1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSLIB_CONTAINER_WEAK_RINGBUFFER_H
#define CDSLIB_CONTAINER_WEAK_RINGBUFFER_H
#include <cds/container/details/base.h>
#include <cds/opt/buffer.h>
#include <cds/opt/value_cleaner.h>
#include <cds/algo/atomic.h>
#include <cds/details/bounded_container.h>
namespace cds { namespace container {
/// \p WeakRingBuffer related definitions
/** @ingroup cds_nonintrusive_helper
*/
namespace weak_ringbuffer {
/// \p WeakRingBuffer default traits
struct traits {
/// Buffer type for internal array
/*
The type of element for the buffer is not important: \p WeakRingBuffer rebind
the buffer for required type via \p rebind metafunction.
For \p WeakRingBuffer the buffer size should have power-of-2 size.
You should use only uninitialized buffer for the ring buffer -
\p cds::opt::v::uninitialized_dynamic_buffer (the default),
\p cds::opt::v::uninitialized_static_buffer.
*/
typedef cds::opt::v::uninitialized_dynamic_buffer< void * > buffer;
/// A functor to clean item dequeued.
/**
The functor calls the destructor for popped element.
After a set of items is dequeued, \p value_cleaner cleans the cells that the items have been occupied.
If \p T is a complex type, \p value_cleaner may be useful feature.
For POD types \ref opt::v::empty_cleaner is suitable
Default value is \ref opt::v::auto_cleaner that calls destructor only if it is not trivial.
*/
typedef cds::opt::v::auto_cleaner value_cleaner;
/// C++ memory ordering model
/**
Can be \p opt::v::relaxed_ordering (relaxed memory model, the default)
or \p opt::v::sequential_consistent (sequentially consistent memory model).
*/
typedef opt::v::relaxed_ordering memory_model;
/// Padding for internal critical atomic data. Default is \p opt::cache_line_padding
enum { padding = opt::cache_line_padding };
};
/// Metafunction converting option list to \p weak_ringbuffer::traits
/**
Supported \p Options are:
- \p opt::buffer - an uninitialized buffer type for internal cyclic array. Possible types are:
\p opt::v::uninitialized_dynamic_buffer (the default), \p opt::v::uninitialized_static_buffer. The type of
element in the buffer is not important: it will be changed via \p rebind metafunction.
- \p opt::value_cleaner - a functor to clean items dequeued.
The functor calls the destructor for ring-buffer item.
After a set of items is dequeued, \p value_cleaner cleans the cells that the items have been occupied.
If \p T is a complex type, \p value_cleaner can be an useful feature.
Default value is \ref opt::v::empty_cleaner that is suitable for POD types.
- \p opt::padding - padding for internal critical atomic data. Default is \p opt::cache_line_padding
- \p opt::memory_model - C++ memory ordering model. Can be \p opt::v::relaxed_ordering (relaxed memory model, the default)
or \p opt::v::sequential_consistent (sequentially consisnent memory model).
Example: declare \p %WeakRingBuffer with static iternal buffer for 1024 objects:
\code
typedef cds::container::WeakRingBuffer< Foo,
typename cds::container::weak_ringbuffer::make_traits<
cds::opt::buffer< cds::opt::v::uninitialized_static_buffer< void *, 1024 >
>::type
> myRing;
\endcode
*/
template <typename... Options>
struct make_traits {
# ifdef CDS_DOXYGEN_INVOKED
typedef implementation_defined type; ///< Metafunction result
# else
typedef typename cds::opt::make_options<
typename cds::opt::find_type_traits< traits, Options... >::type
, Options...
>::type type;
# endif
};
} // namespace weak_ringbuffer
/// Single-producer single-consumer ring buffer
/** @ingroup cds_nonintrusive_queue
Source: [2013] Nhat Minh Le, Adrien Guatto, Albert Cohen, Antoniu Pop. Correct and Effcient Bounded
FIFO Queues. [Research Report] RR-8365, INRIA. 2013. <hal-00862450>
Ring buffer is a bounded queue. Additionally, \p %WeakRingBuffer supports batch operations -
you can push/pop an array of elements.
There are a specialization \ref cds_nonintrusive_WeakRingBuffer_void "WeakRingBuffer<void, Traits>"
that is not a queue but a "memory pool" between producer and consumer threads.
\p WeakRingBuffer<void> supports variable-sized data.
@warning: \p %WeakRingBuffer is developed for 64-bit architecture.
32-bit platform must provide support for 64-bit atomics.
*/
template <typename T, typename Traits = weak_ringbuffer::traits>
class WeakRingBuffer: public cds::bounded_container
{
public:
typedef T value_type; ///< Value type to be stored in the ring buffer
typedef Traits traits; ///< Ring buffer traits
typedef typename traits::memory_model memory_model; ///< Memory ordering. See \p cds::opt::memory_model option
typedef typename traits::value_cleaner value_cleaner; ///< Value cleaner, see \p weak_ringbuffer::traits::value_cleaner
/// Rebind template arguments
template <typename T2, typename Traits2>
struct rebind {
typedef WeakRingBuffer< T2, Traits2 > other; ///< Rebinding result
};
//@cond
// Only for tests
typedef size_t item_counter;
//@endcond
private:
//@cond
typedef typename traits::buffer::template rebind< value_type >::other buffer;
typedef uint64_t counter_type;
//@endcond
public:
/// Creates the ring buffer of \p capacity
/**
For \p cds::opt::v::uninitialized_static_buffer the \p nCapacity parameter is ignored.
If the buffer capacity is a power of two, lightweight binary arithmetics is used
instead of modulo arithmetics.
*/
WeakRingBuffer( size_t capacity = 0 )
: front_( 0 )
, pfront_( 0 )
, cback_( 0 )
, buffer_( capacity )
{
back_.store( 0, memory_model::memory_order_release );
}
/// Destroys the ring buffer
~WeakRingBuffer()
{
value_cleaner cleaner;
counter_type back = back_.load( memory_model::memory_order_relaxed );
for ( counter_type front = front_.load( memory_model::memory_order_relaxed ); front != back; ++front )
cleaner( buffer_[ buffer_.mod( front ) ] );
}
/// Batch push - push array \p arr of size \p count
/**
\p CopyFunc is a per-element copy functor: for each element of \p arr
<tt>copy( dest, arr[i] )</tt> is called.
The \p CopyFunc signature:
\code
void copy_func( value_type& element, Q const& source );
\endcode
Here \p element is uninitialized so you should construct it using placement new
if needed; for example, if the element type is \p str::string and \p Q is <tt>char const*</tt>,
\p copy functor can be:
\code
cds::container::WeakRingBuffer<std::string> ringbuf;
char const* arr[10];
ringbuf.push( arr, 10,
[]( std::string& element, char const* src ) {
new( &element ) std::string( src );
});
\endcode
You may use move semantics if appropriate:
\code
cds::container::WeakRingBuffer<std::string> ringbuf;
std::string arr[10];
ringbuf.push( arr, 10,
[]( std::string& element, std:string& src ) {
new( &element ) std::string( std::move( src ));
});
\endcode
Returns \p true if success or \p false if not enough space in the ring
*/
template <typename Q, typename CopyFunc>
bool push( Q* arr, size_t count, CopyFunc copy )
{
assert( count < capacity());
counter_type back = back_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( back - pfront_ ) <= capacity());
if ( static_cast<size_t>( pfront_ + capacity() - back ) < count ) {
pfront_ = front_.load( memory_model::memory_order_acquire );
if ( static_cast<size_t>( pfront_ + capacity() - back ) < count ) {
// not enough space
return false;
}
}
// copy data
for ( size_t i = 0; i < count; ++i, ++back )
copy( buffer_[buffer_.mod( back )], arr[i] );
back_.store( back, memory_model::memory_order_release );
return true;
}
/// Batch push - push array \p arr of size \p count with assignment as copy functor
/**
This function is equivalent for:
\code
push( arr, count, []( value_type& dest, Q const& src ) { dest = src; } );
\endcode
The function is available only if <tt>std::is_constructible<value_type, Q>::value</tt>
is \p true.
Returns \p true if success or \p false if not enough space in the ring
*/
template <typename Q>
typename std::enable_if< std::is_constructible<value_type, Q>::value, bool>::type
push( Q* arr, size_t count )
{
return push( arr, count, []( value_type& dest, Q const& src ) { new( &dest ) value_type( src ); } );
}
/// Push one element created from \p args
/**
The function is available only if <tt>std::is_constructible<value_type, Args...>::value</tt>
is \p true.
Returns \p false if the ring is full or \p true otherwise.
*/
template <typename... Args>
typename std::enable_if< std::is_constructible<value_type, Args...>::value, bool>::type
emplace( Args&&... args )
{
counter_type back = back_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( back - pfront_ ) <= capacity());
if ( pfront_ + capacity() - back < 1 ) {
pfront_ = front_.load( memory_model::memory_order_acquire );
if ( pfront_ + capacity() - back < 1 ) {
// not enough space
return false;
}
}
new( &buffer_[buffer_.mod( back )] ) value_type( std::forward<Args>(args)... );
back_.store( back + 1, memory_model::memory_order_release );
return true;
}
/// Enqueues data to the ring using a functor
/**
\p Func is a functor called to copy a value to the ring element.
The functor \p f takes one argument - a reference to a empty cell of type \ref value_type :
\code
cds::container::WeakRingBuffer< Foo > myRing;
Bar bar;
myRing.enqueue_with( [&bar]( Foo& dest ) { dest = std::move(bar); } );
\endcode
*/
template <typename Func>
bool enqueue_with( Func f )
{
counter_type back = back_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( back - pfront_ ) <= capacity());
if ( pfront_ + capacity() - back < 1 ) {
pfront_ = front_.load( memory_model::memory_order_acquire );
if ( pfront_ + capacity() - back < 1 ) {
// not enough space
return false;
}
}
f( buffer_[buffer_.mod( back )] );
back_.store( back + 1, memory_model::memory_order_release );
return true;
}
/// Enqueues \p val value into the queue.
/**
The new queue item is created by calling placement new in free cell.
Returns \p true if success, \p false if the ring is full.
*/
bool enqueue( value_type const& val )
{
return emplace( val );
}
/// Enqueues \p val value into the queue, move semantics
bool enqueue( value_type&& val )
{
return emplace( std::move( val ));
}
/// Synonym for \p enqueue( value_type const& )
bool push( value_type const& val )
{
return enqueue( val );
}
/// Synonym for \p enqueue( value_type&& )
bool push( value_type&& val )
{
return enqueue( std::move( val ));
}
/// Synonym for \p enqueue_with()
template <typename Func>
bool push_with( Func f )
{
return enqueue_with( f );
}
/// Batch pop \p count element from the ring buffer into \p arr
/**
\p CopyFunc is a per-element copy functor: for each element of \p arr
<tt>copy( arr[i], source )</tt> is called.
The \p CopyFunc signature:
\code
void copy_func( Q& dest, value_type& elemen );
\endcode
Returns \p true if success or \p false if not enough space in the ring
*/
template <typename Q, typename CopyFunc>
bool pop( Q* arr, size_t count, CopyFunc copy )
{
assert( count < capacity());
counter_type front = front_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( cback_ - front ) < capacity());
if ( static_cast<size_t>( cback_ - front ) < count ) {
cback_ = back_.load( memory_model::memory_order_acquire );
if ( static_cast<size_t>( cback_ - front ) < count )
return false;
}
// copy data
value_cleaner cleaner;
for ( size_t i = 0; i < count; ++i, ++front ) {
value_type& val = buffer_[buffer_.mod( front )];
copy( arr[i], val );
cleaner( val );
}
front_.store( front, memory_model::memory_order_release );
return true;
}
/// Batch pop - push array \p arr of size \p count with assignment as copy functor
/**
This function is equivalent for:
\code
pop( arr, count, []( Q& dest, value_type& src ) { dest = src; } );
\endcode
The function is available only if <tt>std::is_assignable<Q&, value_type const&>::value</tt>
is \p true.
Returns \p true if success or \p false if not enough space in the ring
*/
template <typename Q>
typename std::enable_if< std::is_assignable<Q&, value_type const&>::value, bool>::type
pop( Q* arr, size_t count )
{
return pop( arr, count, []( Q& dest, value_type& src ) { dest = src; } );
}
/// Dequeues an element from the ring to \p val
/**
The function is available only if <tt>std::is_assignable<Q&, value_type const&>::value</tt>
is \p true.
Returns \p false if the ring is full or \p true otherwise.
*/
template <typename Q>
typename std::enable_if< std::is_assignable<Q&, value_type const&>::value, bool>::type
dequeue( Q& val )
{
return pop( &val, 1 );
}
/// Synonym for \p dequeue( Q& )
template <typename Q>
typename std::enable_if< std::is_assignable<Q&, value_type const&>::value, bool>::type
pop( Q& val )
{
return dequeue( val );
}
/// Dequeues a value using a functor
/**
\p Func is a functor called to copy dequeued value.
The functor takes one argument - a reference to removed node:
\code
cds:container::WeakRingBuffer< Foo > myRing;
Bar bar;
myRing.dequeue_with( [&bar]( Foo& src ) { bar = std::move( src );});
\endcode
Returns \p true if the ring is not empty, \p false otherwise.
The functor is called only if the ring is not empty.
*/
template <typename Func>
bool dequeue_with( Func f )
{
counter_type front = front_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( cback_ - front ) < capacity());
if ( cback_ - front < 1 ) {
cback_ = back_.load( memory_model::memory_order_acquire );
if ( cback_ - front < 1 )
return false;
}
value_type& val = buffer_[buffer_.mod( front )];
f( val );
value_cleaner()( val );
front_.store( front + 1, memory_model::memory_order_release );
return true;
}
/// Synonym for \p dequeue_with()
template <typename Func>
bool pop_with( Func f )
{
return dequeue_with( f );
}
/// Gets pointer to first element of ring buffer
/**
If the ring buffer is empty, returns \p nullptr
The function is thread-safe since there is only one consumer.
Recall, \p WeakRingBuffer is single-producer/single consumer container.
*/
value_type* front()
{
counter_type front = front_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( cback_ - front ) < capacity());
if ( cback_ - front < 1 ) {
cback_ = back_.load( memory_model::memory_order_acquire );
if ( cback_ - front < 1 )
return nullptr;
}
return &buffer_[buffer_.mod( front )];
}
/// Removes front element of ring-buffer
/**
If the ring-buffer is empty, returns \p false.
Otherwise, pops the first element from the ring.
*/
bool pop_front()
{
counter_type front = front_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( cback_ - front ) <= capacity());
if ( cback_ - front < 1 ) {
cback_ = back_.load( memory_model::memory_order_acquire );
if ( cback_ - front < 1 )
return false;
}
// clean cell
value_cleaner()( buffer_[buffer_.mod( front )] );
front_.store( front + 1, memory_model::memory_order_release );
return true;
}
/// Clears the ring buffer (only consumer can call this function!)
void clear()
{
value_type v;
while ( pop( v ));
}
/// Checks if the ring-buffer is empty
bool empty() const
{
return front_.load( memory_model::memory_order_relaxed ) == back_.load( memory_model::memory_order_relaxed );
}
/// Checks if the ring-buffer is full
bool full() const
{
return back_.load( memory_model::memory_order_relaxed ) - front_.load( memory_model::memory_order_relaxed ) >= capacity();
}
/// Returns the current size of ring buffer
size_t size() const
{
return static_cast<size_t>( back_.load( memory_model::memory_order_relaxed ) - front_.load( memory_model::memory_order_relaxed ));
}
/// Returns capacity of the ring buffer
size_t capacity() const
{
return buffer_.capacity();
}
private:
//@cond
atomics::atomic<counter_type> front_;
typename opt::details::apply_padding< atomics::atomic<counter_type>, traits::padding >::padding_type pad1_;
atomics::atomic<counter_type> back_;
typename opt::details::apply_padding< atomics::atomic<counter_type>, traits::padding >::padding_type pad2_;
counter_type pfront_;
typename opt::details::apply_padding< counter_type, traits::padding >::padding_type pad3_;
counter_type cback_;
typename opt::details::apply_padding< counter_type, traits::padding >::padding_type pad4_;
buffer buffer_;
//@endcond
};
/// Single-producer single-consumer ring buffer for untyped variable-sized data
/** @ingroup cds_nonintrusive_queue
@anchor cds_nonintrusive_WeakRingBuffer_void
This SPSC ring-buffer is intended for data of variable size. The producer
allocates a buffer from ring, you fill it with data and pushes them back to ring.
The consumer thread reads data from front-end and then pops them:
\code
// allocates 1M ring buffer
WeakRingBuffer<void> theRing( 1024 * 1024 );
void producer_thread()
{
// Get data of size N bytes
size_t size;
void* data;
while ( true ) {
// Get external data
std::tie( data, size ) = get_data();
if ( data == nullptr )
break;
// Allocates a buffer from the ring
void* buf = theRing.back( size );
if ( !buf ) {
std::cout << "The ring is full" << std::endl;
break;
}
memcpy( buf, data, size );
// Push data into the ring
theRing.push_back();
}
}
void consumer_thread()
{
while ( true ) {
auto buf = theRing.front();
if ( buf.first == nullptr ) {
std::cout << "The ring is empty" << std::endl;
break;
}
// Process data
process_data( buf.first, buf.second );
// Free buffer
theRing.pop_front();
}
}
\endcode
@warning: \p %WeakRingBuffer is developed for 64-bit architecture.
32-bit platform must provide support for 64-bit atomics.
*/
#ifdef CDS_DOXYGEN_INVOKED
template <typename Traits = weak_ringbuffer::traits>
#else
template <typename Traits>
#endif
class WeakRingBuffer<void, Traits>: public cds::bounded_container
{
public:
typedef Traits traits; ///< Ring buffer traits
typedef typename traits::memory_model memory_model; ///< Memory ordering. See \p cds::opt::memory_model option
private:
//@cond
typedef typename traits::buffer::template rebind< uint8_t >::other buffer;
typedef uint64_t counter_type;
//@endcond
public:
/// Creates the ring buffer of \p capacity bytes
/**
For \p cds::opt::v::uninitialized_static_buffer the \p nCapacity parameter is ignored.
If the buffer capacity is a power of two, lightweight binary arithmetics is used
instead of modulo arithmetics.
*/
WeakRingBuffer( size_t capacity = 0 )
: front_( 0 )
, pfront_( 0 )
, cback_( 0 )
, buffer_( capacity )
{
back_.store( 0, memory_model::memory_order_release );
}
/// [producer] Reserve \p size bytes
/**
The function returns a pointer to reserved buffer of \p size bytes.
If no enough space in the ring buffer the function returns \p nullptr.
After successful \p %back() you should fill the buffer provided and call \p push_back():
\code
// allocates 1M ring buffer
WeakRingBuffer<void> theRing( 1024 * 1024 );
void producer_thread()
{
// Get data of size N bytes
size_t size;1
void* data;
while ( true ) {
// Get external data
std::tie( data, size ) = get_data();
if ( data == nullptr )
break;
// Allocates a buffer from the ring
void* buf = theRing.back( size );
if ( !buf ) {
std::cout << "The ring is full" << std::endl;
break;
}
memcpy( buf, data, size );
// Push data into the ring
theRing.push_back();
}
}
\endcode
*/
void* back( size_t size )
{
assert( size > 0 );
// Any data is rounded to 8-byte boundary
size_t real_size = calc_real_size( size );
// check if we can reserve real_size bytes
assert( real_size < capacity());
counter_type back = back_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( back - pfront_ ) <= capacity());
if ( static_cast<size_t>( pfront_ + capacity() - back ) < real_size ) {
pfront_ = front_.load( memory_model::memory_order_acquire );
if ( static_cast<size_t>( pfront_ + capacity() - back ) < real_size ) {
// not enough space
return nullptr;
}
}
uint8_t* reserved = buffer_.buffer() + buffer_.mod( back );
// Check if the buffer free space is enough for storing real_size bytes
size_t tail_size = capacity() - static_cast<size_t>( buffer_.mod( back ));
if ( tail_size < real_size ) {
// make unused tail
assert( tail_size >= sizeof( size_t ));
assert( !is_tail( tail_size ));
*reinterpret_cast<size_t*>( reserved ) = make_tail( tail_size - sizeof(size_t));
back += tail_size;
// We must be in beginning of buffer
assert( buffer_.mod( back ) == 0 );
if ( static_cast<size_t>( pfront_ + capacity() - back ) < real_size ) {
pfront_ = front_.load( memory_model::memory_order_acquire );
if ( static_cast<size_t>( pfront_ + capacity() - back ) < real_size ) {
// not enough space
return nullptr;
}
}
back_.store( back, memory_model::memory_order_release );
reserved = buffer_.buffer();
}
// reserve and store size
*reinterpret_cast<size_t*>( reserved ) = size;
return reinterpret_cast<void*>( reserved + sizeof( size_t ));
}
/// [producer] Push reserved bytes into ring
/**
The function pushes reserved buffer into the ring. Afte this call,
the buffer becomes visible by a consumer:
\code
// allocates 1M ring buffer
WeakRingBuffer<void> theRing( 1024 * 1024 );
void producer_thread()
{
// Get data of size N bytes
size_t size;1
void* data;
while ( true ) {
// Get external data
std::tie( data, size ) = get_data();
if ( data == nullptr )
break;
// Allocates a buffer from the ring
void* buf = theRing.back( size );
if ( !buf ) {
std::cout << "The ring is full" << std::endl;
break;
}
memcpy( buf, data, size );
// Push data into the ring
theRing.push_back();
}
}
\endcode
*/
void push_back()
{
counter_type back = back_.load( memory_model::memory_order_relaxed );
uint8_t* reserved = buffer_.buffer() + buffer_.mod( back );
size_t real_size = calc_real_size( *reinterpret_cast<size_t*>( reserved ));
assert( real_size < capacity());
back_.store( back + real_size, memory_model::memory_order_release );
}
/// [producer] Push \p data of \p size bytes into ring
/**
This function invokes \p back( size ), \p memcpy( buf, data, size )
and \p push_back() in one call.
*/
bool push_back( void const* data, size_t size )
{
void* buf = back( size );
if ( buf ) {
memcpy( buf, data, size );
push_back();
return true;
}
return false;
}
/// [consumer] Get top data from the ring
/**
If the ring is empty, the function returns \p nullptr in \p std:pair::first.
*/
std::pair<void*, size_t> front()
{
counter_type front = front_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( cback_ - front ) < capacity());
if ( cback_ - front < sizeof( size_t )) {
cback_ = back_.load( memory_model::memory_order_acquire );
if ( cback_ - front < sizeof( size_t ))
return std::make_pair( nullptr, 0u );
}
uint8_t * buf = buffer_.buffer() + buffer_.mod( front );
// check alignment
assert( ( reinterpret_cast<uintptr_t>( buf ) & ( sizeof( uintptr_t ) - 1 )) == 0 );
size_t size = *reinterpret_cast<size_t*>( buf );
if ( is_tail( size )) {
// unused tail, skip
CDS_VERIFY( pop_front());
front = front_.load( memory_model::memory_order_relaxed );
if ( cback_ - front < sizeof( size_t )) {
cback_ = back_.load( memory_model::memory_order_acquire );
if ( cback_ - front < sizeof( size_t ))
return std::make_pair( nullptr, 0u );
}
buf = buffer_.buffer() + buffer_.mod( front );
size = *reinterpret_cast<size_t*>( buf );
assert( !is_tail( size ));
assert( buf == buffer_.buffer());
}
#ifdef _DEBUG
size_t real_size = calc_real_size( size );
if ( static_cast<size_t>( cback_ - front ) < real_size ) {
cback_ = back_.load( memory_model::memory_order_acquire );
assert( static_cast<size_t>( cback_ - front ) >= real_size );
}
#endif
return std::make_pair( reinterpret_cast<void*>( buf + sizeof( size_t )), size );
}
/// [consumer] Pops top data
/**
Typical consumer workloop:
\code
// allocates 1M ring buffer
WeakRingBuffer<void> theRing( 1024 * 1024 );
void consumer_thread()
{
while ( true ) {
auto buf = theRing.front();
if ( buf.first == nullptr ) {
std::cout << "The ring is empty" << std::endl;
break;
}
// Process data
process_data( buf.first, buf.second );
// Free buffer
theRing.pop_front();
}
}
\endcode
*/
bool pop_front()
{
counter_type front = front_.load( memory_model::memory_order_relaxed );
assert( static_cast<size_t>( cback_ - front ) <= capacity());
if ( cback_ - front < sizeof(size_t)) {
cback_ = back_.load( memory_model::memory_order_acquire );
if ( cback_ - front < sizeof( size_t ))
return false;
}
uint8_t * buf = buffer_.buffer() + buffer_.mod( front );
// check alignment
assert( ( reinterpret_cast<uintptr_t>( buf ) & ( sizeof( uintptr_t ) - 1 )) == 0 );
size_t size = *reinterpret_cast<size_t*>( buf );
size_t real_size = calc_real_size( untail( size ));
#ifdef _DEBUG
if ( static_cast<size_t>( cback_ - front ) < real_size ) {
cback_ = back_.load( memory_model::memory_order_acquire );
assert( static_cast<size_t>( cback_ - front ) >= real_size );
}
#endif
front_.store( front + real_size, memory_model::memory_order_release );
return true;
}
/// [consumer] Clears the ring buffer
void clear()
{
for ( auto el = front(); el.first; el = front())
pop_front();
}
/// Checks if the ring-buffer is empty
bool empty() const
{
return front_.load( memory_model::memory_order_relaxed ) == back_.load( memory_model::memory_order_relaxed );
}
/// Checks if the ring-buffer is full
bool full() const
{
return back_.load( memory_model::memory_order_relaxed ) - front_.load( memory_model::memory_order_relaxed ) >= capacity();
}
/// Returns the current size of ring buffer
size_t size() const
{
return static_cast<size_t>( back_.load( memory_model::memory_order_relaxed ) - front_.load( memory_model::memory_order_relaxed ));
}
/// Returns capacity of the ring buffer
size_t capacity() const
{
return buffer_.capacity();
}
private:
//@cond
static size_t calc_real_size( size_t size )
{
size_t real_size = (( size + sizeof( uintptr_t ) - 1 ) & ~( sizeof( uintptr_t ) - 1 )) + sizeof( size_t );
assert( real_size > size );
assert( real_size - size >= sizeof( size_t ));
return real_size;
}
static bool is_tail( size_t size )
{
return ( size & ( size_t( 1 ) << ( sizeof( size_t ) * 8 - 1 ))) != 0;
}
static size_t make_tail( size_t size )
{
return size | ( size_t( 1 ) << ( sizeof( size_t ) * 8 - 1 ));
}
static size_t untail( size_t size )
{
return size & (( size_t( 1 ) << ( sizeof( size_t ) * 8 - 1 )) - 1);
}
//@endcond
private:
//@cond
atomics::atomic<counter_type> front_;
typename opt::details::apply_padding< atomics::atomic<counter_type>, traits::padding >::padding_type pad1_;
atomics::atomic<counter_type> back_;
typename opt::details::apply_padding< atomics::atomic<counter_type>, traits::padding >::padding_type pad2_;
counter_type pfront_;
typename opt::details::apply_padding< counter_type, traits::padding >::padding_type pad3_;
counter_type cback_;
typename opt::details::apply_padding< counter_type, traits::padding >::padding_type pad4_;
buffer buffer_;
//@endcond
};
}} // namespace cds::container
#endif // #ifndef CDSLIB_CONTAINER_WEAK_RINGBUFFER_H
|