1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "intrusive_stack_type.h"
namespace cds_test {
class intrusive_stack_push_pop : public cds_test::stress_fixture
{
protected:
static size_t s_nPushThreadCount;
static size_t s_nPopThreadCount;
static size_t s_nStackSize;
static size_t s_nEliminationSize;
static bool s_bFCIterative;
static unsigned int s_nFCCombinePassCount;
static unsigned int s_nFCCompactFactor;
static atomics::atomic<size_t> s_nWorkingProducers;
static constexpr const size_t c_nValArraySize = 1024;
static constexpr const size_t c_nBadConsumer = 0xbadc0ffe;
enum thread_type
{
producer_thread,
consumer_thread
};
struct empty
{};
template <typename Base = empty >
struct value_type : public Base
{
atomics::atomic<size_t> nNo;
size_t nProducer;
size_t nConsumer;
value_type() {}
value_type( size_t n ) : nNo( n ) {}
};
template <class Stack>
class Producer : public cds_test::thread
{
typedef cds_test::thread base_class;
public:
Stack& m_Stack;
size_t m_nPushError;
size_t m_arrPush[c_nValArraySize];
// Interval in m_arrValue
typename Stack::value_type * m_pStart;
typename Stack::value_type * m_pEnd;
public:
Producer( cds_test::thread_pool& pool, Stack& s )
: base_class( pool, producer_thread )
, m_Stack( s )
, m_nPushError( 0 )
, m_pStart( nullptr )
, m_pEnd( nullptr )
{}
Producer( Producer& src )
: base_class( src )
, m_Stack( src.m_Stack )
, m_nPushError( 0 )
, m_pStart( nullptr )
, m_pEnd( nullptr )
{}
virtual thread * clone()
{
return new Producer( *this );
}
virtual void test()
{
m_nPushError = 0;
memset( m_arrPush, 0, sizeof( m_arrPush ));
size_t i = 0;
for ( typename Stack::value_type * p = m_pStart; p < m_pEnd; ++p, ++i ) {
p->nProducer = id();
size_t no;
p->nNo.store( no = i % c_nValArraySize, atomics::memory_order_release );
if ( m_Stack.push( *p ))
++m_arrPush[no];
else
++m_nPushError;
}
s_nWorkingProducers.fetch_sub( 1, atomics::memory_order_release );
}
};
template <class Stack>
class Consumer : public cds_test::thread
{
typedef cds_test::thread base_class;
public:
Stack& m_Stack;
size_t m_nPopCount;
size_t m_nPopEmpty;
size_t m_arrPop[c_nValArraySize];
size_t m_nDirtyPop;
public:
Consumer( cds_test::thread_pool& pool, Stack& s )
: base_class( pool, consumer_thread )
, m_Stack( s )
, m_nPopCount( 0 )
, m_nPopEmpty( 0 )
, m_nDirtyPop( 0 )
{}
Consumer( Consumer& src )
: base_class( src )
, m_Stack( src.m_Stack )
, m_nPopCount( 0 )
, m_nPopEmpty( 0 )
, m_nDirtyPop( 0 )
{}
virtual thread * clone()
{
return new Consumer( *this );
}
virtual void test()
{
m_nPopEmpty = 0;
m_nPopCount = 0;
m_nDirtyPop = 0;
memset( m_arrPop, 0, sizeof( m_arrPop ));
while ( !(s_nWorkingProducers.load( atomics::memory_order_acquire ) == 0 && m_Stack.empty())) {
typename Stack::value_type * p = m_Stack.pop();
if ( p ) {
p->nConsumer = id();
++m_nPopCount;
size_t no = p->nNo.load( atomics::memory_order_acquire );
if ( no < sizeof( m_arrPop ) / sizeof( m_arrPop[0] ))
++m_arrPop[no];
else
++m_nDirtyPop;
}
else
++m_nPopEmpty;
}
}
};
template <typename T>
class value_array
{
std::unique_ptr< T[] > m_pArr;
public:
value_array( size_t nSize )
: m_pArr( new T[nSize] )
{}
T * get() const { return m_pArr.get(); }
};
public:
static void SetUpTestCase();
//static void TearDownTestCase();
protected:
template <class Stack>
void analyze( Stack& /*stack*/ )
{
cds_test::thread_pool& pool = get_pool();
size_t nPushError = 0;
size_t nPopEmpty = 0;
size_t nPopCount = 0;
size_t arrVal[c_nValArraySize];
memset( arrVal, 0, sizeof( arrVal ));
size_t nDirtyPop = 0;
for ( size_t threadNo = 0; threadNo < pool.size(); ++threadNo ) {
cds_test::thread& thread = pool.get( threadNo );
if ( thread.type() == producer_thread ) {
Producer<Stack>& producer = static_cast<Producer<Stack>&>(thread);
nPushError += producer.m_nPushError;
for ( size_t i = 0; i < sizeof( arrVal ) / sizeof( arrVal[0] ); ++i )
arrVal[i] += producer.m_arrPush[i];
}
else {
ASSERT_TRUE( thread.type() == consumer_thread );
Consumer<Stack>& consumer = static_cast<Consumer<Stack>&>(thread);
nPopEmpty += consumer.m_nPopEmpty;
nPopCount += consumer.m_nPopCount;
nDirtyPop += consumer.m_nDirtyPop;
for ( size_t i = 0; i < sizeof( arrVal ) / sizeof( arrVal[0] ); ++i )
arrVal[i] -= consumer.m_arrPop[i];
}
}
EXPECT_EQ( nPopCount, s_nStackSize );
EXPECT_EQ( nDirtyPop, 0u );
EXPECT_EQ( nPushError, 0u );
for ( size_t i = 0; i < sizeof( arrVal ) / sizeof( arrVal[0] ); ++i ) {
EXPECT_EQ( arrVal[i], 0u ) << "i=" << i;
}
propout() << std::make_pair( "push_count", s_nStackSize )
<< std::make_pair( "push_error", nPushError )
<< std::make_pair( "pop_count", nPopCount )
<< std::make_pair( "pop_empty", nPopEmpty )
<< std::make_pair( "dirty_pop", nDirtyPop )
;
}
template <typename Stack>
void do_test( Stack& stack, value_array<typename Stack::value_type>& arrValue )
{
cds_test::thread_pool& pool = get_pool();
s_nWorkingProducers.store( s_nPushThreadCount, atomics::memory_order_release );
size_t const nPushCount = s_nStackSize / s_nPushThreadCount;
typename Stack::value_type * pValStart = arrValue.get();
typename Stack::value_type * pValEnd = pValStart + s_nStackSize;
pool.add( new Producer<Stack>( pool, stack ), s_nPushThreadCount );
{
for ( typename Stack::value_type * it = pValStart; it != pValEnd; ++it )
it->nConsumer = c_nBadConsumer;
typename Stack::value_type * pStart = pValStart;
for ( size_t thread_no = 0; thread_no < pool.size(); ++thread_no ) {
static_cast<Producer<Stack>&>(pool.get( thread_no )).m_pStart = pStart;
pStart += nPushCount;
static_cast<Producer<Stack>&>(pool.get( thread_no )).m_pEnd = pStart;
}
}
pool.add( new Consumer<Stack>( pool, stack ), s_nPopThreadCount );
propout() << std::make_pair( "producer_thread_count", s_nPushThreadCount )
<< std::make_pair( "consumer_thread_count", s_nPopThreadCount )
<< std::make_pair( "push_count", nPushCount * s_nPushThreadCount )
;
std::chrono::milliseconds duration = pool.run();
propout() << std::make_pair( "duration", duration );
s_nStackSize = nPushCount * s_nPushThreadCount;
{
typename Stack::value_type * pEnd = pValStart + s_nStackSize;
size_t const nBadConsumer = c_nBadConsumer;
for ( typename Stack::value_type * it = pValStart; it != pEnd; ++it )
EXPECT_NE( it->nConsumer, nBadConsumer );
}
analyze( stack );
propout() << stack.statistics();
}
};
} // namespace cds_test
|