1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef CDSTEST_THREAD_H
#define CDSTEST_THREAD_H
#include <cds_test/ext_gtest.h>
#include <vector>
#include <thread>
#include <condition_variable>
#include <mutex>
#include <chrono>
#include <cds/threading/model.h>
namespace cds_test {
// Forwards
class thread;
class thread_pool;
// Test thread
class thread
{
void run();
protected: // thread_pool interface
thread( thread const& sample );
virtual ~thread()
{}
protected:
virtual thread * clone() = 0;
virtual void test() = 0;
virtual void SetUp()
{
cds::threading::Manager::attachThread();
}
virtual void TearDown()
{
cds::threading::Manager::detachThread();
}
public:
explicit thread( thread_pool& master, int type = 0 );
thread_pool& pool() { return m_pool; }
int type() const { return m_type; }
size_t id() const { return m_id; }
bool time_elapsed() const;
private:
friend class thread_pool;
thread_pool& m_pool;
int const m_type;
size_t const m_id;
};
// Pool of test threads
class thread_pool
{
class barrier
{
public:
barrier()
: m_count( 0 )
{}
void reset( size_t count )
{
std::unique_lock< std::mutex > lock( m_mtx );
m_count = count;
}
bool wait()
{
std::unique_lock< std::mutex > lock( m_mtx );
if ( --m_count == 0 ) {
m_cv.notify_all();
return true;
}
while ( m_count != 0 )
m_cv.wait( lock );
return false;
}
private:
size_t m_count;
std::mutex m_mtx;
std::condition_variable m_cv;
};
class initial_gate
{
public:
initial_gate()
: m_ready( false )
{}
void wait()
{
std::unique_lock< std::mutex > lock( m_mtx );
while ( !m_ready )
m_cv.wait( lock );
}
void ready()
{
std::unique_lock< std::mutex > lock( m_mtx );
m_ready = true;
m_cv.notify_all();
}
void reset()
{
std::unique_lock< std::mutex > lock( m_mtx );
m_ready = false;
}
private:
std::mutex m_mtx;
std::condition_variable m_cv;
bool m_ready;
};
public:
explicit thread_pool( ::testing::Test& fx )
: m_fixture( fx )
, m_bTimeElapsed( false )
{}
~thread_pool()
{
clear();
}
void add( thread * what )
{
m_workers.push_back( what );
}
void add( thread * what, size_t count )
{
add( what );
for ( size_t i = 1; i < count; ++i ) {
thread * p = what->clone();
add( p );
}
}
std::chrono::milliseconds run()
{
return run( std::chrono::seconds::zero());
}
std::chrono::milliseconds run( std::chrono::seconds duration )
{
m_startBarrier.reset( m_workers.size() + 1 );
m_stopBarrier.reset( m_workers.size() + 1 );
// Create threads
std::vector< std::thread > threads;
threads.reserve( m_workers.size());
for ( auto w : m_workers )
threads.emplace_back( &thread::run, w );
// The pool is intialized
m_startPoint.ready();
m_bTimeElapsed.store( false, std::memory_order_release );
auto native_duration = std::chrono::duration_cast<std::chrono::steady_clock::duration>(duration);
// The pool is ready to start all workers
m_startBarrier.wait();
auto time_start = std::chrono::steady_clock::now();
auto const expected_end = time_start + native_duration;
if ( duration != std::chrono::seconds::zero()) {
for ( ;; ) {
std::this_thread::sleep_for( native_duration );
auto time_now = std::chrono::steady_clock::now();
if ( time_now >= expected_end )
break;
native_duration = expected_end - time_now;
}
}
m_bTimeElapsed.store( true, std::memory_order_release );
// Waiting for all workers done
m_stopBarrier.wait();
auto time_end = std::chrono::steady_clock::now();
for ( auto& t : threads )
t.join();
return m_testDuration = std::chrono::duration_cast<std::chrono::milliseconds>(time_end - time_start);
}
size_t size() const { return m_workers.size(); }
thread& get( size_t idx ) const { return *m_workers.at( idx ); }
template <typename Fixture>
Fixture& fixture()
{
return static_cast<Fixture&>(m_fixture);
}
std::chrono::milliseconds duration() const { return m_testDuration; }
void clear()
{
for ( auto t : m_workers )
delete t;
m_workers.clear();
m_startPoint.reset();
}
void reset()
{
clear();
}
protected: // thread interface
size_t get_next_id()
{
return m_workers.size();
}
void ready_to_start( thread& /*who*/ )
{
// Called from test thread
// Wait until the pool is ready
m_startPoint.wait();
// Wait until all thread ready
m_startBarrier.wait();
}
void thread_done( thread& /*who*/ )
{
// Called from test thread
m_stopBarrier.wait();
}
private:
friend class thread;
::testing::Test& m_fixture;
std::vector<thread *> m_workers;
initial_gate m_startPoint;
barrier m_startBarrier;
barrier m_stopBarrier;
std::atomic<bool> m_bTimeElapsed;
std::chrono::milliseconds m_testDuration;
};
inline thread::thread( thread_pool& master, int type /*= 0*/ )
: m_pool( master )
, m_type( type )
, m_id( master.get_next_id())
{}
inline thread::thread( thread const& sample )
: m_pool( sample.m_pool )
, m_type( sample.m_type )
, m_id( m_pool.get_next_id())
{}
inline void thread::run()
{
SetUp();
m_pool.ready_to_start( *this );
test();
m_pool.thread_done( *this );
TearDown();
}
inline bool thread::time_elapsed() const
{
return m_pool.m_bTimeElapsed.load( std::memory_order_acquire );
}
} // namespace cds_test
#endif // CDSTEST_THREAD_H
|