1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSLIB_CONTAINER_FCSTACK_H
#define CDSLIB_CONTAINER_FCSTACK_H
#include <cds/algo/flat_combining.h>
#include <cds/algo/elimination_opt.h>
#include <stack>
namespace cds { namespace container {
/// FCStack related definitions
/** @ingroup cds_nonintrusive_helper
*/
namespace fcstack {
/// FCStack internal statistics
template <typename Counter = cds::atomicity::event_counter >
struct stat: public cds::algo::flat_combining::stat<Counter>
{
typedef cds::algo::flat_combining::stat<Counter> flat_combining_stat; ///< Flat-combining statistics
typedef typename flat_combining_stat::counter_type counter_type; ///< Counter type
counter_type m_nPush ; ///< Count of push operations
counter_type m_nPushMove ; ///< Count of push operations with move semantics
counter_type m_nPop ; ///< Count of success pop operations
counter_type m_nFailedPop; ///< Count of failed pop operations (pop from empty stack)
counter_type m_nCollided ; ///< How many pairs of push/pop were collided, if elimination is enabled
//@cond
void onPush() { ++m_nPush; }
void onPushMove() { ++m_nPushMove; }
void onPop( bool bFailed ) { if ( bFailed ) ++m_nFailedPop; else ++m_nPop; }
void onCollide() { ++m_nCollided; }
//@endcond
};
/// FCStack dummy statistics, no overhead
struct empty_stat: public cds::algo::flat_combining::empty_stat
{
//@cond
void onPush() {}
void onPushMove() {}
void onPop(bool) {}
void onCollide() {}
//@endcond
};
/// FCStack type traits
struct traits: public cds::algo::flat_combining::traits
{
typedef empty_stat stat; ///< Internal statistics
static constexpr const bool enable_elimination = false; ///< Enable \ref cds_elimination_description "elimination"
};
/// Metafunction converting option list to traits
/**
\p Options are:
- any \p cds::algo::flat_combining::make_traits options
- \p opt::stat - internal statistics, possible type: \p fcstack::stat, \p fcstack::empty_stat (the default)
- \p opt::enable_elimination - enable/disable operation \ref cds_elimination_description "elimination"
By default, the elimination is disabled.
*/
template <typename... Options>
struct make_traits {
# ifdef CDS_DOXYGEN_INVOKED
typedef implementation_defined type ; ///< Metafunction result
# else
typedef typename cds::opt::make_options<
typename cds::opt::find_type_traits< traits, Options... >::type
,Options...
>::type type;
# endif
};
} // namespace fcstack
/// Flat-combining stack
/**
@ingroup cds_nonintrusive_stack
@ingroup cds_flat_combining_container
\ref cds_flat_combining_description "Flat combining" sequential stack.
Template parameters:
- \p T - a value type stored in the stack
- \p Stack - sequential stack implementation, default is \p std::stack<T>
- \p Trats - type traits of flat combining, default is \p fcstack::traits
\p fcstack::make_traits metafunction can be used to construct specialized \p %fcstack::traits
*/
template <typename T,
class Stack = std::stack<T>,
typename Traits = fcstack::traits
>
class FCStack
#ifndef CDS_DOXYGEN_INVOKED
: public cds::algo::flat_combining::container
#endif
{
public:
typedef T value_type; ///< Value type
typedef Stack stack_type; ///< Sequential stack class
typedef Traits traits; ///< Stack traits
typedef typename traits::stat stat; ///< Internal statistics type
static constexpr const bool c_bEliminationEnabled = traits::enable_elimination; ///< \p true if elimination is enabled
protected:
//@cond
/// Stack operation IDs
enum fc_operation {
op_push = cds::algo::flat_combining::req_Operation, ///< Push
op_push_move, ///< Push (move semantics)
op_pop, ///< Pop
op_clear, ///< Clear
op_empty ///< Empty
};
/// Flat combining publication list record
struct fc_record: public cds::algo::flat_combining::publication_record
{
union {
value_type const * pValPush; ///< Value to push
value_type * pValPop; ///< Pop destination
};
bool bEmpty; ///< \p true if the stack is empty
};
//@endcond
/// Flat combining kernel
typedef cds::algo::flat_combining::kernel< fc_record, traits > fc_kernel;
protected:
//@cond
mutable fc_kernel m_FlatCombining;
stack_type m_Stack;
//@endcond
public:
/// Initializes empty stack object
FCStack()
{}
/// Initializes empty stack object and gives flat combining parameters
FCStack(
unsigned int nCompactFactor ///< Flat combining: publication list compacting factor
,unsigned int nCombinePassCount ///< Flat combining: number of combining passes for combiner thread
)
: m_FlatCombining( nCompactFactor, nCombinePassCount )
{}
/// Inserts a new element at the top of stack
/**
The content of the new element initialized to a copy of \p val.
*/
bool push( value_type const& val )
{
auto pRec = m_FlatCombining.acquire_record();
pRec->pValPush = &val;
constexpr_if ( c_bEliminationEnabled )
m_FlatCombining.batch_combine( op_push, pRec, *this );
else
m_FlatCombining.combine( op_push, pRec, *this );
assert( pRec->is_done());
m_FlatCombining.release_record( pRec );
m_FlatCombining.internal_statistics().onPush();
return true;
}
/// Inserts a new element at the top of stack (move semantics)
/**
The content of the new element initialized to a copy of \p val.
*/
bool push( value_type&& val )
{
auto pRec = m_FlatCombining.acquire_record();
pRec->pValPush = &val;
constexpr_if ( c_bEliminationEnabled )
m_FlatCombining.batch_combine( op_push_move, pRec, *this );
else
m_FlatCombining.combine( op_push_move, pRec, *this );
assert( pRec->is_done());
m_FlatCombining.release_record( pRec );
m_FlatCombining.internal_statistics().onPushMove();
return true;
}
/// Removes the element on top of the stack
/**
\p val takes a copy of top element
*/
bool pop( value_type& val )
{
auto pRec = m_FlatCombining.acquire_record();
pRec->pValPop = &val;
constexpr_if ( c_bEliminationEnabled )
m_FlatCombining.batch_combine( op_pop, pRec, *this );
else
m_FlatCombining.combine( op_pop, pRec, *this );
assert( pRec->is_done());
m_FlatCombining.release_record( pRec );
m_FlatCombining.internal_statistics().onPop( pRec->bEmpty );
return !pRec->bEmpty;
}
/// Clears the stack
void clear()
{
auto pRec = m_FlatCombining.acquire_record();
constexpr_if ( c_bEliminationEnabled )
m_FlatCombining.batch_combine( op_clear, pRec, *this );
else
m_FlatCombining.combine( op_clear, pRec, *this );
assert( pRec->is_done());
m_FlatCombining.release_record( pRec );
}
/// Exclusive access to underlying stack object
/**
The functor \p f can do any operation with underlying \p stack_type in exclusive mode.
For example, you can iterate over the stack.
\p Func signature is:
\code
void f( stack_type& stack );
\endcode
*/
template <typename Func>
void apply( Func f )
{
auto& stack = m_Stack;
m_FlatCombining.invoke_exclusive( [&stack, &f]() { f( stack ); } );
}
/// Exclusive access to underlying stack object
/**
The functor \p f can do any operation with underlying \p stack_type in exclusive mode.
For example, you can iterate over the stack.
\p Func signature is:
\code
void f( stack_type const& stack );
\endcode
*/
template <typename Func>
void apply( Func f ) const
{
auto const& stack = m_Stack;
m_FlatCombining.invoke_exclusive( [&stack, &f]() { f( stack ); } );
}
/// Returns the number of elements in the stack.
/**
Note that <tt>size() == 0</tt> is not mean that the stack is empty because
combining record can be in process.
To check emptiness use \ref empty() function.
*/
size_t size() const
{
return m_Stack.size();
}
/// Checks if the stack is empty
/**
If the combining is in process the function waits while combining done.
*/
bool empty()
{
auto pRec = m_FlatCombining.acquire_record();
constexpr_if ( c_bEliminationEnabled )
m_FlatCombining.batch_combine( op_empty, pRec, *this );
else
m_FlatCombining.combine( op_empty, pRec, *this );
assert( pRec->is_done());
m_FlatCombining.release_record( pRec );
return pRec->bEmpty;
}
/// Internal statistics
stat const& statistics() const
{
return m_FlatCombining.statistics();
}
public: // flat combining cooperation, not for direct use!
//@cond
/// Flat combining supporting function. Do not call it directly!
/**
The function is called by \ref cds::algo::flat_combining::kernel "flat combining kernel"
object if the current thread becomes a combiner. Invocation of the function means that
the stack should perform an action recorded in \p pRec.
*/
void fc_apply( fc_record * pRec )
{
assert( pRec );
switch ( pRec->op()) {
case op_push:
assert( pRec->pValPush );
m_Stack.push( *(pRec->pValPush ));
break;
case op_push_move:
assert( pRec->pValPush );
m_Stack.push( std::move( *(pRec->pValPush )));
break;
case op_pop:
assert( pRec->pValPop );
pRec->bEmpty = m_Stack.empty();
if ( !pRec->bEmpty ) {
*(pRec->pValPop) = std::move( m_Stack.top());
m_Stack.pop();
}
break;
case op_clear:
while ( !m_Stack.empty())
m_Stack.pop();
break;
case op_empty:
pRec->bEmpty = m_Stack.empty();
break;
default:
assert(false);
break;
}
}
/// Batch-processing flat combining
void fc_process( typename fc_kernel::iterator itBegin, typename fc_kernel::iterator itEnd )
{
typedef typename fc_kernel::iterator fc_iterator;
for ( fc_iterator it = itBegin, itPrev = itEnd; it != itEnd; ++it ) {
switch ( it->op( atomics::memory_order_acquire )) {
case op_push:
case op_push_move:
case op_pop:
if ( itPrev != itEnd && collide( *itPrev, *it ))
itPrev = itEnd;
else
itPrev = it;
break;
}
}
}
//@endcond
private:
//@cond
bool collide( fc_record& rec1, fc_record& rec2 )
{
switch ( rec1.op()) {
case op_push:
if ( rec2.op() == op_pop ) {
assert(rec1.pValPush);
assert(rec2.pValPop);
*rec2.pValPop = *rec1.pValPush;
rec2.bEmpty = false;
goto collided;
}
break;
case op_push_move:
if ( rec2.op() == op_pop ) {
assert(rec1.pValPush);
assert(rec2.pValPop);
*rec2.pValPop = std::move( *rec1.pValPush );
rec2.bEmpty = false;
goto collided;
}
break;
case op_pop:
switch ( rec2.op()) {
case op_push:
case op_push_move:
return collide( rec2, rec1 );
}
}
return false;
collided:
m_FlatCombining.operation_done( rec1 );
m_FlatCombining.operation_done( rec2 );
m_FlatCombining.internal_statistics().onCollide();
return true;
}
//@endcond
};
}} // namespace cds::container
#endif // #ifndef CDSLIB_CONTAINER_FCSTACK_H
|