1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSLIB_CONTAINER_SPLIT_LIST_SET_H
#define CDSLIB_CONTAINER_SPLIT_LIST_SET_H
#include <cds/intrusive/split_list.h>
#include <cds/container/details/make_split_list_set.h>
#include <cds/container/details/guarded_ptr_cast.h>
namespace cds { namespace container {
/// Split-ordered list set
/** @ingroup cds_nonintrusive_set
\anchor cds_nonintrusive_SplitListSet_hp
Hash table implementation based on split-ordered list algorithm discovered by Ori Shalev and Nir Shavit, see
- [2003] Ori Shalev, Nir Shavit "Split-Ordered Lists - Lock-free Resizable Hash Tables"
- [2008] Nir Shavit "The Art of Multiprocessor Programming"
See \p intrusive::SplitListSet for a brief description of the split-list algorithm.
Template parameters:
- \p GC - Garbage collector used
- \p T - type to be stored in the split-list.
- \p Traits - type traits, default is \p split_list::traits. Instead of declaring \p split_list::traits -based
struct you may apply option-based notation with \p split_list::make_traits metafunction.
There are the specializations:
- for \ref cds_urcu_desc "RCU" - declared in <tt>cd/container/split_list_set_rcu.h</tt>,
see \ref cds_nonintrusive_SplitListSet_rcu "SplitListSet<RCU>".
- for \ref cds::gc::nogc declared in <tt>cds/container/split_list_set_nogc.h</tt>,
see \ref cds_nonintrusive_SplitListSet_nogc "SplitListSet<gc::nogc>".
\par Usage
You should decide what garbage collector you want, and what ordered list you want to use as a base. Split-ordered list
is original data structure based on an ordered list.
Suppose, you want construct split-list set based on \p gc::DHP GC
and \p LazyList as ordered list implementation. So, you beginning your program with following include:
\code
#include <cds/container/lazy_list_dhp.h>
#include <cds/container/split_list_set.h>
namespace cc = cds::container;
// The data belonged to split-ordered list
sturuct foo {
int nKey; // key field
std::string strValue ; // value field
};
\endcode
The inclusion order is important: first, include header for ordered-list implementation (for this example, <tt>cds/container/lazy_list_dhp.h</tt>),
then the header for split-list set <tt>cds/container/split_list_set.h</tt>.
Now, you should declare traits for split-list set. The main parts of traits are a hash functor for the set and a comparing functor for ordered list.
Note that we define several function in <tt>foo_hash</tt> and <tt>foo_less</tt> functors for different argument types since we want call our \p %SplitListSet
object by the key of type <tt>int</tt> and by the value of type <tt>foo</tt>.
The second attention: instead of using \p %LazyList in \p %SplitListSet traits we use a tag \p cds::contaner::lazy_list_tag for the lazy list.
The split-list requires significant support from underlying ordered list class and it is not good idea to dive you
into deep implementation details of split-list and ordered list interrelations. The tag paradigm simplifies split-list interface.
\code
// foo hash functor
struct foo_hash {
size_t operator()( int key ) const { return std::hash( key ) ; }
size_t operator()( foo const& item ) const { return std::hash( item.nKey ) ; }
};
// foo comparator
struct foo_less {
bool operator()(int i, foo const& f ) const { return i < f.nKey ; }
bool operator()(foo const& f, int i ) const { return f.nKey < i ; }
bool operator()(foo const& f1, foo const& f2) const { return f1.nKey < f2.nKey; }
};
// SplitListSet traits
struct foo_set_traits: public cc::split_list::traits
{
typedef cc::lazy_list_tag ordered_list; // what type of ordered list we want to use
typedef foo_hash hash; // hash functor for our data stored in split-list set
// Type traits for our LazyList class
struct ordered_list_traits: public cc::lazy_list::traits
{
typedef foo_less less ; // use our foo_less as comparator to order list nodes
};
};
\endcode
Now you are ready to declare our set class based on \p %SplitListSet:
\code
typedef cc::SplitListSet< cds::gc::DHP, foo, foo_set_traits > foo_set;
\endcode
You may use the modern option-based declaration instead of classic traits-based one:
\code
typedef cc::SplitListSet<
cs::gc::DHP // GC used
,foo // type of data stored
,cc::split_list::make_traits< // metafunction to build split-list traits
cc::split_list::ordered_list<cc::lazy_list_tag> // tag for underlying ordered list implementation
,cc::opt::hash< foo_hash > // hash functor
,cc::split_list::ordered_list_traits< // ordered list traits desired
cc::lazy_list::make_traits< // metafunction to build lazy list traits
cc::opt::less< foo_less > // less-based compare functor
>::type
>
>::type
> foo_set;
\endcode
In case of option-based declaration using split_list::make_traits metafunction
the struct \p foo_set_traits is not required.
Now, the set of type \p foo_set is ready to use in your program.
Note that in this example we show only mandatory \p traits parts, optional ones is the default and they are inherited
from \p cds::container::split_list::traits.
There are many other options for deep tuning the split-list and ordered-list containers.
*/
template <
class GC,
class T,
#ifdef CDS_DOXYGEN_INVOKED
class Traits = split_list::traits
#else
class Traits
#endif
>
class SplitListSet:
#ifdef CDS_DOXYGEN_INVOKED
protected intrusive::SplitListSet<GC, typename Traits::ordered_list, Traits>
#else
protected details::make_split_list_set< GC, T, typename Traits::ordered_list, split_list::details::wrap_set_traits<T, Traits> >::type
#endif
{
protected:
//@cond
typedef details::make_split_list_set< GC, T, typename Traits::ordered_list, split_list::details::wrap_set_traits<T, Traits> > maker;
typedef typename maker::type base_class;
//@endcond
public:
typedef GC gc; ///< Garbage collector
typedef T value_type; ///< Type of vlue to be stored in split-list
typedef Traits traits; ///< \p Traits template argument
typedef typename maker::ordered_list ordered_list; ///< Underlying ordered list class
typedef typename base_class::key_comparator key_comparator; ///< key compare functor
/// Hash functor for \p %value_type and all its derivatives that you use
typedef typename base_class::hash hash;
typedef typename base_class::item_counter item_counter; ///< Item counter type
typedef typename base_class::stat stat; ///< Internal statistics
/// Count of hazard pointer required
static constexpr const size_t c_nHazardPtrCount = base_class::c_nHazardPtrCount;
protected:
//@cond
typedef typename maker::cxx_node_allocator cxx_node_allocator;
typedef typename maker::node_type node_type;
//@endcond
public:
/// Guarded pointer
typedef typename gc::template guarded_ptr< node_type, value_type, details::guarded_ptr_cast_set<node_type, value_type> > guarded_ptr;
protected:
//@cond
template <bool IsConst>
class iterator_type: protected base_class::template iterator_type<IsConst>
{
typedef typename base_class::template iterator_type<IsConst> iterator_base_class;
friend class SplitListSet;
public:
/// Value pointer type (const for const iterator)
typedef typename cds::details::make_const_type<value_type, IsConst>::pointer value_ptr;
/// Value reference type (const for const iterator)
typedef typename cds::details::make_const_type<value_type, IsConst>::reference value_ref;
public:
/// Default ctor
iterator_type()
{}
/// Copy ctor
iterator_type( iterator_type const& src )
: iterator_base_class( src )
{}
protected:
explicit iterator_type( iterator_base_class const& src )
: iterator_base_class( src )
{}
public:
/// Dereference operator
value_ptr operator ->() const
{
return &(iterator_base_class::operator->()->m_Value);
}
/// Dereference operator
value_ref operator *() const
{
return iterator_base_class::operator*().m_Value;
}
/// Pre-increment
iterator_type& operator ++()
{
iterator_base_class::operator++();
return *this;
}
/// Assignment operator
iterator_type& operator = (iterator_type const& src)
{
iterator_base_class::operator=(src);
return *this;
}
/// Equality operator
template <bool C>
bool operator ==(iterator_type<C> const& i ) const
{
return iterator_base_class::operator==(i);
}
/// Equality operator
template <bool C>
bool operator !=(iterator_type<C> const& i ) const
{
return iterator_base_class::operator!=(i);
}
};
//@endcond
public:
/// Initializes split-ordered list of default capacity
/**
The default capacity is defined in bucket table constructor.
See \p intrusive::split_list::expandable_bucket_table, \p intrusive::split_list::static_bucket_table
which selects by \p split_list::dynamic_bucket_table option.
*/
SplitListSet()
: base_class()
{}
/// Initializes split-ordered list
SplitListSet(
size_t nItemCount ///< estimated average of item count
, size_t nLoadFactor = 1 ///< the load factor - average item count per bucket. Small integer up to 8, default is 1.
)
: base_class( nItemCount, nLoadFactor )
{}
public:
///@name Forward iterators (only for debugging purpose)
//@{
/// Forward iterator
/**
The forward iterator for a split-list has the following features:
- it has no post-increment operator
- it depends on underlying ordered list iterator
- The iterator object cannot be moved across thread boundary because it contains GC's guard that is thread-private GC data.
- Iterator ensures thread-safety even if you delete the item that iterator points to. However, in case of concurrent
deleting operations it is no guarantee that you iterate all item in the split-list.
Moreover, a crash is possible when you try to iterate the next element that has been deleted by concurrent thread.
@warning Use this iterator on the concurrent container for debugging purpose only.
The iterator interface:
\code
class iterator {
public:
// Default constructor
iterator();
// Copy construtor
iterator( iterator const& src );
// Dereference operator
value_type * operator ->() const;
// Dereference operator
value_type& operator *() const;
// Preincrement operator
iterator& operator ++();
// Assignment operator
iterator& operator = (iterator const& src);
// Equality operators
bool operator ==(iterator const& i ) const;
bool operator !=(iterator const& i ) const;
};
\endcode
*/
typedef iterator_type<false> iterator;
/// Const forward iterator
typedef iterator_type<true> const_iterator;
/// Returns a forward iterator addressing the first element in a set
/**
For empty set \code begin() == end() \endcode
*/
iterator begin()
{
return iterator( base_class::begin());
}
/// Returns an iterator that addresses the location succeeding the last element in a set
/**
Do not use the value returned by <tt>end</tt> function to access any item.
The returned value can be used only to control reaching the end of the set.
For empty set \code begin() == end() \endcode
*/
iterator end()
{
return iterator( base_class::end());
}
/// Returns a forward const iterator addressing the first element in a set
const_iterator begin() const
{
return cbegin();
}
/// Returns a forward const iterator addressing the first element in a set
const_iterator cbegin() const
{
return const_iterator( base_class::cbegin());
}
/// Returns an const iterator that addresses the location succeeding the last element in a set
const_iterator end() const
{
return cend();
}
/// Returns an const iterator that addresses the location succeeding the last element in a set
const_iterator cend() const
{
return const_iterator( base_class::cend());
}
//@}
public:
/// Inserts new node
/**
The function creates a node with copy of \p val value
and then inserts the node created into the set.
The type \p Q should contain as minimum the complete key for the node.
The object of \ref value_type should be constructible from a value of type \p Q.
In trivial case, \p Q is equal to \ref value_type.
Returns \p true if \p val is inserted into the set, \p false otherwise.
*/
template <typename Q>
bool insert( Q&& val )
{
return insert_node( alloc_node( std::forward<Q>( val )));
}
/// Inserts new node
/**
The function allows to split creating of new item into two part:
- create item with key only
- insert new item into the set
- if inserting is success, calls \p f functor to initialize value-field of \p val.
The functor signature is:
\code
void func( value_type& val );
\endcode
where \p val is the item inserted.
The user-defined functor is called only if the inserting is success.
@warning For \ref cds_intrusive_MichaelList_hp "MichaelList" as the bucket see \ref cds_intrusive_item_creating "insert item troubleshooting".
\ref cds_intrusive_LazyList_hp "LazyList" provides exclusive access to inserted item and does not require any node-level
synchronization.
*/
template <typename Q, typename Func>
bool insert( Q&& val, Func f )
{
scoped_node_ptr pNode( alloc_node( std::forward<Q>( val )));
if ( base_class::insert( *pNode, [&f](node_type& node) { f( node.m_Value ) ; } )) {
pNode.release();
return true;
}
return false;
}
/// Inserts data of type \p value_type created from \p args
/**
Returns \p true if inserting successful, \p false otherwise.
*/
template <typename... Args>
bool emplace( Args&&... args )
{
return insert_node( alloc_node( std::forward<Args>(args)...));
}
/// Inserts or updates the node (only for \p IterableList -based set)
/**
The operation performs inserting or changing data with lock-free manner.
If the item \p val is not found in the set, then \p val is inserted iff \p bAllowInsert is \p true.
Otherwise, the current element is changed to \p val, the old element will be retired later.
Returns std::pair<bool, bool> where \p first is \p true if operation is successful,
\p second is \p true if \p val has been added or \p false if the item with that key
already in the set.
*/
template <typename Q>
#ifdef CDS_DOXYGEN_INVOKED
std::pair<bool, bool>
#else
typename std::enable_if<
std::is_same< Q, Q>::value && is_iterable_list< ordered_list >::value,
std::pair<bool, bool>
>::type
#endif
upsert( Q&& val, bool bAllowInsert = true )
{
scoped_node_ptr pNode( alloc_node( std::forward<Q>( val )));
auto bRet = base_class::upsert( *pNode, bAllowInsert );
if ( bRet.first )
pNode.release();
return bRet;
}
/// Updates the node
/**
The operation performs inserting or changing data with lock-free manner.
If \p key is not found in the set, then \p key is inserted iff \p bAllowInsert is \p true.
Otherwise, the functor \p func is called with item found.
The functor \p func signature depends of ordered list:
<b>for \p MichaelList, \p LazyList</b>
\code
struct functor {
void operator()( bool bNew, value_type& item, Q const& val );
};
\endcode
with arguments:
- \p bNew - \p true if the item has been inserted, \p false otherwise
- \p item - item of the set
- \p val - argument \p val passed into the \p %update() function
The functor may change non-key fields of the \p item.
<b>for \p IterableList</b>
\code
void func( value_type& val, value_type * old );
\endcode
where
- \p val - a new data constructed from \p key
- \p old - old value that will be retired. If new item has been inserted then \p old is \p nullptr.
Returns <tt> std::pair<bool, bool> </tt> where \p first is true if operation is successful,
\p second is true if new item has been added or \p false if the item with \p key
already is in the set.
@warning For \ref cds_intrusive_MichaelList_hp "MichaelList" and \ref cds_nonintrusive_IterableList_gc "IterableList"
as the bucket see \ref cds_intrusive_item_creating "insert item troubleshooting".
\ref cds_intrusive_LazyList_hp "LazyList" provides exclusive access to inserted item and does not require any node-level
synchronization.
*/
template <typename Q, typename Func>
#ifdef CDS_DOXYGEN_INVOKED
std::pair<bool, bool>
#else
typename std::enable_if<
std::is_same<Q, Q>::value && !is_iterable_list<ordered_list>::value,
std::pair<bool, bool>
>::type
#endif
update( Q&& val, Func func, bool bAllowInsert = true )
{
scoped_node_ptr pNode( alloc_node( std::forward<Q>( val )));
auto bRet = base_class::update( *pNode,
[&func, &val]( bool bNew, node_type& item, node_type const& /*val*/ ) {
func( bNew, item.m_Value, val );
}, bAllowInsert );
if ( bRet.first && bRet.second )
pNode.release();
return bRet;
}
//@cond
template <typename Q, typename Func>
typename std::enable_if<
std::is_same<Q, Q>::value && is_iterable_list<ordered_list>::value,
std::pair<bool, bool>
>::type
update( Q&& val, Func func, bool bAllowInsert = true )
{
scoped_node_ptr pNode( alloc_node( std::forward<Q>( val )));
auto bRet = base_class::update( *pNode,
[&func]( node_type& item, node_type* old ) {
func( item.m_Value, old ? &old->m_Value : nullptr );
}, bAllowInsert );
if ( bRet.first )
pNode.release();
return bRet;
}
//@endcond
//@cond
template <typename Q, typename Func>
CDS_DEPRECATED("ensure() is deprecated, use update()")
std::pair<bool, bool> ensure( Q const& val, Func func )
{
return update( val, func, true );
}
//@endcond
/// Deletes \p key from the set
/** \anchor cds_nonintrusive_SplitListSet_erase_val
The item comparator should be able to compare the values of type \p value_type
and the type \p Q.
Return \p true if key is found and deleted, \p false otherwise
*/
template <typename Q>
bool erase( Q const& key )
{
return base_class::erase( key );
}
/// Deletes the item from the set using \p pred predicate for searching
/**
The function is an analog of \ref cds_nonintrusive_SplitListSet_erase_val "erase(Q const&)"
but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p Less must imply the same element order as the comparator used for building the set.
*/
template <typename Q, typename Less>
bool erase_with( Q const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::erase_with( key, typename maker::template predicate_wrapper<Less>());
}
/// Deletes \p key from the set
/** \anchor cds_nonintrusive_SplitListSet_erase_func
The function searches an item with key \p key, calls \p f functor
and deletes the item. If \p key is not found, the functor is not called.
The functor \p Func interface:
\code
struct extractor {
void operator()(value_type const& val);
};
\endcode
Since the key of split-list \p value_type is not explicitly specified,
template parameter \p Q defines the key type searching in the list.
The list item comparator should be able to compare the values of the type \p value_type
and the type \p Q.
Return \p true if key is found and deleted, \p false otherwise
*/
template <typename Q, typename Func>
bool erase( Q const& key, Func f )
{
return base_class::erase( key, [&f](node_type& node) { f( node.m_Value ); } );
}
/// Deletes the item from the set using \p pred predicate for searching
/**
The function is an analog of \ref cds_nonintrusive_SplitListSet_erase_func "erase(Q const&, Func)"
but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p Less must imply the same element order as the comparator used for building the set.
*/
template <typename Q, typename Less, typename Func>
bool erase_with( Q const& key, Less pred, Func f )
{
CDS_UNUSED( pred );
return base_class::erase_with( key, typename maker::template predicate_wrapper<Less>(),
[&f](node_type& node) { f( node.m_Value ); } );
}
/// Deletes the item pointed by iterator \p iter (only for \p IterableList based set)
/**
Returns \p true if the operation is successful, \p false otherwise.
The function can return \p false if the node the iterator points to has already been deleted
by other thread.
The function does not invalidate the iterator, it remains valid and can be used for further traversing.
@note \p %erase_at() is supported only for \p %SplitListSet based on \p IterableList.
*/
#ifdef CDS_DOXYGEN_INVOKED
bool erase_at( iterator const& iter )
#else
template <typename Iterator>
typename std::enable_if< std::is_same<Iterator, iterator>::value && is_iterable_list< ordered_list >::value, bool >::type
erase_at( Iterator const& iter )
#endif
{
return base_class::erase_at( static_cast<typename iterator::iterator_base_class const&>( iter ));
}
/// Extracts the item with specified \p key
/** \anchor cds_nonintrusive_SplitListSet_hp_extract
The function searches an item with key equal to \p key,
unlinks it from the set, and returns it as \p guarded_ptr.
If \p key is not found the function returns an empty guarded pointer.
Note the compare functor should accept a parameter of type \p Q that may be not the same as \p value_type.
The extracted item is freed automatically when returned \p guarded_ptr object will be destroyed or released.
@note Each \p guarded_ptr object uses the GC's guard that can be limited resource.
Usage:
\code
typedef cds::container::SplitListSet< your_template_args > splitlist_set;
splitlist_set theSet;
// ...
{
splitlist_set::guarded_ptr gp(theSet.extract( 5 ));
if ( gp ) {
// Deal with gp
// ...
}
// Destructor of gp releases internal HP guard
}
\endcode
*/
template <typename Q>
guarded_ptr extract( Q const& key )
{
return extract_( key );
}
/// Extracts the item using compare functor \p pred
/**
The function is an analog of \ref cds_nonintrusive_SplitListSet_hp_extract "extract(Q const&)"
but \p pred predicate is used for key comparing.
\p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p Q
in any order.
\p pred must imply the same element order as the comparator used for building the set.
*/
template <typename Q, typename Less>
guarded_ptr extract_with( Q const& key, Less pred )
{
return extract_with_( key, pred );
}
/// Finds the key \p key
/** \anchor cds_nonintrusive_SplitListSet_find_func
The function searches the item with key equal to \p key and calls the functor \p f for item found.
The interface of \p Func functor is:
\code
struct functor {
void operator()( value_type& item, Q& key );
};
\endcode
where \p item is the item found, \p key is the <tt>find</tt> function argument.
The functor may change non-key fields of \p item. Note that the functor is only guarantee
that \p item cannot be disposed during functor is executing.
The functor does not serialize simultaneous access to the set's \p item. If such access is
possible you must provide your own synchronization schema on item level to exclude unsafe item modifications.
The \p key argument is non-const since it can be used as \p f functor destination i.e., the functor
may modify both arguments.
Note the hash functor specified for class \p Traits template parameter
should accept a parameter of type \p Q that can be not the same as \p value_type.
The function returns \p true if \p key is found, \p false otherwise.
*/
template <typename Q, typename Func>
bool find( Q& key, Func f )
{
return find_( key, f );
}
//@cond
template <typename Q, typename Func>
bool find( Q const& key, Func f )
{
return find_( key, f );
}
//@endcond
/// Finds \p key and returns iterator pointed to the item found (only for \p IterableList -based set)
/**
If \p key is not found the function returns \p end().
@note This function is supported only for the set based on \p IterableList
*/
template <typename Q>
#ifdef CDS_DOXYGEN_INVOKED
iterator
#else
typename std::enable_if< std::is_same<Q,Q>::value && is_iterable_list< ordered_list >::value, iterator >::type
#endif
find( Q& key )
{
return find_iterator_( key );
}
//@cond
template <typename Q>
typename std::enable_if< std::is_same<Q, Q>::value && is_iterable_list< ordered_list >::value, iterator >::type
find( Q const& key )
{
return find_iterator_( key );
}
//@endcond
/// Finds the key \p key using \p pred predicate for searching
/**
The function is an analog of \ref cds_nonintrusive_SplitListSet_find_func "find(Q&, Func)"
but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p Less must imply the same element order as the comparator used for building the set.
*/
template <typename Q, typename Less, typename Func>
bool find_with( Q& key, Less pred, Func f )
{
return find_with_( key, pred, f );
}
//@cond
template <typename Q, typename Less, typename Func>
bool find_with( Q const& key, Less pred, Func f )
{
return find_with_( key, pred, f );
}
//@endcond
/// Finds \p key using \p pred predicate and returns iterator pointed to the item found (only for \p IterableList -based set)
/**
The function is an analog of \p find(Q&) but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p pred must imply the same element order as the comparator used for building the set.
If \p key is not found the function returns \p end().
@note This function is supported only for the set based on \p IterableList
*/
template <typename Q, typename Less>
#ifdef CDS_DOXYGEN_INVOKED
iterator
#else
typename std::enable_if< std::is_same<Q, Q>::value && is_iterable_list< ordered_list >::value, iterator >::type
#endif
find_with( Q& key, Less pred )
{
return find_iterator_with_( key, pred );
}
//@cond
template <typename Q, typename Less>
typename std::enable_if< std::is_same<Q, Q>::value && is_iterable_list< ordered_list >::value, iterator >::type
find_with( Q const& key, Less pred )
{
return find_iterator_with_( key, pred );
}
//@endcond
/// Checks whether the set contains \p key
/**
The function searches the item with key equal to \p key
and returns \p true if it is found, and \p false otherwise.
Note the hash functor specified for class \p Traits template parameter
should accept a parameter of type \p Q that can be not the same as \p value_type.
Otherwise, you may use \p contains( Q const&, Less pred ) functions with explicit predicate for key comparing.
*/
template <typename Q>
bool contains( Q const& key )
{
return base_class::contains( key );
}
/// Checks whether the map contains \p key using \p pred predicate for searching
/**
The function is similar to <tt>contains( key )</tt> but \p pred is used for key comparing.
\p Less functor has the interface like \p std::less.
\p Less must imply the same element order as the comparator used for building the map.
*/
template <typename Q, typename Less>
bool contains( Q const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::contains( key, typename maker::template predicate_wrapper<Less>());
}
/// Finds the key \p key and return the item found
/** \anchor cds_nonintrusive_SplitListSet_hp_get
The function searches the item with key equal to \p key
and returns the item found as \p guarded_ptr.
If \p key is not found the function returns an empty guarded pointer.
@note Each \p guarded_ptr object uses one GC's guard which can be limited resource.
Usage:
\code
typedef cds::container::SplitListSet< your_template_params > splitlist_set;
splitlist_set theSet;
// ...
{
splitlist_set::guarded_ptr gp(theSet.get( 5 ));
if ( gp ) {
// Deal with gp
//...
}
// Destructor of guarded_ptr releases internal HP guard
}
\endcode
Note the compare functor specified for split-list set
should accept a parameter of type \p Q that can be not the same as \p value_type.
*/
template <typename Q>
guarded_ptr get( Q const& key )
{
return get_( key );
}
/// Finds \p key and return the item found
/**
The function is an analog of \ref cds_nonintrusive_SplitListSet_hp_get "get( Q const&)"
but \p pred is used for comparing the keys.
\p Less functor has the semantics like \p std::less but should take arguments of type \ref value_type and \p Q
in any order.
\p pred must imply the same element order as the comparator used for building the set.
*/
template <typename Q, typename Less>
guarded_ptr get_with( Q const& key, Less pred )
{
return get_with_( key, pred );
}
/// Clears the set (not atomic)
void clear()
{
base_class::clear();
}
/// Checks if the set is empty
/**
Emptiness is checked by item counting: if item count is zero then assume that the set is empty.
Thus, the correct item counting feature is an important part of split-list set implementation.
*/
bool empty() const
{
return base_class::empty();
}
/// Returns item count in the set
size_t size() const
{
return base_class::size();
}
/// Returns internal statistics
stat const& statistics() const
{
return base_class::statistics();
}
/// Returns internal statistics for \p ordered_list
typename ordered_list::stat const& list_statistics() const
{
return base_class::list_statistics();
}
protected:
//@cond
using base_class::extract_;
using base_class::get_;
template <typename... Args>
static node_type * alloc_node( Args&&... args )
{
return cxx_node_allocator().MoveNew( std::forward<Args>( args )... );
}
static void free_node( node_type * pNode )
{
cxx_node_allocator().Delete( pNode );
}
template <typename Q, typename Func>
bool find_( Q& val, Func f )
{
return base_class::find( val, [&f]( node_type& item, Q& v ) { f( item.m_Value, v ); } );
}
template <typename Q>
typename std::enable_if< std::is_same<Q,Q>::value && is_iterable_list< ordered_list >::value, iterator>::type
find_iterator_( Q& val )
{
return iterator( base_class::find( val ));
}
template <typename Q, typename Less, typename Func>
bool find_with_( Q& val, Less pred, Func f )
{
CDS_UNUSED( pred );
return base_class::find_with( val, typename maker::template predicate_wrapper<Less>(),
[&f]( node_type& item, Q& v ) { f( item.m_Value, v ); } );
}
template <typename Q, typename Less>
typename std::enable_if< std::is_same<Q, Q>::value && is_iterable_list< ordered_list >::value, iterator>::type
find_iterator_with_( Q& val, Less pred )
{
CDS_UNUSED( pred );
return iterator( base_class::find_with( val, typename maker::template predicate_wrapper<Less>()));
}
struct node_disposer {
void operator()( node_type * pNode )
{
free_node( pNode );
}
};
typedef std::unique_ptr< node_type, node_disposer > scoped_node_ptr;
bool insert_node( node_type * pNode )
{
assert( pNode != nullptr );
scoped_node_ptr p( pNode );
if ( base_class::insert( *pNode )) {
p.release();
return true;
}
return false;
}
template <typename Q, typename Less>
guarded_ptr extract_with_( Q const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::extract_with_( key, typename maker::template predicate_wrapper<Less>());
}
template <typename Q, typename Less>
guarded_ptr get_with_( Q const& key, Less pred )
{
CDS_UNUSED( pred );
return base_class::get_with_( key, typename maker::template predicate_wrapper<Less>());
}
//@endcond
};
}} // namespace cds::container
#endif // #ifndef CDSLIB_CONTAINER_SPLIT_LIST_SET_H
|