1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "queue_type.h"
#include <vector>
#include <algorithm>
#include <type_traits>
// Multi-threaded queue push/pop test
namespace {
static size_t s_nConsumerThreadCount = 4;
static size_t s_nProducerThreadCount = 4;
static size_t s_nQueueSize = 4000000;
static size_t s_nHeavyValueSize = 100;
static std::atomic<size_t> s_nProducerDone( 0 );
struct old_value
{
size_t nNo;
size_t nWriterNo;
};
template<class Value = old_value>
class queue_push_pop: public cds_test::stress_fixture
{
protected:
using value_type = Value;
enum {
producer_thread,
consumer_thread
};
template <class Queue>
class Producer: public cds_test::thread
{
typedef cds_test::thread base_class;
public:
Producer( cds_test::thread_pool& pool, Queue& queue, size_t nPushCount )
: base_class( pool, producer_thread )
, m_Queue( queue )
, m_nPushFailed( 0 )
, m_nPushCount( nPushCount )
{}
Producer( Producer& src )
: base_class( src )
, m_Queue( src.m_Queue )
, m_nPushFailed( 0 )
, m_nPushCount( src.m_nPushCount )
{}
virtual thread * clone()
{
return new Producer( *this );
}
virtual void test()
{
size_t const nPushCount = m_nPushCount;
value_type v;
v.nWriterNo = id();
v.nNo = 0;
m_nPushFailed = 0;
while ( v.nNo < nPushCount ) {
if ( m_Queue.push( v ))
++v.nNo;
else
++m_nPushFailed;
}
s_nProducerDone.fetch_add( 1 );
}
public:
Queue& m_Queue;
size_t m_nPushFailed;
size_t const m_nPushCount;
};
template <class Queue>
class Consumer: public cds_test::thread
{
typedef cds_test::thread base_class;
public:
Queue& m_Queue;
size_t const m_nPushPerProducer;
size_t m_nPopEmpty;
size_t m_nPopped;
size_t m_nBadWriter;
typedef std::vector<size_t> popped_data;
typedef std::vector<size_t>::iterator data_iterator;
typedef std::vector<size_t>::const_iterator const_data_iterator;
std::vector<popped_data> m_WriterData;
private:
void initPoppedData()
{
const size_t nProducerCount = s_nProducerThreadCount;
m_WriterData.resize( nProducerCount );
for ( size_t i = 0; i < nProducerCount; ++i )
m_WriterData[i].reserve( m_nPushPerProducer );
}
public:
Consumer( cds_test::thread_pool& pool, Queue& queue, size_t nPushPerProducer )
: base_class( pool, consumer_thread )
, m_Queue( queue )
, m_nPushPerProducer( nPushPerProducer )
, m_nPopEmpty( 0 )
, m_nPopped( 0 )
, m_nBadWriter( 0 )
{
initPoppedData();
}
Consumer( Consumer& src )
: base_class( src )
, m_Queue( src.m_Queue )
, m_nPushPerProducer( src.m_nPushPerProducer )
, m_nPopEmpty( 0 )
, m_nPopped( 0 )
, m_nBadWriter( 0 )
{
initPoppedData();
}
virtual thread * clone()
{
return new Consumer( *this );
}
virtual void test()
{
m_nPopEmpty = 0;
m_nPopped = 0;
m_nBadWriter = 0;
const size_t nTotalWriters = s_nProducerThreadCount;
value_type v;
while ( true ) {
if ( m_Queue.pop( v )) {
++m_nPopped;
if ( v.nWriterNo < nTotalWriters )
m_WriterData[ v.nWriterNo ].push_back( v.nNo );
else
++m_nBadWriter;
}
else {
++m_nPopEmpty;
if ( s_nProducerDone.load() >= nTotalWriters ) {
if ( m_Queue.empty())
break;
}
}
}
}
};
protected:
size_t m_nThreadPushCount;
protected:
template <class Queue>
void analyze( Queue& q, size_t /*nLeftOffset*/ = 0, size_t nRightOffset = 0 )
{
cds_test::thread_pool& pool = get_pool();
typedef Consumer<Queue> consumer_type;
typedef Producer<Queue> producer_type;
size_t nPostTestPops = 0;
{
value_type v;
while ( q.pop( v ))
++nPostTestPops;
}
size_t nTotalPops = 0;
size_t nPopFalse = 0;
size_t nPoppedItems = 0;
size_t nPushFailed = 0;
std::vector< consumer_type * > arrConsumer;
for ( size_t i = 0; i < pool.size(); ++i ) {
cds_test::thread& thr = pool.get(i);
if ( thr.type() == consumer_thread ) {
consumer_type& consumer = static_cast<consumer_type&>( thr );
nTotalPops += consumer.m_nPopped;
nPopFalse += consumer.m_nPopEmpty;
arrConsumer.push_back( &consumer );
EXPECT_EQ( consumer.m_nBadWriter, 0u ) << "consumer_thread_no " << i;
size_t nPopped = 0;
for ( size_t n = 0; n < s_nProducerThreadCount; ++n )
nPopped += consumer.m_WriterData[n].size();
nPoppedItems += nPopped;
}
else {
assert( thr.type() == producer_thread );
producer_type& producer = static_cast<producer_type&>( thr );
nPushFailed += producer.m_nPushFailed;
EXPECT_EQ( producer.m_nPushFailed, 0u ) << "producer_thread_no " << i;
}
}
EXPECT_EQ( nTotalPops, nPoppedItems );
EXPECT_EQ( nTotalPops + nPostTestPops, s_nQueueSize ) << "nTotalPops=" << nTotalPops << ", nPostTestPops=" << nPostTestPops;
EXPECT_TRUE( q.empty());
// Test consistency of popped sequence
for ( size_t nWriter = 0; nWriter < s_nProducerThreadCount; ++nWriter ) {
std::vector<size_t> arrData;
arrData.reserve( m_nThreadPushCount );
for ( size_t nReader = 0; nReader < arrConsumer.size(); ++nReader ) {
auto it = arrConsumer[nReader]->m_WriterData[nWriter].begin();
auto itEnd = arrConsumer[nReader]->m_WriterData[nWriter].end();
if ( it != itEnd ) {
auto itPrev = it;
for ( ++it; it != itEnd; ++it ) {
EXPECT_LT( *itPrev, *it + nRightOffset ) << "consumer=" << nReader << ", producer=" << nWriter;
itPrev = it;
}
}
for ( it = arrConsumer[nReader]->m_WriterData[nWriter].begin(); it != itEnd; ++it )
arrData.push_back( *it );
}
std::sort( arrData.begin(), arrData.end());
for ( size_t i=1; i < arrData.size(); ++i ) {
EXPECT_EQ( arrData[i - 1] + 1, arrData[i] ) << "producer=" << nWriter;
}
EXPECT_EQ( arrData[0], 0u ) << "producer=" << nWriter;
EXPECT_EQ( arrData[arrData.size() - 1], m_nThreadPushCount - 1 ) << "producer=" << nWriter;
}
}
template <class Queue>
void test_queue( Queue& q )
{
m_nThreadPushCount = s_nQueueSize / s_nProducerThreadCount;
cds_test::thread_pool& pool = get_pool();
pool.add( new Producer<Queue>( pool, q, m_nThreadPushCount ), s_nProducerThreadCount );
pool.add( new Consumer<Queue>( pool, q, m_nThreadPushCount ), s_nConsumerThreadCount );
s_nProducerDone.store( 0 );
s_nQueueSize = m_nThreadPushCount * s_nProducerThreadCount;
propout() << std::make_pair( "producer_count", s_nProducerThreadCount )
<< std::make_pair( "consumer_count", s_nConsumerThreadCount )
<< std::make_pair( "push_count", s_nQueueSize );
std::chrono::milliseconds duration = pool.run();
propout() << std::make_pair( "duration", duration );
}
template <class Queue>
void test( Queue& q )
{
test_queue( q );
analyze( q );
propout() << q.statistics();
}
private:
static void set_array_size( size_t size ) {
const bool tmp = fc_test::has_set_array_size<value_type>::value;
set_array_size(size, std::integral_constant<bool, tmp>());
}
static void set_array_size(size_t size, std::true_type){
value_type::set_array_size(size);
}
static void set_array_size(size_t, std::false_type)
{
}
public:
static void SetUpTestCase()
{
cds_test::config const& cfg = get_config( "queue_push_pop" );
s_nConsumerThreadCount = cfg.get_size_t( "ConsumerCount", s_nConsumerThreadCount );
s_nProducerThreadCount = cfg.get_size_t( "ProducerCount", s_nProducerThreadCount );
s_nQueueSize = cfg.get_size_t( "QueueSize", s_nQueueSize );
s_nHeavyValueSize = cfg.get_size_t( "HeavyValueSize", s_nHeavyValueSize );
if ( s_nConsumerThreadCount == 0u )
s_nConsumerThreadCount = 1;
if ( s_nProducerThreadCount == 0u )
s_nProducerThreadCount = 1;
if ( s_nQueueSize == 0u )
s_nQueueSize = 1000;
if ( s_nHeavyValueSize == 0 )
s_nHeavyValueSize = 1;
set_array_size( s_nHeavyValueSize );
}
//static void TearDownTestCase();
};
using fc_with_heavy_value = queue_push_pop< fc_test::heavy_value<36000> >;
using simple_queue_push_pop = queue_push_pop<>;
CDSSTRESS_MSQueue( simple_queue_push_pop )
CDSSTRESS_MoirQueue( simple_queue_push_pop )
CDSSTRESS_BasketQueue( simple_queue_push_pop )
CDSSTRESS_OptimsticQueue( simple_queue_push_pop )
CDSSTRESS_FCQueue( simple_queue_push_pop )
CDSSTRESS_FCDeque( simple_queue_push_pop )
CDSSTRESS_FCDeque_HeavyValue( fc_with_heavy_value )
CDSSTRESS_RWQueue( simple_queue_push_pop )
CDSSTRESS_StdQueue( simple_queue_push_pop )
#undef CDSSTRESS_Queue_F
#define CDSSTRESS_Queue_F( test_fixture, type_name ) \
TEST_F( test_fixture, type_name ) \
{ \
typedef queue::Types< value_type >::type_name queue_type; \
queue_type queue( s_nQueueSize ); \
test( queue ); \
}
CDSSTRESS_VyukovQueue( simple_queue_push_pop )
#undef CDSSTRESS_Queue_F
// ********************************************************************
// SegmentedQueue test
class segmented_queue_push_pop
: public queue_push_pop<>
, public ::testing::WithParamInterface< size_t >
{
typedef queue_push_pop<> base_class;
protected:
template <typename Queue>
void test()
{
size_t quasi_factor = GetParam();
Queue q( quasi_factor );
propout() << std::make_pair( "quasi_factor", quasi_factor );
base_class::test_queue( q );
analyze( q, quasi_factor * 2, quasi_factor );
propout() << q.statistics();
}
public:
static std::vector< size_t > get_test_parameters()
{
cds_test::config const& cfg = cds_test::stress_fixture::get_config( "queue_push_pop" );
bool bIterative = cfg.get_bool( "SegmentedQueue_Iterate", false );
size_t quasi_factor = cfg.get_size_t( "SegmentedQueue_SegmentSize", 256 );
std::vector<size_t> args;
if ( bIterative && quasi_factor > 4 ) {
for ( size_t qf = 4; qf <= quasi_factor; qf *= 2 )
args.push_back( qf );
} else {
if ( quasi_factor > 2 )
args.push_back( quasi_factor );
else
args.push_back( 2 );
}
return args;
}
};
#define CDSSTRESS_Queue_F( test_fixture, type_name ) \
TEST_P( test_fixture, type_name ) \
{ \
typedef typename queue::Types<value_type>::type_name queue_type; \
test< queue_type >(); \
}
CDSSTRESS_SegmentedQueue( segmented_queue_push_pop )
#ifdef CDSTEST_GTEST_INSTANTIATE_TEST_CASE_P_HAS_4TH_ARG
static std::string get_test_parameter_name( testing::TestParamInfo<size_t> const& p )
{
return std::to_string( p.param );
}
INSTANTIATE_TEST_CASE_P( SQ,
segmented_queue_push_pop,
::testing::ValuesIn( segmented_queue_push_pop::get_test_parameters()), get_test_parameter_name );
#else
INSTANTIATE_TEST_CASE_P( SQ,
segmented_queue_push_pop,
::testing::ValuesIn( segmented_queue_push_pop::get_test_parameters()));
#endif
} // namespace
|