1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "queue_type.h"
// Multi-threaded queue test for push operation
namespace {
static size_t s_nThreadCount = 8;
static size_t s_nQueueSize = 20000000 ; // no more than 20 million records
class queue_push: public cds_test::stress_fixture
{
protected:
struct value_type
{
size_t nNo;
value_type()
: nNo( 0 )
{}
value_type( size_t n )
: nNo( n )
{}
};
template <class Queue>
class Producer: public cds_test::thread
{
typedef cds_test::thread base_class;
public:
Producer( cds_test::thread_pool& pool, Queue& queue )
: base_class( pool )
, m_Queue( queue )
, m_nStartItem( 0 )
, m_nEndItem( 0 )
, m_nPushError( 0 )
{}
Producer( Producer& src )
: base_class( src )
, m_Queue( src.m_Queue )
, m_nStartItem( 0 )
, m_nEndItem( 0 )
, m_nPushError( 0 )
{}
virtual thread * clone()
{
return new Producer( *this );
}
virtual void test()
{
for ( size_t nItem = m_nStartItem; nItem < m_nEndItem; ++nItem ) {
if ( !m_Queue.push( nItem ))
++m_nPushError;
}
}
public:
Queue& m_Queue;
size_t m_nStartItem;
size_t m_nEndItem;
size_t m_nPushError;
};
public:
static void SetUpTestCase()
{
cds_test::config const& cfg = get_config( "queue_push" );
s_nThreadCount = cfg.get_size_t( "ThreadCount", s_nThreadCount );
s_nQueueSize = cfg.get_size_t( "QueueSize", s_nQueueSize );
if ( s_nThreadCount == 0u )
s_nThreadCount = 1;
if ( s_nQueueSize == 0u )
s_nQueueSize = 1000;
}
//static void TearDownTestCase();
protected:
template <class Queue>
void test( Queue& q )
{
cds_test::thread_pool& pool = get_pool();
pool.add( new Producer<Queue>( pool, q ), s_nThreadCount );
size_t nStart = 0;
size_t nThreadItemCount = s_nQueueSize / s_nThreadCount;
for ( size_t i = 0; i < pool.size(); ++i ) {
Producer<Queue>& thread = static_cast<Producer<Queue>&>(pool.get( i ));
thread.m_nStartItem = nStart;
nStart += nThreadItemCount;
thread.m_nEndItem = nStart;
}
s_nQueueSize = nThreadItemCount * s_nThreadCount;
propout() << std::make_pair( "thread_count", s_nThreadCount )
<< std::make_pair( "push_count", s_nQueueSize );
std::chrono::milliseconds duration = pool.run();
propout() << std::make_pair( "duration", duration );
analyze( q );
propout() << q.statistics();
}
template <class Queue>
void analyze( Queue& q )
{
size_t nThreadItems = s_nQueueSize / s_nThreadCount;
cds_test::thread_pool& pool = get_pool();
for ( size_t i = 0; i < pool.size(); ++i ) {
Producer<Queue>& thread = static_cast<Producer<Queue>&>(pool.get( i ));
EXPECT_EQ( thread.m_nPushError, 0u ) << " producer thread " << i;
}
EXPECT_TRUE( !q.empty());
std::unique_ptr< uint8_t[] > arr( new uint8_t[s_nQueueSize] );
memset( arr.get(), 0, sizeof(arr[0]) * s_nQueueSize );
size_t nPopped = 0;
value_type val;
while ( q.pop( val )) {
nPopped++;
++arr[ val.nNo ];
}
size_t nTotalItems = nThreadItems * s_nThreadCount;
for ( size_t i = 0; i < nTotalItems; ++i ) {
EXPECT_EQ( arr[i], 1 ) << "i=" << i;
}
}
};
CDSSTRESS_MSQueue( queue_push )
CDSSTRESS_MoirQueue( queue_push )
CDSSTRESS_BasketQueue( queue_push )
CDSSTRESS_OptimsticQueue( queue_push )
CDSSTRESS_FCQueue( queue_push )
CDSSTRESS_FCDeque( queue_push )
CDSSTRESS_RWQueue( queue_push )
CDSSTRESS_StdQueue( queue_push )
#undef CDSSTRESS_Queue_F
#define CDSSTRESS_Queue_F( test_fixture, type_name ) \
TEST_F( test_fixture, type_name ) \
{ \
typedef queue::Types< value_type >::type_name queue_type; \
queue_type queue( s_nQueueSize ); \
test( queue ); \
}
CDSSTRESS_VyukovQueue( queue_push )
#undef CDSSTRESS_Queue_F
// ********************************************************************
// SegmentedQueue test
class segmented_queue_push
: public queue_push
, public ::testing::WithParamInterface< size_t >
{
typedef queue_push base_class;
protected:
template <typename Queue>
void test()
{
size_t quasi_factor = GetParam();
Queue q( quasi_factor );
propout() << std::make_pair( "quasi_factor", quasi_factor );
base_class::test( q );
}
public:
static std::vector< size_t > get_test_parameters()
{
cds_test::config const& cfg = cds_test::stress_fixture::get_config( "queue_push" );
bool bIterative = cfg.get_bool( "SegmentedQueue_Iterate", false );
size_t quasi_factor = cfg.get_size_t( "SegmentedQueue_SegmentSize", 256 );
std::vector<size_t> args;
if ( bIterative && quasi_factor > 4 ) {
for ( size_t qf = 4; qf <= quasi_factor; qf *= 2 )
args.push_back( qf );
}
else {
if ( quasi_factor > 2 )
args.push_back( quasi_factor );
else
args.push_back( 2 );
}
return args;
}
};
#define CDSSTRESS_Queue_F( test_fixture, type_name ) \
TEST_P( test_fixture, type_name ) \
{ \
typedef typename queue::Types<value_type>::type_name queue_type; \
test< queue_type >(); \
}
CDSSTRESS_SegmentedQueue( segmented_queue_push )
#ifdef CDSTEST_GTEST_INSTANTIATE_TEST_CASE_P_HAS_4TH_ARG
static std::string get_test_parameter_name( testing::TestParamInfo<size_t> const& p )
{
return std::to_string( p.param );
}
INSTANTIATE_TEST_CASE_P( SQ,
segmented_queue_push,
::testing::ValuesIn( segmented_queue_push::get_test_parameters()), get_test_parameter_name );
#else
INSTANTIATE_TEST_CASE_P( SQ,
segmented_queue_push,
::testing::ValuesIn( segmented_queue_push::get_test_parameters()));
#endif
} // namespace
|