1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSLIB_SYNC_LOCK_ARRAY_H
#define CDSLIB_SYNC_LOCK_ARRAY_H
#include <mutex> //unique_lock
#include <cds/details/allocator.h>
#include <cds/algo/int_algo.h>
namespace cds { namespace sync {
/// Trivial lock \ref lock_array selection policy
struct trivial_select_policy
{
/// Returns \p nWhat
size_t operator()( size_t nWhat, size_t nCapacity ) const
{
assert( nWhat < nCapacity );
CDS_UNUSED( nCapacity );
return nWhat;
}
/// Checks if \p nCapacity is acceptable by policy. For trivial policy, any \p nCapacity is accepted.
static bool is_capacity_accepted( size_t nCapacity )
{
CDS_UNUSED( nCapacity );
return true;
}
};
/// The lock \ref lock_array cell selection policy "division by modulo"
struct mod_select_policy
{
/// Returns <tt> nWhat % nCapacity </tt>
size_t operator()( size_t nWhat, size_t nCapacity ) const
{
return nWhat % nCapacity;
}
/// Checks if \p nCapacity is acceptable by policy. For modulo policy, any positive \p nCapacity is accepted.
static bool is_capacity_accepted( size_t nCapacity )
{
return nCapacity > 0;
}
};
/// The lock \ref lock_array cell selection policy "division by modulo of power of 2"
/**
This policy may be used if the size of lock array is equal to power of two.
*/
struct pow2_select_policy
{
//@cond
const size_t m_nMask;
//@endcond
/// Ctor. \p nCapacity must be power of two.
pow2_select_policy( size_t nCapacity )
: m_nMask( nCapacity - 1 )
{
assert( is_capacity_accepted( nCapacity ));
}
/// Copy constructor
pow2_select_policy( pow2_select_policy const& src )
: m_nMask( src.m_nMask )
{}
/// Move constructor
pow2_select_policy( pow2_select_policy&& src )
: m_nMask( src.m_nMask )
{}
/// Returns <tt>nWhat & (nPow2 - 1)</tt>
size_t operator()( size_t nWhat, size_t ) const
{
return nWhat & m_nMask;
}
/// Checks if \p nCapacity is acceptable by policy. \p nCapacity must be power of two
static bool is_capacity_accepted( size_t nCapacity )
{
return cds::beans::is_power2( nCapacity );
}
};
/// Array of locks
/**
The lock array is useful for building fine-grained lock-based data structure
based on striping technique. Instead of locking access to data struct (a hash map, for example)
at whole, the striping locks only part of the map (a bucket). So, access to different buckets
can be simultaneous.
Template arguments:
- \p Lock - lock type, for example, \p std::mutex, \p cds::sync::spin_lock
- \p SelectPolicy - array cell selection policy, the default is \ref mod_select_policy
Available policies: \ref trivial_select_policy, \ref pow2_select_policy, \ref mod_select_policy.
- \p Alloc - memory allocator for array
To determine array's cell the selection policy \p SelectPolicy functor is used. Two arguments
are passed to the policy:
\code size_t operator()( size_t nHint, size_t nCapacity ) const \endcode
- \p nHint - a hint to calculate cell index in the lock array. Usually, it is a hash value.
- \p nCapacity - the size of the lock array
The functor should return the index in the lock array.
Note that the type of \p nHint parameter can be any.
*/
template <typename Lock
, typename SelectPolicy = mod_select_policy
, class Alloc = CDS_DEFAULT_ALLOCATOR
>
class lock_array
{
//@cond
typedef ::cds::details::Allocator< Lock, Alloc > cxx_allocator;
//@endcond
public:
typedef Lock lock_type ; ///< lock type
typedef SelectPolicy select_cell_policy ; ///< Cell selection policy functor
static size_t const c_nUnspecifiedCell = (size_t) -1 ; ///< failed \ref try_lock call result
protected:
lock_type * m_arrLocks ; ///< lock array
size_t const m_nCapacity ; ///< array capacity
select_cell_policy m_SelectCellPolicy ; ///< Cell selection policy
protected:
//@cond
static lock_type * create_lock_array( size_t nCapacity )
{
return cxx_allocator().NewArray( nCapacity );
}
static void delete_lock_array( lock_type * pArr, size_t nCapacity )
{
if ( pArr )
cxx_allocator().Delete( pArr, nCapacity );
}
// Only for internal use!!!
lock_array()
: m_arrLocks( nullptr )
, m_nCapacity(0)
{}
lock_array( select_cell_policy const& policy )
: m_arrLocks( nullptr )
, m_nCapacity(0)
, m_SelectCellPolicy( policy )
{}
//@endcond
public:
/// Constructs array of locks
/**
Allocates the array and initializes all locks as unlocked.
*/
lock_array(
size_t nCapacity ///< [in] Array size
)
: m_arrLocks( nullptr )
, m_nCapacity( nCapacity )
{
m_arrLocks = create_lock_array( nCapacity );
}
/// Constructs array of lock and copy cell selection policy
/**
Allocates the array and initializes all locks as unlocked.
*/
lock_array(
size_t nCapacity, ///< [in] Array size
select_cell_policy const& policy ///< Cell selection policy (copy-constructible)
)
: m_arrLocks( nullptr )
, m_nCapacity( nCapacity )
, m_SelectCellPolicy( policy )
{
m_arrLocks = create_lock_array( m_nCapacity );
}
/// Constructs array of lock and move cell selection policy
/**
Allocates the array and initializes all locks as unlocked.
*/
lock_array(
size_t nCapacity, ///< [in] Array size
select_cell_policy&& policy ///< Cell selection policy (move-constructible)
)
: m_arrLocks( nullptr )
, m_nCapacity( nCapacity )
, m_SelectCellPolicy( std::forward<select_cell_policy>( policy ))
{
m_arrLocks = create_lock_array( m_nCapacity );
}
/// Destructs array of locks and frees used memory
~lock_array()
{
delete_lock_array( m_arrLocks, m_nCapacity );
}
/// Locks a lock at cell \p hint
/**
To define real array's cell which should be locked, \ref select_cell_policy is used.
The target cell is a result of <tt>select_cell_policy( hint, size())</tt>.
Returns the index of locked lock.
*/
template <typename Q>
size_t lock( Q const& hint )
{
size_t nCell = m_SelectCellPolicy( hint, size());
assert( nCell < size());
m_arrLocks[nCell].lock();
return nCell;
}
/// Try lock a lock at cell \p hint
/**
To define real array's cell which should be locked, \ref select_cell_policy is used.
The target cell is a result of <tt>select_cell_policy( hint, size())</tt>.
Returns the index of locked lock if success, \ref c_nUnspecifiedCell constant otherwise.
*/
template <typename Q>
size_t try_lock( Q const& hint )
{
size_t nCell = m_SelectCellPolicy( hint, size());
assert( nCell < size());
if ( m_arrLocks[nCell].try_lock())
return nCell;
return c_nUnspecifiedCell;
}
/// Unlock the lock specified by index \p nCell
void unlock( size_t nCell )
{
assert( nCell < size());
m_arrLocks[nCell].unlock();
}
/// Lock all
void lock_all()
{
lock_type * pLock = m_arrLocks;
for ( lock_type * pEnd = m_arrLocks + size(); pLock != pEnd; ++pLock )
pLock->lock();
}
/// Unlock all
void unlock_all()
{
lock_type * pLock = m_arrLocks;
for ( lock_type * pEnd = m_arrLocks + size(); pLock != pEnd; ++pLock )
pLock->unlock();
}
/// Get lock at cell \p nCell.
/**
Precondition: <tt>nCell < size()</tt>
*/
lock_type& at( size_t nCell ) const
{
assert( nCell < size());
return m_arrLocks[ nCell ];
}
/// Size of lock array.
size_t size() const
{
return m_nCapacity;
}
};
}} // namespace cds::sync
//@cond
namespace std {
/// Specialization \p std::unique_lock for \p sync::lock_array
template <typename Lock, typename SelectPolicy, class Alloc>
class unique_lock< cds::sync::lock_array< Lock, SelectPolicy, Alloc > >
{
public:
typedef cds::sync::lock_array< Lock, SelectPolicy, Alloc > lock_array_type; ///< Lock array type
private:
lock_array_type& m_arrLocks;
size_t m_nLockGuarded;
static const size_t c_nLockAll = ~size_t( 0 );
public:
/// Onws the lock array \p arrLocks and locks a cell determined by \p hint parameter
template <typename Q>
unique_lock( lock_array_type& arrLocks, Q const& hint )
: m_arrLocks( arrLocks )
, m_nLockGuarded( arrLocks.lock( hint ))
{}
/// Locks all from \p arrLocks array
unique_lock( lock_array_type& arrLocks )
: m_arrLocks( arrLocks )
, m_nLockGuarded( c_nLockAll )
{
arrLocks.lock_all();
}
unique_lock() = delete;
unique_lock( unique_lock const& ) = delete;
~unique_lock()
{
if ( m_nLockGuarded == c_nLockAll )
m_arrLocks.unlock_all();
else
m_arrLocks.unlock( m_nLockGuarded );
}
};
} // namespace std
//@endcond
#endif // #ifndef CDSLIB_SYNC_LOCK_ARRAY_H
|