KI)
JI = KI - K + J
A(KI) = -A(JI)
A(JI) = HOLD
120 CONTINUE
END IF
GO TO 100
ELSE
RETURN
END IF
130 D = 0.0
C
C
END
C
C
C_BEGIN_MINV3
C
SUBROUTINE MINV3(A,B,D)
C ======================
C
C Invert a general 3x3 matrix and return determinant in D
C
C A = (B)-1
C
C .. Scalar Arguments ..
REAL D
C ..
C .. Array Arguments ..
REAL A(3,3),B(3,3)
C
C_END_MINV3
C ..
C .. Local Scalars ..
INTEGER I,J
C ..
C .. Local Arrays ..
REAL C(3,3)
C ..
C .. External Functions ..
REAL DOT
EXTERNAL DOT
C ..
C .. External Subroutines ..
EXTERNAL CROSS
C ..
C .. Intrinsic Functions ..
INTRINSIC ABS
C ..
CALL CROSS(C(1,1),B(1,2),B(1,3))
CALL CROSS(C(1,2),B(1,3),B(1,1))
CALL CROSS(C(1,3),B(1,1),B(1,2))
D = DOT(B(1,1),C(1,1))
C
C---- Test determinant
C
IF (ABS(D).GT.1.0E-30) THEN
C
C---- Determinant is non-zero
C
DO 20 I = 1,3
DO 10 J = 1,3
A(I,J) = C(J,I)/D
10 CONTINUE
20 CONTINUE
ELSE
D = 0.0
END IF
END
C
C
C_BEGIN_RANMAR
C
SUBROUTINE RANMAR(RVEC,LEN)
C ===========================
C
C Universal random number generator proposed by Marsaglia and Zaman
C in report FSU-SCRI-87-50
C slightly modified by F. James, 1988 to generate a vector
C of pseudorandom numbers RVEC of length LEN
C and making the COMMON block include everything needed to
C specify completely the state of the generator.
C Transcribed from CERN report DD/88/22.
C Rather inelegant messing about added by D. Love, Jan. 1989 to
C make sure initialisation always occurs.
C *** James says that this is the preferred generator.
C Gives bit-identical results on all machines with at least
C 24-bit mantissas in the flotaing point representation (i.e.
C all common 32-bit computers. Fairly fast, satisfies very
C stringent tests, has very long period and makes it very
C simple to generate independly disjoint sequences.
C See also RANECU.
C The state of the generator may be saved/restored using the
C whole contents of /RASET1/.
C Call RANMAR to get a vector, RMARIN to initialise.
C
C Argument list
C -------------
C
C VREC (O) (REAL) Random Vector
C
C LEN (I) (INTEGER) Length of random vector
C
C
C For ENTRY point RMARIN
C ----------------------
C
C Initialisation for RANMAR. The input values should
C be in the ranges: 0<=ij<=31328, 0<=kl<=30081
C This shows the correspondence between the simplified input seeds
C IJ, KL and the original Marsaglia-Zaman seeds i,j,k,l
C To get standard values in Marsaglia-Zaman paper,
C (I=12, J=34, K=56, L=78) put IJ=1802, KL=9373
C
C IJ (I) (INTEGER) Seed for random number generator
C
C KL (I) (INTEGER) Seed for randon number generator
C
C_END_RANMAR
C
C ..
C .. Agruments ..
REAL RVEC(*)
INTEGER LEN,IJ,KL
C ..
C .. Common Variables ..
REAL C,CD,CM,U
INTEGER I97,J97
C ..
C .. Local Scalars ..
REAL S,T,UNI
INTEGER I,II,IVEC,J,JJ,K,L,M
LOGICAL INITED
C ..
C .. Intrinsic Functions ..
INTRINSIC MOD
C ..
C .. Common Blocks ..
COMMON /RASET1/ U(97),C,CD,CM,I97,J97
C ..
C .. Save Statement ..
SAVE INITED, /RASET1/
C ..
C .. Data Statement ..
DATA INITED /.FALSE./
C
C---- If initialised, fill RVEC and RETURN. If not, do initialisation
C and return here later.
C
1 IF (INITED) THEN
DO 100 IVEC=1,LEN
UNI=U(I97)-U(J97)
IF (UNI.LT.0.) UNI=UNI+1.
U(I97)=UNI
I97=I97-1
IF (I97.EQ.0) I97=97
J97=J97-1
IF (J97.EQ.0) J97=97
C=C-CD
IF (C.LT.0.) C=C+CM
UNI=UNI-C
IF (UNI.LT.0.) UNI=UNI+1.
RVEC(IVEC)=UNI
100 CONTINUE
RETURN
ENDIF
I=MOD(1802/177,177)+2
J=MOD(1802,177)+2
K=MOD(9373/169,178)+1
L=MOD(9373,169)
C
GOTO 10
C
C---- Initialise and return without filling RVEC
C
ENTRY RMARIN(IJ,KL)
I=MOD(IJ/177,177)+2
J=MOD(IJ,177)+2
K=MOD(KL/169,178)+1
L=MOD(KL,169)
INITED=.TRUE.
10 CONTINUE
DO 2 II=1,97
S=0.
T=.5
DO 3 JJ=1,24
M=MOD(MOD(I*J,179)*K,179)
I=J
J=K
K=M
L=MOD(53*L+1,169)
IF (MOD(L*M,64).GE.32) S=S+T
T=0.5*T
3 CONTINUE
U(II)=S
2 CONTINUE
C=362436./16777216.
CD=7654321./16777216.
CM=16777213./16777216.
I97=97
J97=33
IF (.NOT. INITED) THEN
INITED=.TRUE.
GOTO 1
ENDIF
END
C
C
C_BEGIN_SCALEV
C
SUBROUTINE SCALEV(A,X,B)
C ========================
C
C Scale vector B with scalar X and put result in A
C
C .. Scalar Arguments ..
REAL X
C ..
C .. Array Arguments ..
REAL A(3),B(3)
C
C_END_SCALEV
C ..
C .. Local Scalars ..
INTEGER I
C ..
DO 10 I = 1,3
A(I) = B(I)*X
10 CONTINUE
END
C
C
C_BEGIN_TRANSP
C
SUBROUTINE TRANSP(A,B)
C ======================
C
C---- Transpose a 3x3 matrix
C
C A = BT
C
C .. Array Arguments ..
REAL A(3,3),B(3,3)
C
C_END_TRANSP
C ..
C .. Local Scalars ..
INTEGER I,J
C ..
DO 20 I = 1,3
DO 10 J = 1,3
A(I,J) = B(J,I)
10 CONTINUE
20 CONTINUE
END
C
C
C_BEGIN_UNIT
C
SUBROUTINE UNIT(V)
C =================
C
C Vector V reduced to unit vector
C
C .. Array Arguments ..
REAL V(3)
C
C_END_UNIT
C ..
C .. Local Scalars ..
REAL VMOD
INTEGER I
C ..
C .. Intrinsic Functions ..
INTRINSIC SQRT
C ..
VMOD = V(1)**2 + V(2)**2 + V(3)**2
VMOD = SQRT(VMOD)
DO 10 I = 1,3
V(I) = V(I)/VMOD
10 CONTINUE
END
C
C
C_BEGIN_VDIF
C
SUBROUTINE VDIF(A,B,C)
C =====================
C
C Subtract two vectors
C
C A = B - C
C
C .. Array Arguments ..
REAL A(3),B(3),C(3)
C
C_END_VDIF
C ..
C .. Local Scalars ..
INTEGER I
C ..
DO 10 I = 1,3
A(I) = B(I) - C(I)
10 CONTINUE
END
C
C
C_BEGIN_VSET
C
SUBROUTINE VSET(A,B)
C ====================
C
C Copy a vector from B to A
C
C .. Array Arguments ..
REAL A(3),B(3)
C
C_END_VSET
C ..
C .. Local Scalars ..
INTEGER I
C ..
DO 10 I = 1,3
A(I) = B(I)
10 CONTINUE
END
C
C
C_BEGIN_VSUM
C
SUBROUTINE VSUM(A,B,C)
C ======================
C
C Add two vectors
C
C A = B + C
C
C .. Array Arguments ..
REAL A(3),B(3),C(3)
C
C_END_VSUM
C ..
C .. Local Scalars ..
INTEGER I
C ..
DO 10 I = 1,3
A(I) = B(I) + C(I)
10 CONTINUE
END
C
C
C_BEGIN_ZIPIN
C
SUBROUTINE ZIPIN(ID,N,BUF)
C ==========================
C
C Fast binary read on unit ID into real array BUF of length N
C
C .. Scalar Arguments ..
INTEGER ID,N
C ..
C .. Array Arguments ..
REAL BUF(N)
C
C_END_ZIPIN
C ..
READ (ID) BUF
END
C
C
C_BEGIN_ZIPOUT
C
SUBROUTINE ZIPOUT(ID,N,BUF)
C ===========================
C
C Fast binary write to unit ID of real array BUF length N
C
C .. Scalar Arguments ..
INTEGER ID,N
C ..
C .. Array Arguments ..
REAL BUF(N)
C
C_END_ZIPOUT
C ..
WRITE (ID) BUF
END
C
C The following routines calculate Bessel functions of
C the first kind, their derivatives, and their zeros.
C Subroutine ZJVX is from Ian Tickle.
C Subroutines JDVX, JVX, GAMMA and functions MSTA1, MSTA2
C are from MJYV at http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html
C These routines are copyrighted, but permission is given to incorporate these
C routines into programs provided that the copyright is acknowledged.
SUBROUTINE ZJVX(V,IZ,BJ,DJ,X)
C
C =======================================================
C Purpose: Compute zero of Bessel function Jv(x)
C Input : V --- Order of Jv(x)
C IZ --- Index of previous zero of Jv(x)
C X --- Value of previous zero of Jv(x)
C Output: BJ(N) --- Jv(x) for N = 0...INT(V)
C DJ(N) --- J'v(x) for N = 0...INT(V)
C X --- Value of next zero of Jv(x)
C
IMPLICIT NONE
INTEGER IZ,N
REAL*8 V,VM,X,X0
REAL*8 BJ(0:*),DJ(0:*)
C
C#### Initial guess at zero: needs previous value if not first.
N=V
IF (IZ.EQ.0) THEN
X=1.99535+.8333883*SQRT(V)+.984584*V
ELSEIF (N.LE.10) THEN
X=X+3.11+.0138*V+(.04832+.2804*V)/(IZ+1)**2
ELSE
X=X+3.001+.0105*V+(11.52+.48525*V)/(IZ+3)**2
ENDIF
C
C#### Polish zero by Newton-Cotes iteration.
1 CALL JDVX(V,X,VM,BJ,DJ)
IF (INT(VM).NE.N) CALL CCPERR(1,'VM != N in ZJVX.')
X0=X
X=X-BJ(N)/DJ(N)
IF (ABS(X-X0).GT.1D-10) GOTO 1
END
C
C
SUBROUTINE JDVX(V,X,VM,BJ,DJ)
C
C =======================================================
C Purpose: Compute Bessel functions Jv(x) and their derivatives
C Input : x --- Argument of Jv(x)
C v --- Order of Jv(x)
C ( v = n+v0, 0 <= v0 < 1, n = 0,1,2,... )
C Output: BJ(n) --- Jn+v0(x)
C DJ(n) --- Jn+v0'(x)
C VM --- Highest order computed
C Routines called:
C (1) GAMMA for computing gamma function
C (2) MSTA1 and MSTA2 for computing the starting
C point for backward recurrence
C =======================================================
C
IMPLICIT NONE
INTEGER J,K,K0,L,M,N
REAL*8 A,A0,BJV0,BJV1,BJVL,CK,CS,F,F0,F1,F2,GA,PI,PX,QX,R,RP,RP2,
&RQ,SK,V,V0,VG,VL,VM,VV,X,X2,XK
PARAMETER(PI=3.141592653589793D0, RP2=.63661977236758D0)
REAL*8 BJ(0:*),DJ(0:*)
INTEGER MSTA1,MSTA2
C
X2=X*X
N=INT(V)
V0=V-N
IF (X.LT.1D-100) THEN
DO K=0,N
BJ(K)=0D0
DJ(K)=0D0
ENDDO
IF (V0.EQ.0D0) THEN
BJ(0)=1D0
DJ(1)=.5D0
ELSE
DJ(0)=1D300
ENDIF
VM=V
ELSE
IF (X.LE.12D0) THEN
DO L=0,1
VL=V0+L
BJVL=1D0
R=1D0
DO K=1,40
R=-.25D0*R*X2/(K*(K+VL))
BJVL=BJVL+R
IF (ABS(R).LT.ABS(BJVL)*1D-15) GOTO 20
ENDDO
20 VG=1D0+VL
CALL GAMMA(VG,GA)
A=(.5D0*X)**VL/GA
IF (L.EQ.0) THEN
BJV0=BJVL*A
ELSEIF (L.EQ.1) THEN
BJV1=BJVL*A
ENDIF
ENDDO
ELSE
K0=11
IF (X.GE.35D0) K0=10
IF (X.GE.50D0) K0=8
DO J=0,1
VV=4D0*(J+V0)*(J+V0)
PX=1D0
RP=1D0
DO K=1,K0
RP=-.78125D-2*RP*(VV-(4*K-3)**2)*(VV-(4*K-1)**2)/
& (K*(2*K-1)*X2)
PX=PX+RP
ENDDO
QX=1D0
RQ=1D0
DO K=1,K0
RQ=-.78125D-2*RQ*(VV-(4*K-1)**2)*(VV-(4*K+1)**2)/
& (K*(2*K+1)*X2)
QX=QX+RQ
ENDDO
QX=.125D0*(VV-1D0)*QX/X
XK=X-(.5D0*(J+V0)+.25D0)*PI
A0=SQRT(RP2/X)
CK=COS(XK)
SK=SIN(XK)
IF (J.EQ.0) THEN
BJV0=A0*(PX*CK-QX*SK)
ELSEIF (J.EQ.1) THEN
BJV1=A0*(PX*CK-QX*SK)
ENDIF
ENDDO
ENDIF
BJ(0)=BJV0
BJ(1)=BJV1
DJ(0)=V0/X*BJ(0)-BJ(1)
DJ(1)=BJ(0)-(1D0+V0)/X*BJ(1)
IF (N.GE.2 .AND. N.LE.INT(.9*X)) THEN
F0=BJV0
F1=BJV1
DO K=2,N
F=2D0*(K+V0-1D0)/X*F1-F0
BJ(K)=F
F0=F1
F1=F
ENDDO
ELSEIF (N.GE.2) THEN
M=MSTA1(X,200)
IF (M.LT.N) THEN
N=M
ELSE
M=MSTA2(X,N,15)
ENDIF
F2=0D0
F1=1D-100
DO K=M,0,-1
F=2D0*(V0+K+1D0)/X*F1-F2
IF (K.LE.N) BJ(K)=F
F2=F1
F1=F
ENDDO
IF (ABS(BJV0).GT.ABS(BJV1)) THEN
CS=BJV0/F
ELSE
CS=BJV1/F2
ENDIF
DO K=0,N
BJ(K)=CS*BJ(K)
ENDDO
ENDIF
DO K=2,N
DJ(K)=BJ(K-1)-(K+V0)/X*BJ(K)
ENDDO
VM=N+V0
ENDIF
END
C
C
SUBROUTINE JVX(V,X,VM,BJ)
C
C =======================================================
C Purpose: Compute Bessel functions Jv(x)
C Input : x --- Argument of Jv(x)
C v --- Order of Jv(x)
C ( v = n+v0, 0 <= v0 < 1, n = 0,1,2,... )
C Output: BJ(n) --- Jn+v0(x)
C VM --- Highest order computed
C Routines called:
C (1) GAMMA for computing gamma function
C (2) MSTA1 and MSTA2 for computing the starting
C point for backward recurrence
C =======================================================
C
IMPLICIT NONE
INTEGER J,K,K0,L,M,N
REAL*8 A,A0,BJV0,BJV1,BJVL,CK,CS,F,F0,F1,F2,GA,PI,PX,QX,R,RP,RP2,
&RQ,SK,V,V0,VG,VL,VM,VV,X,X2,XK
PARAMETER(PI=3.141592653589793D0, RP2=.63661977236758D0)
REAL*8 BJ(0:*)
INTEGER MSTA1,MSTA2
C
X2=X*X
N=INT(V)
V0=V-N
IF (X.LT.1D-100) THEN
DO K=0,N
BJ(K)=0D0
ENDDO
IF (V0.EQ.0D0) BJ(0)=1D0
VM=V
ELSE
IF (X.LE.12D0) THEN
DO L=0,1
VL=V0+L
BJVL=1D0
R=1D0
DO K=1,40
R=-.25D0*R*X2/(K*(K+VL))
BJVL=BJVL+R
IF (ABS(R).LT.ABS(BJVL)*1D-15) GOTO 20
ENDDO
20 VG=1D0+VL
CALL GAMMA(VG,GA)
A=(.5D0*X)**VL/GA
IF (L.EQ.0) THEN
BJV0=BJVL*A
ELSEIF (L.EQ.1) THEN
BJV1=BJVL*A
ENDIF
ENDDO
ELSE
K0=11
IF (X.GE.35D0) K0=10
IF (X.GE.50D0) K0=8
DO J=0,1
VV=4D0*(J+V0)*(J+V0)
PX=1D0
RP=1D0
DO K=1,K0
RP=-.78125D-2*RP*(VV-(4*K-3)**2)*(VV-(4*K-1)**2)/
& (K*(2*K-1)*X2)
PX=PX+RP
ENDDO
QX=1D0
RQ=1D0
DO K=1,K0
RQ=-.78125D-2*RQ*(VV-(4*K-1)**2)*(VV-(4*K+1)**2)/
& (K*(2*K+1)*X2)
QX=QX+RQ
ENDDO
QX=.125D0*(VV-1D0)*QX/X
XK=X-(.5D0*(J+V0)+.25D0)*PI
A0=SQRT(RP2/X)
CK=COS(XK)
SK=SIN(XK)
IF (J.EQ.0) THEN
BJV0=A0*(PX*CK-QX*SK)
ELSEIF (J.EQ.1) THEN
BJV1=A0*(PX*CK-QX*SK)
ENDIF
ENDDO
ENDIF
BJ(0)=BJV0
BJ(1)=BJV1
IF (N.GE.2 .AND. N.LE.INT(.9*X)) THEN
F0=BJV0
F1=BJV1
DO K=2,N
F=2D0*(K+V0-1D0)/X*F1-F0
BJ(K)=F
F0=F1
F1=F
ENDDO
ELSEIF (N.GE.2) THEN
M=MSTA1(X,200)
IF (M.LT.N) THEN
N=M
ELSE
M=MSTA2(X,N,15)
ENDIF
F2=0D0
F1=1D-100
DO K=M,0,-1
F=2D0*(V0+K+1D0)/X*F1-F2
IF (K.LE.N) BJ(K)=F
F2=F1
F1=F
ENDDO
IF (ABS(BJV0).GT.ABS(BJV1)) THEN
CS=BJV0/F
ELSE
CS=BJV1/F2
ENDIF
DO K=0,N
BJ(K)=CS*BJ(K)
ENDDO
ENDIF
VM=N+V0
ENDIF
END
C
SUBROUTINE GAMMA(X,GA)
C
C ==================================================
C Purpose: Compute gamma function GA(x)
C Input : x --- Argument of GA(x)
C ( x is not equal to 0,-1,-2,... )
C Output: GA --- GA(x)
C ==================================================
C
IMPLICIT NONE
INTEGER K,M,M1
REAL*8 GA,GR,PI,R,X,Z
PARAMETER(PI=3.141592653589793D0)
REAL*8 G(26)
DATA G/1D0, .5772156649015329D0,
&-.6558780715202538D0, -.420026350340952D-1,
&.1665386113822915D0, -.421977345555443D-1,
&-.96219715278770D-2, .72189432466630D-2,
&-.11651675918591D-2, -.2152416741149D-3,
&.1280502823882D-3, -.201348547807D-4,
&-.12504934821D-5, .11330272320D-5,
&-.2056338417D-6, .61160950D-8,
&.50020075D-8, -.11812746D-8,
&.1043427D-9, .77823D-11,
&-.36968D-11, .51D-12,
&-.206D-13, -.54D-14, .14D-14, .1D-15/
C
IF (X.EQ.INT(X)) THEN
IF (X.GT.0D0) THEN
GA=1D0
M1=X-1
DO K=2,M1
GA=GA*K
ENDDO
ELSE
GA=1D300
ENDIF
ELSE
IF (ABS(X).GT.1D0) THEN
Z=ABS(X)
M=INT(Z)
R=1D0
DO K=1,M
R=R*(Z-K)
ENDDO
Z=Z-M
ELSE
Z=X
ENDIF
GR=G(26)
DO K=25,1,-1
GR=GR*Z+G(K)
ENDDO
GA=1D0/(GR*Z)
IF (ABS(X).GT.1D0) THEN
GA=GA*R
IF (X.LT.0D0) GA=-PI/(X*GA*DSIN(PI*X))
ENDIF
ENDIF
END
C
INTEGER FUNCTION MSTA1(X,MP)
C
C ===================================================
C Purpose: Determine the starting point for backward
C recurrence such that the magnitude of
C Jn(x) at that point is about 10^(-MP)
C Input : x --- Argument of Jn(x)
C MP --- Value of magnitude
C Output: MSTA1 --- Starting point
C ===================================================
C
IMPLICIT NONE
INTEGER IT,MP,N,N0,N1,NN
REAL*8 A0,F,F0,F1,X
REAL*8 ENVJ
ENVJ(N,X)=.5D0*LOG10(6.28D0*N)-N*LOG10(1.36D0*X/N)
C
A0=ABS(X)
N0=INT(1.1D0*A0)+1
F0=ENVJ(N0,A0)-MP
N1=N0+5
F1=ENVJ(N1,A0)-MP
DO IT=1,20
NN=N1-(N1-N0)/(1D0-F0/F1)
F=ENVJ(NN,A0)-MP
IF(ABS(NN-N1).LT.1) GOTO 20
N0=N1
F0=F1
N1=NN
F1=F
ENDDO
20 MSTA1=NN
END
C
INTEGER FUNCTION MSTA2(X,N,MP)
C
C ===================================================
C Purpose: Determine the starting point for backward
C recurrence such that all Jn(x) has MP
C significant digits
C Input : x --- Argument of Jn(x)
C n --- Order of Jn(x)
C MP --- Significant digit
C Output: MSTA2 --- Starting point
C ===================================================
C
IMPLICIT NONE
INTEGER IT,MP,N,N0,N1,NN
REAL*8 A0,F,F0,F1,EJN,HMP,OBJ,X
REAL*8 ENVJ
ENVJ(N,X)=.5D0*LOG10(6.28D0*N)-N*LOG10(1.36D0*X/N)
C
A0=ABS(X)
HMP=.5D0*MP
EJN=ENVJ(N,A0)
IF (EJN.LE.HMP) THEN
OBJ=MP
N0=INT(1.1D0*A0)
ELSE
OBJ=HMP+EJN
N0=N
ENDIF
F0=ENVJ(N0,A0)-OBJ
N1=N0+5
F1=ENVJ(N1,A0)-OBJ
DO IT=1,20
NN=N1-(N1-N0)/(1D0-F0/F1)
F=ENVJ(NN,A0)-OBJ
IF (ABS(NN-N1).LT.1) GOTO 20
N0=N1
F0=F1
N1=NN
F1=F
ENDDO
20 MSTA2=NN+10
END
C
|