File: random.cpp

package info (click to toggle)
libcds 2.3.3-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,632 kB
  • sloc: cpp: 135,002; ansic: 7,234; perl: 243; sh: 237; makefile: 6
file content (315 lines) | stat: -rw-r--r-- 10,488 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)

#include "queue_type.h"

#include <vector>

// Multi-threaded queue test for random push/pop operation
namespace {

    static size_t s_nThreadCount = 16;
    static size_t s_nQueueSize = 10000000;

    std::atomic< size_t > s_nProducerCount(0);

    class queue_random: public cds_test::stress_fixture
    {
        typedef cds_test::stress_fixture base_class;

    protected:
        struct value_type {
            size_t      nNo;
            size_t      nThread;

            value_type() {}
            value_type( size_t n ) : nNo( n ) {}
        };

        template <class Queue>
        class Strain: public cds_test::thread
        {
            typedef cds_test::thread base_class;

        public:
            Strain( cds_test::thread_pool& pool, Queue& q, size_t nPushCount, size_t nSpread = 0 )
                : base_class( pool )
                , m_Queue( q )
                , m_nSpread( nSpread )
                , m_nTotalPushCount( nPushCount )
            {}

            Strain( Strain& src )
                : base_class( src )
                , m_Queue( src.m_Queue )
                , m_nSpread( src.m_nSpread )
                , m_nTotalPushCount( src.m_nTotalPushCount )
            {}

            virtual thread * clone()
            {
                return new Strain( *this );
            }

            virtual void test()
            {
                size_t const nThreadCount = s_nThreadCount;
                size_t const nTotalPush = m_nTotalPushCount;

                m_arrLastRead.resize( nThreadCount, 0 );
                m_arrPopCountPerThread.resize( nThreadCount, 0 );

                value_type node;

                while ( m_nPushCount < nTotalPush ) {
                    if ( ( std::rand() & 3) != 3 ) {
                        node.nThread = id();
                        node.nNo = ++m_nPushCount;
                        if ( !m_Queue.push( node )) {
                            ++m_nPushError;
                            --m_nPushCount;
                        }
                    }
                    else
                        pop( nThreadCount );
                }

                s_nProducerCount.fetch_sub( 1, std::memory_order_relaxed );

                while ( !m_Queue.empty() || s_nProducerCount.load( std::memory_order_relaxed ) != 0 )
                    pop( nThreadCount );
            }

            bool pop( size_t nThreadCount )
            {
                value_type node;
                node.nThread = nThreadCount;
                node.nNo = ~0;
                if ( m_Queue.pop( node )) {
                    ++m_nPopCount;
                    if ( node.nThread < nThreadCount ) {
                        m_arrPopCountPerThread[ node.nThread ] += 1;
                        if ( m_nSpread ) {
                            if ( m_arrLastRead[ node.nThread ] > node.nNo ) {
                                if ( m_arrLastRead[ node.nThread ] - node.nNo > m_nSpread )
                                    ++m_nRepeatValue;
                            }
                            else if ( m_arrLastRead[ node.nThread ] == node.nNo )
                                ++m_nRepeatValue;
                            m_arrLastRead[ node.nThread ] = node.nNo;
                        }
                        else {
                            if ( m_arrLastRead[ node.nThread ] < node.nNo )
                                m_arrLastRead[ node.nThread ] = node.nNo;
                            else
                                ++m_nRepeatValue;
                        }
                    }
                    else
                        ++m_nUndefWriter;
                }
                else {
                    ++m_nEmptyPop;
                    return false;
                }
                return true;
            }

        public:
            Queue&              m_Queue;

            size_t  m_nPushCount = 0;
            size_t  m_nPopCount  = 0;
            size_t  m_nEmptyPop  = 0;

            size_t  m_nUndefWriter = 0;
            size_t  m_nRepeatValue = 0;
            size_t  m_nPushError   = 0;

            std::vector<size_t> m_arrLastRead;
            std::vector<size_t> m_arrPopCountPerThread;

            size_t const m_nSpread;
            size_t const m_nTotalPushCount;
        };

    public:
        static void SetUpTestCase()
        {
            cds_test::config const& cfg = get_config( "queue_random" );

            s_nThreadCount = cfg.get_size_t( "ThreadCount", s_nThreadCount );
            s_nQueueSize = cfg.get_size_t( "QueueSize", s_nQueueSize );

            if ( s_nThreadCount == 0u )
                s_nThreadCount = 1;
            if ( s_nQueueSize == 0u )
                s_nQueueSize = 1000;
        }

        //static void TearDownTestCase();

    protected:
        template <class Queue>
        void analyze( Queue& q  )
        {
            EXPECT_TRUE( q.empty());

            std::vector< size_t > arrPushCount;
            arrPushCount.resize( s_nThreadCount, 0 );

            size_t nPushTotal = 0;
            size_t nPopTotal  = 0;
            size_t nPushError = 0;

            cds_test::thread_pool& pool = get_pool();
            for ( size_t i = 0; i < pool.size(); ++i ) {
                Strain<Queue>& thr = static_cast<Strain<Queue> &>( pool.get(i));
                EXPECT_EQ( thr.m_nUndefWriter, 0u );
                EXPECT_EQ( thr.m_nRepeatValue, 0u );
                EXPECT_EQ( thr.m_nPushError, 0u );
                nPushError += thr.m_nPushError;

                arrPushCount[ thr.id() ] += thr.m_nPushCount;

                nPushTotal += thr.m_nPushCount;
                nPopTotal += thr.m_nPopCount;
            }

            EXPECT_EQ( nPushTotal, s_nQueueSize );
            EXPECT_EQ( nPopTotal, s_nQueueSize );

            size_t const nThreadPushCount = s_nQueueSize / s_nThreadCount;
            for ( size_t i = 0; i < s_nThreadCount; ++i )
                EXPECT_EQ( arrPushCount[i], nThreadPushCount ) << "thread=" << i;
        }

        template <class Queue>
        void test( Queue& q )
        {
            size_t nThreadPushCount = s_nQueueSize / s_nThreadCount;

            cds_test::thread_pool& pool = get_pool();
            pool.add( new Strain<Queue>( pool, q, nThreadPushCount ), s_nThreadCount );

            s_nQueueSize = nThreadPushCount * s_nThreadCount;
            propout() << std::make_pair( "thread_count", s_nThreadCount )
                << std::make_pair( "push_count", s_nQueueSize );

            s_nProducerCount.store( pool.size(), std::memory_order_release );
            std::chrono::milliseconds duration = pool.run();
            propout() << std::make_pair( "duration", duration );

            analyze( q );

            propout() << q.statistics();
        }
    };

    CDSSTRESS_MSQueue( queue_random )
    CDSSTRESS_MoirQueue( queue_random )
    CDSSTRESS_BasketQueue( queue_random )
    CDSSTRESS_OptimsticQueue( queue_random )
    CDSSTRESS_FCQueue( queue_random )
    CDSSTRESS_FCDeque( queue_random )
    CDSSTRESS_RWQueue( queue_random )
    CDSSTRESS_StdQueue( queue_random )

#undef CDSSTRESS_Queue_F
#define CDSSTRESS_Queue_F( test_fixture, type_name ) \
    TEST_F( test_fixture, type_name ) \
    { \
        typedef queue::Types< value_type >::type_name queue_type; \
        queue_type queue( s_nQueueSize ); \
        test( queue ); \
    }

    CDSSTRESS_VyukovQueue( queue_random )

#undef CDSSTRESS_Queue_F

    // ********************************************************************
    // SegmentedQueue test

    class segmented_queue_random
        : public queue_random
        , public ::testing::WithParamInterface< size_t >
    {
        typedef queue_random base_class;

    protected:
        template <typename Queue>
        void test()
        {
            size_t quasi_factor = GetParam();

            Queue q( quasi_factor );
            propout() << std::make_pair( "quasi_factor", quasi_factor );

            size_t nThreadPushCount = s_nQueueSize / s_nThreadCount;

            cds_test::thread_pool& pool = get_pool();
            pool.add( new Strain<Queue>( pool, q, nThreadPushCount, quasi_factor * 2 ), s_nThreadCount );

            s_nQueueSize = nThreadPushCount * s_nThreadCount;
            propout() << std::make_pair( "thread_count", s_nThreadCount )
                << std::make_pair( "push_count", s_nQueueSize );

            s_nProducerCount.store( pool.size(), std::memory_order_release );
            std::chrono::milliseconds duration = pool.run();
            propout() << std::make_pair( "duration", duration );

            analyze( q );

            propout() << q.statistics();
        }

    public:
        static std::vector< size_t > get_test_parameters()
        {
            cds_test::config const& cfg = cds_test::stress_fixture::get_config( "queue_push" );
            bool bIterative = cfg.get_bool( "SegmentedQueue_Iterate", false );
            size_t quasi_factor = cfg.get_size_t( "SegmentedQueue_SegmentSize", 256 );

            std::vector<size_t> args;
            if ( bIterative && quasi_factor > 4 ) {
                for ( size_t qf = 4; qf <= quasi_factor; qf *= 2 )
                    args.push_back( qf );
            }
            else {
                if ( quasi_factor > 2 )
                    args.push_back( quasi_factor );
                else
                    args.push_back( 2 );
            }

            return args;
        }
    };

#define CDSSTRESS_Queue_F( test_fixture, type_name ) \
    TEST_P( test_fixture, type_name ) \
    { \
        typedef typename queue::Types<value_type>::type_name queue_type; \
        test< queue_type >(); \
    }

    CDSSTRESS_SegmentedQueue( segmented_queue_random )

#ifdef CDSTEST_GTEST_INSTANTIATE_TEST_CASE_P_HAS_4TH_ARG
    static std::string get_test_parameter_name( testing::TestParamInfo<size_t> const& p )
    {
        return std::to_string( p.param );
    }
    INSTANTIATE_TEST_CASE_P( SQ,
        segmented_queue_random,
        ::testing::ValuesIn( segmented_queue_random::get_test_parameters()), get_test_parameter_name );
#else
    INSTANTIATE_TEST_CASE_P( SQ,
        segmented_queue_random,
        ::testing::ValuesIn( segmented_queue_random::get_test_parameters()));
#endif

} // namespace