1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSLIB_CONTAINER_SPLIT_LIST_MAP_H
#define CDSLIB_CONTAINER_SPLIT_LIST_MAP_H
#include <cds/container/split_list_set.h>
#include <cds/details/binary_functor_wrapper.h>
namespace cds { namespace container {
/// Split-ordered list map
/** @ingroup cds_nonintrusive_map
\anchor cds_nonintrusive_SplitListMap_hp
Hash table implementation based on split-ordered list algorithm discovered by Ori Shalev and Nir Shavit, see
- [2003] Ori Shalev, Nir Shavit "Split-Ordered Lists - Lock-free Resizable Hash Tables"
- [2008] Nir Shavit "The Art of Multiprocessor Programming"
See intrusive::SplitListSet for a brief description of the split-list algorithm.
Template parameters:
- \p GC - Garbage collector used like \p cds::gc::HP or \p cds::gc::DHP
- \p Key - key type of an item stored in the map. It should be copy-constructible
- \p Value - value type stored in the map
- \p Traits - map traits, default is \p split_list::traits. Instead of declaring \p %split_list::traits -based
struct you may apply option-based notation with \p split_list::make_traits metafunction.
There are the specializations:
- for \ref cds_urcu_desc "RCU" - declared in <tt>cd/container/split_list_map_rcu.h</tt>,
see \ref cds_nonintrusive_SplitListMap_rcu "SplitListMap<RCU>".
- for \ref cds::gc::nogc declared in <tt>cds/container/split_list_map_nogc.h</tt>,
see \ref cds_nonintrusive_SplitListMap_nogc "SplitListMap<gc::nogc>".
\par Usage
You should decide what garbage collector you want, and what ordered list you want to use. Split-ordered list
is original data structure based on an ordered list. Suppose, you want construct split-list map based on \p gc::HP GC
and \p MichaelList as ordered list implementation. Your map should map \p int key to \p std::string value.
So, you beginning your code with the following:
\code
#include <cds/container/michael_list_hp.h>
#include <cds/container/split_list_map.h>
namespace cc = cds::container;
\endcode
The inclusion order is important: first, include file for ordered-list implementation (for this example, <tt>cds/container/michael_list_hp.h</tt>),
then the header for split-list map <tt>cds/container/split_list_map.h</tt>.
Now, you should declare traits for split-list map. The main parts of traits are a hash functor and a comparing functor for the ordered list.
We use <tt>std::hash<int></tt> as hash functor and <tt>std::less<int></tt> predicate as comparing functor.
The second attention: instead of using \p %MichaelList in \p %SplitListMap traits we use a tag \p cds::contaner::michael_list_tag for the Michael's list.
The split-list requires significant support from underlying ordered list class and it is not good idea to dive you
into deep implementation details of split-list and ordered list interrelations. The tag paradigm simplifies split-list interface.
\code
// SplitListMap traits
struct foo_set_traits: public cc::split_list::traits
{
typedef cc::michael_list_tag ordered_list ; // what type of ordered list we want to use
typedef std::hash<int> hash ; // hash functor for the key stored in split-list map
// Type traits for our MichaelList class
struct ordered_list_traits: public cc::michael_list::traits
{
typedef std::less<int> less ; // use our std::less predicate as comparator to order list nodes
};
};
\endcode
Now you are ready to declare our map class based on \p %SplitListMap:
\code
typedef cc::SplitListMap< cds::gc::DHP, int, std::string, foo_set_traits > int_string_map;
\endcode
You may use the modern option-based declaration instead of classic type-traits-based one:
\code
typedef cc::SplitListMap<
cs::gc::DHP // GC used
,int // key type
,std::string // value type
,cc::split_list::make_traits< // metafunction to build split-list traits
cc::split_list::ordered_list<cc::michael_list_tag> // tag for underlying ordered list implementation
,cc::opt::hash< std::hash<int> > // hash functor
,cc::split_list::ordered_list_traits< // ordered list traits desired
cc::michael_list::make_traits< // metafunction to build lazy list traits
cc::opt::less< std::less<int> > // less-based compare functor
>::type
>
>::type
> int_string_map;
\endcode
In case of option-based declaration with \p split_list::make_traits metafunction the struct \p foo_set_traits is not required.
Now, the map of type \p int_string_map is ready to use in your program.
Note that in this example we show only mandatory \p traits parts, optional ones is the default and they are inherited
from \p container::split_list::traits. There are many other options for deep tuning of the split-list and
ordered-list containers.
*/
template <
class GC,
typename Key,
typename Value,
#ifdef CDS_DOXYGEN_INVOKED
class Traits = split_list::traits
#else
class Traits
#endif
>
class SplitListMap:
protected container::SplitListSet<
GC,
std::pair<Key const, Value>,
split_list::details::wrap_map_traits<Key, Value, Traits>
>
{
//@cond
typedef container::SplitListSet<
GC,
std::pair<Key const, Value>,
split_list::details::wrap_map_traits<Key, Value, Traits>
> base_class;
//@endcond
public:
typedef GC gc; ///< Garbage collector
typedef Key key_type; ///< key type
typedef Value mapped_type; ///< type of value to be stored in the map
typedef Traits traits; ///< Map traits
typedef std::pair<key_type const, mapped_type> value_type ; ///< key-value pair type
typedef typename base_class::ordered_list ordered_list; ///< Underlying ordered list class
typedef typename base_class::key_comparator key_comparator; ///< key compare functor
typedef typename base_class::hash hash; ///< Hash functor for \ref key_type
typedef typename base_class::item_counter item_counter; ///< Item counter type
typedef typename base_class::stat stat; ///< Internal statistics
/// Count of hazard pointer required
static constexpr const size_t c_nHazardPtrCount = base_class::c_nHazardPtrCount;
protected:
//@cond
typedef typename base_class::maker::traits::key_accessor key_accessor;
typedef typename base_class::node_type node_type;
//@endcond
public:
/// Guarded pointer
typedef typename gc::template guarded_ptr< node_type, value_type, details::guarded_ptr_cast_set<node_type, value_type> > guarded_ptr;
public:
///@name Forward iterators (only for debugging purpose)
//@{
/// Forward iterator
/**
The forward iterator for a split-list has the following features:
- it has no post-increment operator
- it depends on underlying ordered list iterator
- The iterator object cannot be moved across thread boundary because it contains GC's guard that is thread-private GC data.
- Iterator ensures thread-safety even if you delete the item that iterator points to. However, in case of concurrent
deleting operations it is no guarantee that you iterate all item in the split-list.
Moreover, a crash is possible when you try to iterate the next element that has been deleted by concurrent thread.
@warning Use this iterator on the concurrent container for debugging purpose only.
The iterator interface:
\code
class iterator {
public:
// Default constructor
iterator();
// Copy construtor
iterator( iterator const& src );
// Dereference operator
value_type * operator ->() const;
// Dereference operator
value_type& operator *() const;
// Preincrement operator
iterator& operator ++();
// Assignment operator
iterator& operator = (iterator const& src);
// Equality operators
bool operator ==(iterator const& i ) const;
bool operator !=(iterator const& i ) const;
};
\endcode
*/
typedef typename base_class::iterator iterator;
/// Const forward iterator
typedef typename base_class::const_iterator const_iterator;
/// Returns a forward iterator addressing the first element in a map
/**
For empty map \code begin() == end() \endcode
*/
iterator begin()
{
return base_class::begin();
}
/// Returns an iterator that addresses the location succeeding the last element in a map
/**
Do not use the value returned by <tt>end</tt> function to access any item.
The returned value can be used only to control reaching the end of the map.
For empty map \code begin() == end() \endcode
*/
iterator end()
{
return base_class::end();
}
/// Returns a forward const iterator addressing the first element in a map
const_iterator begin() const
{
return base_class::begin();
}
/// Returns a forward const iterator addressing the first element in a map
const_iterator cbegin() const
{
return base_class::cbegin();
}
/// Returns an const iterator that addresses the location succeeding the last element in a map
const_iterator end() const
{
return base_class::end();
}
/// Returns an const iterator that addresses the location succeeding the last element in a map
const_iterator cend() const
{
return base_class::cend();
}
//@}
public:
/// Initializes split-ordered map of default capacity
/**
The default capacity is defined in bucket table constructor.
See \p intrusive::split_list::expandable_bucket_table, \p intrusive::split_list::static_bucket_table
which selects by \p intrusive::split_list::traits::dynamic_bucket_table.
*/
SplitListMap()
: base_class()
{}
/// Initializes split-ordered map
SplitListMap(
size_t nItemCount ///< estimated average item count
, size_t nLoadFactor = 1 ///< load factor - average item count per bucket. Small integer up to 10, default is 1.
)
: base_class( nItemCount, nLoadFactor )
{}
public:
/// Inserts new node with key and default value
/**
The function creates a node with \p key and default value, and then inserts the node created into the map.
Preconditions:
- The \ref key_type should be constructible from value of type \p K.
In trivial case, \p K is equal to \ref key_type.
- The \ref mapped_type should be default-constructible.
Returns \p true if inserting successful, \p false otherwise.
*/
template <typename K>
bool insert( K&& key )
{
return base_class::emplace( key_type( std::forward<K>( key )), mapped_type());
}
/// Inserts new node
/**
The function creates a node with copy of \p val value
and then inserts the node created into the map.
Preconditions:
- The \ref key_type should be constructible from \p key of type \p K.
- The \ref mapped_type should be constructible from \p val of type \p V.
Returns \p true if \p val is inserted into the map, \p false otherwise.
*/
template <typename K, typename V>
bool insert( K&& key, V&& val )
{
return base_class::emplace( key_type( std::forward<K>( key )), mapped_type( std::forward<V>( val )));
}
/// Inserts new node and initialize it by a functor
/**
This function inserts new node with key \p key and if inserting is successful then it calls
\p func functor with signature
\code
struct functor {
void operator()( value_type& item );
};
\endcode
The argument \p item of user-defined functor \p func is the reference
to the map's item inserted:
- <tt>item.first</tt> is a const reference to item's key that cannot be changed.
- <tt>item.second</tt> is a reference to item's value that may be changed.
It should be keep in mind that concurrent modifications of \p <tt>item.second</tt> may be possible.
The key_type should be constructible from value of type \p K.
The function allows to split creating of new item into two part:
- create item from \p key;
- insert new item into the map;
- if inserting is successful, initialize the value of item by calling \p func functor
This can be useful if complete initialization of object of \p mapped_type is heavyweight and
it is preferable that the initialization should be completed only if inserting is successful.
@warning For \ref cds_nonintrusive_MichaelKVList_gc "MichaelKVList" as the bucket see \ref cds_intrusive_item_creating "insert item troubleshooting".
\ref cds_nonintrusive_LazyKVList_gc "LazyKVList" provides exclusive access to inserted item and does not require any node-level
synchronization.
*/
template <typename K, typename Func>
bool insert_with( K&& key, Func func )
{
//TODO: pass arguments by reference (make_pair makes copy)
return base_class::insert( std::make_pair( key_type( std::forward<K>( key )), mapped_type()), func );
}
/// For key \p key inserts data of type \p mapped_type created from \p args
/**
\p key_type should be constructible from type \p K
Returns \p true if inserting successful, \p false otherwise.
*/
template <typename K, typename... Args>
bool emplace( K&& key, Args&&... args )
{
return base_class::emplace( key_type( std::forward<K>(key)), mapped_type( std::forward<Args>(args)...));
}
/// Updates the node
/**
The operation performs inserting or changing data with lock-free manner.
If \p key is not found in the map, then \p key is inserted iff \p bAllowInsert is \p true.
Otherwise, the functor \p func is called with item found.
The functor \p func signature depends on ordered list:
<b>for \p MichaelKVList, \p LazyKVList</b>
\code
struct my_functor {
void operator()( bool bNew, value_type& item );
};
\endcode
with arguments:
- \p bNew - \p true if the item has been inserted, \p false otherwise
- \p item - the item found or inserted
The functor may change any fields of the \p item.second that is \p mapped_type.
<b>for \p IterableKVList</b>
\code
void func( value_type& val, value_type * old );
\endcode
where
- \p val - a new data constructed from \p key
- \p old - old value that will be retired. If new item has been inserted then \p old is \p nullptr.
Returns <tt> std::pair<bool, bool> </tt> where \p first is true if operation is successful,
\p second is true if new item has been added or \p false if the item with \p key
already is in the map.
@warning For \ref cds_nonintrusive_MichaelKVList_gc "MichaelKVList" and \ref cds_nonintrusive_IterableKVList_gc "IterableKVList"
as the ordered list see \ref cds_intrusive_item_creating "insert item troubleshooting".
\ref cds_nonintrusive_LazyKVList_gc "LazyKVList" provides exclusive access to inserted item and does not require any node-level
synchronization.
*/
template <typename K, typename Func>
#ifdef CDS_DOXYGE_INVOKED
std::pair<bool, bool>
#else
typename std::enable_if<
std::is_same<K,K>::value && !is_iterable_list< ordered_list >::value,
std::pair<bool, bool>
>::type
#endif
update( K&& key, Func func, bool bAllowInsert = true )
{
typedef decltype( std::make_pair( key_type( std::forward<K>( key )), mapped_type())) arg_pair_type;
return base_class::update( std::make_pair( key_type( key ), mapped_type()),
[&func]( bool bNew, value_type& item, arg_pair_type const& /*val*/ ) {
func( bNew, item );
},
bAllowInsert );
}
//@cond
template <typename K, typename Func>
#ifdef CDS_DOXYGE_INVOKED
std::pair<bool, bool>
#else
typename std::enable_if<
std::is_same<K, K>::value && is_iterable_list< ordered_list >::value,
std::pair<bool, bool>
>::type
#endif
update( K&& key, Func func, bool bAllowInsert = true )
{
return base_class::update( std::make_pair( key_type( std::forward<K>( key )), mapped_type()), func, bAllowInsert );
}
//@endcond
//@cond
template <typename K, typename Func>
CDS_DEPRECATED("ensure() is deprecated, use update()")
std::pair<bool, bool> ensure( K const& key, Func func )
{
return update( key, func, true );
}
//@endcond
/// Inserts or updates the node (only for \p IterableKVList)
/**
The operation performs inserting or changing data with lock-free manner.
If \p key is not found in the map, then \p key is inserted iff \p bAllowInsert is \p true.
Otherwise, the current element is changed to \p val, the old element will be retired later.
Returns std::pair<bool, bool> where \p first is \p true if operation is successful,
\p second is \p true if \p val has been added or \p false if the item with that key
already in the map.
*/
template <typename Q, typename V>
#ifdef CDS_DOXYGEN_INVOKED
std::pair<bool, bool>
#else
typename std::enable_if<
std::is_same< Q, Q>::value && is_iterable_list< ordered_list >::value,
std::pair<bool, bool>
>::type
#endif
upsert( Q&& key, V&& val, bool bAllowInsert = true )
{
return base_class::upsert( std::make_pair( key_type( std::forward<Q>( key )), mapped_type( std::forward<V>( val ))), bAllowInsert );
}
/// Deletes \p key from the map
/** \anchor cds_nonintrusive_SplitListMap_erase_val
Return \p true if \p key is found and deleted, \p false otherwise
*/
template <typename K>
bool erase( K const& key )
{
return base_class::erase( key );
}
/// Deletes the item from the map using \p pred predicate for searching
/**
The function is an analog of \ref cds_nonintrusive_SplitListMap_erase_val "erase(K const&)"
but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p Less must imply the same element order as the comparator used for building the map.
*/
template <typename K, typename Less>
bool erase_with( K const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::erase_with( key, cds::details::predicate_wrapper<value_type, Less, key_accessor>());
}
/// Deletes \p key from the map
/** \anchor cds_nonintrusive_SplitListMap_erase_func
The function searches an item with key \p key, calls \p f functor
and deletes the item. If \p key is not found, the functor is not called.
The functor \p Func interface is:
\code
struct extractor {
void operator()(value_type& item) { ... }
};
\endcode
Return \p true if key is found and deleted, \p false otherwise
*/
template <typename K, typename Func>
bool erase( K const& key, Func f )
{
return base_class::erase( key, f );
}
/// Deletes the item from the map using \p pred predicate for searching
/**
The function is an analog of \ref cds_nonintrusive_SplitListMap_erase_func "erase(K const&, Func)"
but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p Less must imply the same element order as the comparator used for building the map.
*/
template <typename K, typename Less, typename Func>
bool erase_with( K const& key, Less pred, Func f )
{
CDS_UNUSED( pred );
return base_class::erase_with( key, cds::details::predicate_wrapper<value_type, Less, key_accessor>(), f );
}
/// Deletes the item pointed by iterator \p iter (only for \p IterableList based map)
/**
Returns \p true if the operation is successful, \p false otherwise.
The function can return \p false if the node the iterator points to has already been deleted
by other thread.
The function does not invalidate the iterator, it remains valid and can be used for further traversing.
@note \p %erase_at() is supported only for \p %SplitListMap based on \p IterableList.
*/
#ifdef CDS_DOXYGEN_INVOKED
bool erase_at( iterator const& iter )
#else
template <typename Iterator>
typename std::enable_if< std::is_same<Iterator, iterator>::value && is_iterable_list< ordered_list >::value, bool >::type
erase_at( Iterator const& iter )
#endif
{
return base_class::erase_at( iter );
}
/// Extracts the item with specified \p key
/** \anchor cds_nonintrusive_SplitListMap_hp_extract
The function searches an item with key equal to \p key,
unlinks it from the map, and returns it as \p guarded_ptr.
If \p key is not found the function returns an empty guarded pointer.
Note the compare functor should accept a parameter of type \p K that may be not the same as \p value_type.
The extracted item is freed automatically when returned \p guarded_ptr object will be destroyed or released.
@note Each \p guarded_ptr object uses the GC's guard that can be limited resource.
Usage:
\code
typedef cds::container::SplitListMap< your_template_args > splitlist_map;
splitlist_map theMap;
// ...
{
splitlist_map::guarded_ptr gp(theMap.extract( 5 ));
if ( gp ) {
// Deal with gp
// ...
}
// Destructor of gp releases internal HP guard
}
\endcode
*/
template <typename K>
guarded_ptr extract( K const& key )
{
return base_class::extract_( key );
}
/// Extracts the item using compare functor \p pred
/**
The function is an analog of \ref cds_nonintrusive_SplitListMap_hp_extract "extract(K const&)"
but \p pred predicate is used for key comparing.
\p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p K
in any order.
\p pred must imply the same element order as the comparator used for building the map.
*/
template <typename K, typename Less>
guarded_ptr extract_with( K const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::extract_with_( key, cds::details::predicate_wrapper<value_type, Less, key_accessor>());
}
/// Finds the key \p key
/** \anchor cds_nonintrusive_SplitListMap_find_cfunc
The function searches the item with key equal to \p key and calls the functor \p f for item found.
The interface of \p Func functor is:
\code
struct functor {
void operator()( value_type& item );
};
\endcode
where \p item is the item found.
The functor may change \p item.second. Note that the functor is only guarantee
that \p item cannot be disposed during functor is executing.
The functor does not serialize simultaneous access to the map's \p item. If such access is
possible you must provide your own synchronization schema on item level to exclude unsafe item modifications.
The function returns \p true if \p key is found, \p false otherwise.
*/
template <typename K, typename Func>
bool find( K const& key, Func f )
{
return base_class::find( key, [&f](value_type& pair, K const&){ f( pair ); } );
}
/// Finds \p key and returns iterator pointed to the item found (only for \p IterableList)
/**
If \p key is not found the function returns \p end().
@note This function is supported only for map based on \p IterableList
*/
template <typename K>
#ifdef CDS_DOXYGEN_INVOKED
iterator
#else
typename std::enable_if< std::is_same<K,K>::value && is_iterable_list<ordered_list>::value, iterator >::type
#endif
find( K const& key )
{
return base_class::find( key );
}
/// Finds the key \p val using \p pred predicate for searching
/**
The function is an analog of \ref cds_nonintrusive_SplitListMap_find_cfunc "find(K const&, Func)"
but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p Less must imply the same element order as the comparator used for building the map.
*/
template <typename K, typename Less, typename Func>
bool find_with( K const& key, Less pred, Func f )
{
CDS_UNUSED( pred );
return base_class::find_with( key,
cds::details::predicate_wrapper<value_type, Less, key_accessor>(),
[&f](value_type& pair, K const&){ f( pair ); } );
}
/// Finds \p key using \p pred predicate and returns iterator pointed to the item found (only for \p IterableList)
/**
The function is an analog of \p find(K&) but \p pred is used for key comparing.
\p Less functor has interface like \p std::less.
\p pred must imply the same element order as the comparator used for building the map.
If \p key is not found the function returns \p end().
@note This function is supported only for map based on \p IterableList
*/
template <typename K, typename Less>
#ifdef CDS_DOXYGEN_INVOKED
iterator
#else
typename std::enable_if< std::is_same<K, K>::value && is_iterable_list< ordered_list >::value, iterator >::type
#endif
find_with( K const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::find_with( key, cds::details::predicate_wrapper<value_type, Less, key_accessor>());
}
/// Checks whether the map contains \p key
/**
The function searches the item with key equal to \p key
and returns \p true if it is found, and \p false otherwise.
Note the hash functor specified for class \p Traits template parameter
should accept a parameter of type \p Q that can be not the same as \p value_type.
Otherwise, you may use \p contains( Q const&, Less pred ) functions with explicit predicate for key comparing.
*/
template <typename K>
bool contains( K const& key )
{
return base_class::contains( key );
}
/// Checks whether the map contains \p key using \p pred predicate for searching
/**
The function is similar to <tt>contains( key )</tt> but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p Less must imply the same element order as the comparator used for building the map.
*/
template <typename K, typename Less>
bool contains( K const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::contains( key, cds::details::predicate_wrapper<value_type, Less, key_accessor>());
}
/// Finds \p key and return the item found
/** \anchor cds_nonintrusive_SplitListMap_hp_get
The function searches the item with key equal to \p key
and returns the item found as a guarded pointer.
If \p key is not found the function returns an empty guarded pointer.
@note Each \p guarded_ptr object uses one GC's guard which can be limited resource.
Usage:
\code
typedef cds::container::SplitListMap< your_template_params > splitlist_map;
splitlist_map theMap;
// ...
{
splitlist_map::guarded_ptr gp(theMap.get( 5 ));
if ( gp ) {
// Deal with gp
//...
}
// Destructor of guarded_ptr releases internal HP guard
}
\endcode
Note the compare functor specified for split-list map
should accept a parameter of type \p K that can be not the same as \p value_type.
*/
template <typename K>
guarded_ptr get( K const& key )
{
return base_class::get_( key );
}
/// Finds \p key and return the item found
/**
The function is an analog of \ref cds_nonintrusive_SplitListMap_hp_get "get( K const&)"
but \p pred is used for comparing the keys.
\p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p K
in any order.
\p pred must imply the same element order as the comparator used for building the map.
*/
template <typename K, typename Less>
guarded_ptr get_with( K const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::get_with_( key, cds::details::predicate_wrapper<value_type, Less, key_accessor>());
}
/// Clears the map (not atomic)
void clear()
{
base_class::clear();
}
/// Checks if the map is empty
/**
Emptiness is checked by item counting: if item count is zero then the map is empty.
Thus, the correct item counting is an important part of the map implementation.
*/
bool empty() const
{
return base_class::empty();
}
/// Returns item count in the map
size_t size() const
{
return base_class::size();
}
/// Returns internal statistics
stat const& statistics() const
{
return base_class::statistics();
}
/// Returns internal statistics for \p ordered_list
typename ordered_list::stat const& list_statistics() const
{
return base_class::list_statistics();
}
};
}} // namespace cds::container
#endif // #ifndef CDSLIB_CONTAINER_SPLIT_LIST_MAP_H
|