1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSLIB_SYNC_POOL_MONITOR_H
#define CDSLIB_SYNC_POOL_MONITOR_H
#include <cds/sync/monitor.h>
#include <cds/algo/atomic.h>
#include <cds/algo/backoff_strategy.h>
#include <cds/opt/options.h> // opt::none
namespace cds { namespace sync {
/// \p pool_monitor traits
struct pool_monitor_traits {
/// Dummy internal statistics if \p Stat template parameter is \p false
struct empty_stat
{
//@cond
void onLock() const {}
void onUnlock() const {}
void onLockContention() const {}
void onUnlockContention() const {}
void onLockAllocation() const {}
void onLockDeallocation() const {}
//@endcond
};
/// Monitor's internal statistics, used if \p Stat template parameter is \p true
template <typename Counter = cds::atomicity::event_counter >
struct stat
{
typedef Counter event_counter; ///< measure type
event_counter m_nLockCount; ///< Number of monitor \p lock() call
event_counter m_nUnlockCount; ///< Number of monitor \p unlock() call
event_counter m_nMaxLocked; ///< Max number of simuntaneously locked mutexes
event_counter m_nLockContention; ///< Number of \p lock() contenton
event_counter m_nUnlockContention; ///< Number of \p unlock() contention
event_counter m_nLockAllocation; ///< Number of the lock allocation from the pool
event_counter m_nLockDeallocation; ///< Number of the lock deallocation
event_counter m_nMaxAllocated; ///< Max number of sumultaneously allocated mutexes
//@cond
void onLock()
{
++m_nLockCount;
int nDiff = static_cast<int>( m_nLockCount.get() - m_nUnlockCount.get());
if ( nDiff > 0 && m_nMaxLocked.get() < static_cast<typename event_counter::value_type>( nDiff ))
m_nMaxLocked = static_cast<typename event_counter::value_type>( nDiff );
}
void onUnlock() { ++m_nUnlockCount; }
void onLockContention() { ++m_nLockContention; }
void onUnlockContention() { ++m_nUnlockContention;}
void onLockAllocation()
{
++m_nLockAllocation;
int nDiff = static_cast<int>( m_nLockAllocation.get() - m_nLockDeallocation.get());
if ( nDiff > 0 && m_nMaxAllocated.get() < static_cast<typename event_counter::value_type>( nDiff ))
m_nMaxAllocated = static_cast<typename event_counter::value_type>( nDiff );
}
void onLockDeallocation() { ++m_nLockDeallocation;}
//@endcond
};
};
/// @ref cds_sync_monitor "Monitor" that allocates node's lock when needed
/**
The monitor is intended for reducing the number of system mutexes for
huge containers like a tree. The monitor allocates the mutex from the pool \p LockPool
only when container's node should be locked. Lifetime of node's mutex is managed by
reference counter. When the reference counter to node's mutex becomes zero,
the mutex is given back to the pool.
The monitor is blocked: the access to node's mutex is performed under the spin-lock.
However, node locking/unlocking is performed beyond the spin-lock.
Template arguments:
- \p LockPool - the @ref cds_memory_pool "pool type". The pool must maintain
the objects of type \p std::mutex or similar. The access to the pool is not synchronized.
- \p BackOff - back-off strategy for spinning, default is \p cds::backoff::Default
- \p Stat - enable (\p true) or disable (\p false, the default) monitor's internal statistics.
<b>How to use</b>
\code
typedef cds::memory::vyukov_queue_pool< std::mutex > pool_type;
typedef cds::sync::pool_monitor< pool_type > sync_monitor;
\endcode
*/
template <class LockPool, typename BackOff = cds::backoff::Default, bool Stat = false >
class pool_monitor
{
public:
typedef LockPool pool_type; ///< Pool type
typedef typename pool_type::value_type lock_type; ///< node lock type
typedef typename std::conditional<
std::is_same< BackOff, cds::opt::none >::value,
cds::backoff::yield,
BackOff
>::type back_off; ///< back-off strategy for spinning
typedef uint32_t refspin_type; ///< Reference counter + spin-lock bit
/// Internal statistics
typedef typename std::conditional<
Stat,
typename pool_monitor_traits::stat<>,
typename pool_monitor_traits::empty_stat
>::type internal_stat;
/// Pool's default capacity
static constexpr size_t const c_nDefaultCapacity = 256;
private:
//@cond
static constexpr refspin_type const c_nSpinBit = 1;
static constexpr refspin_type const c_nRefIncrement = 2;
mutable pool_type m_Pool;
mutable internal_stat m_Stat;
//@endcond
public:
/// Node injection
struct node_injection
{
mutable atomics::atomic<refspin_type> m_RefSpin; ///< Spin-lock for \p m_pLock (bit 0) + reference counter
mutable lock_type * m_pLock; ///< Node-level lock
//@cond
node_injection()
: m_pLock( nullptr )
{
m_RefSpin.store( 0, atomics::memory_order_release );
}
~node_injection()
{
assert( m_pLock == nullptr );
assert( m_RefSpin.load( atomics::memory_order_relaxed ) == 0 );
}
bool check_free() const
{
return m_pLock == nullptr && m_RefSpin.load( atomics::memory_order_relaxed ) == 0;
}
//@endcond
};
/// Initializes the pool of 256 preallocated mutexes
pool_monitor()
: m_Pool( c_nDefaultCapacity )
{}
/// Initializes the pool of \p nPoolCapacity preallocated mutexes
pool_monitor( size_t nPoolCapacity )
: m_Pool( nPoolCapacity ? nPoolCapacity : c_nDefaultCapacity )
{}
/// Makes exclusive access to node \p p
template <typename Node>
void lock( Node const& p ) const
{
lock_type * pLock;
m_Stat.onLock();
// try lock spin and increment reference counter
refspin_type cur = p.m_SyncMonitorInjection.m_RefSpin.load( atomics::memory_order_relaxed ) & ~c_nSpinBit;
if ( !p.m_SyncMonitorInjection.m_RefSpin.compare_exchange_weak( cur, cur + c_nRefIncrement + c_nSpinBit,
atomics::memory_order_acq_rel, atomics::memory_order_acquire ))
{
back_off bkoff;
do {
m_Stat.onLockContention();
bkoff();
cur &= ~c_nSpinBit;
} while ( !p.m_SyncMonitorInjection.m_RefSpin.compare_exchange_weak( cur, cur + c_nRefIncrement + c_nSpinBit,
atomics::memory_order_acq_rel, atomics::memory_order_acquire ));
}
// spin locked
// If the node has no lock, allocate it from pool
pLock = p.m_SyncMonitorInjection.m_pLock;
if ( !pLock ) {
assert( cur == 0 );
pLock = p.m_SyncMonitorInjection.m_pLock = m_Pool.allocate( 1 );
assert( pLock != nullptr );
m_Stat.onLockAllocation();
}
// unlock spin
p.m_SyncMonitorInjection.m_RefSpin.store( cur + c_nRefIncrement, atomics::memory_order_release );
// lock the node
pLock->lock();
}
/// Unlocks the node \p p
template <typename Node>
void unlock( Node const& p ) const
{
lock_type * pLock = nullptr;
m_Stat.onUnlock();
assert( p.m_SyncMonitorInjection.m_pLock != nullptr );
p.m_SyncMonitorInjection.m_pLock->unlock();
// try lock spin
refspin_type cur = p.m_SyncMonitorInjection.m_RefSpin.load( atomics::memory_order_relaxed ) & ~c_nSpinBit;
if ( !p.m_SyncMonitorInjection.m_RefSpin.compare_exchange_weak( cur, cur | c_nSpinBit,
atomics::memory_order_acquire, atomics::memory_order_acquire ))
{
back_off bkoff;
do {
m_Stat.onUnlockContention();
bkoff();
cur &= ~c_nSpinBit;
} while ( !p.m_SyncMonitorInjection.m_RefSpin.compare_exchange_weak( cur, cur | c_nSpinBit,
atomics::memory_order_acquire, atomics::memory_order_acquire ));
}
// spin locked now
// If we are the unique owner - deallocate lock
if ( cur == c_nRefIncrement ) {
pLock = p.m_SyncMonitorInjection.m_pLock;
p.m_SyncMonitorInjection.m_pLock = nullptr;
}
// unlock spin
p.m_SyncMonitorInjection.m_RefSpin.store( cur - c_nRefIncrement, atomics::memory_order_release );
// free pLock
if ( pLock ) {
m_Pool.deallocate( pLock, 1 );
m_Stat.onLockDeallocation();
}
}
/// Scoped lock
template <typename Node>
using scoped_lock = monitor_scoped_lock< pool_monitor, Node >;
/// Returns the reference to internal statistics
/**
If class' template argument \p Stat is \p false,
the function returns \ref pool_monitor_traits::empty_stat "dummy statistics".
Otherwise, it returns the reference to monitor's internal statistics
of type \ref pool_monitor_traits::stat.
*/
internal_stat const& statistics() const
{
return m_Stat;
}
};
}} // namespace cds::sync
#endif // #ifndef CDSLIB_SYNC_POOL_MONITOR_H
|