1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "stack_type.h"
namespace {
static size_t s_nPushThreadCount = 4;
static size_t s_nPopThreadCount = 4;
static size_t s_nStackSize = 1000000;
static size_t s_nEliminationSize = 4;
static atomics::atomic<size_t> s_nWorkingProducers( 0 );
class stack_push_pop : public cds_test::stress_fixture
{
protected:
enum thread_type
{
producer_thread,
consumer_thread
};
struct value_type {
size_t nNo;
size_t nThread;
value_type()
: nNo( 0 )
, nThread( 0 )
{}
value_type( size_t n )
: nNo( n )
, nThread( 0 )
{}
};
static size_t const c_nValArraySize = 1024;
template <class Stack>
class Producer: public cds_test::thread
{
typedef cds_test::thread base_class;
public:
Producer( cds_test::thread_pool& pool, Stack& stack, size_t push_count )
: base_class( pool, producer_thread )
, m_stack( stack )
, m_nItemCount( push_count )
, m_nPushError( 0 )
{}
Producer( Producer& src )
: base_class( src )
, m_stack( src.m_stack )
, m_nItemCount( src.m_nItemCount )
, m_nPushError( 0 )
{}
virtual thread * clone()
{
return new Producer( *this );
}
virtual void test()
{
memset( m_arrPush, 0, sizeof( m_arrPush ));
value_type v;
v.nThread = id();
for ( size_t i = 0; i < m_nItemCount; ++i ) {
v.nNo = i % c_nValArraySize;
if ( m_stack.push( v ))
++m_arrPush[v.nNo];
else
++m_nPushError;
}
s_nWorkingProducers.fetch_sub( 1, atomics::memory_order_release );
}
public:
Stack& m_stack;
size_t const m_nItemCount;
size_t m_nPushError;
size_t m_arrPush[c_nValArraySize];
};
template <class Stack>
class Consumer : public cds_test::thread
{
typedef cds_test::thread base_class;
public:
Consumer( cds_test::thread_pool& pool, Stack& stack )
: base_class( pool, consumer_thread )
, m_stack( stack )
, m_nPopCount( 0 )
, m_nPopEmpty( 0 )
, m_nDirtyPop( 0 )
{}
Consumer( Consumer& src )
: base_class( src )
, m_stack( src.m_stack )
, m_nPopCount( 0 )
, m_nPopEmpty( 0 )
, m_nDirtyPop( 0 )
{}
virtual thread * clone()
{
return new Consumer( *this );
}
virtual void test()
{
memset( m_arrPop, 0, sizeof( m_arrPop ));
value_type v;
while ( !( s_nWorkingProducers.load( atomics::memory_order_acquire ) == 0 && m_stack.empty())) {
if ( m_stack.pop( v )) {
++m_nPopCount;
if ( v.nNo < sizeof( m_arrPop ) / sizeof( m_arrPop[0] ))
++m_arrPop[v.nNo];
else
++m_nDirtyPop;
}
else
++m_nPopEmpty;
}
}
public:
Stack& m_stack;
size_t m_nPopCount;
size_t m_nPopEmpty;
size_t m_arrPop[c_nValArraySize];
size_t m_nDirtyPop;
};
protected:
static void SetUpTestCase()
{
cds_test::config const& cfg = get_config("Stack_PushPop");
s_nPushThreadCount = cfg.get_size_t( "PushThreadCount", s_nPushThreadCount );
s_nPopThreadCount = cfg.get_size_t( "PopThreadCount", s_nPopThreadCount );
s_nStackSize = cfg.get_size_t( "StackSize", s_nStackSize );
s_nEliminationSize = cfg.get_size_t( "EliminationSize", s_nEliminationSize );
if ( s_nPushThreadCount == 0 )
s_nPushThreadCount = 1;
if ( s_nPopThreadCount == 0 )
s_nPopThreadCount = 1;
}
//static void TearDownTestCase();
template <typename Stack>
void test( Stack& stack )
{
cds_test::thread_pool& pool = get_pool();
size_t const nPushCount = s_nStackSize / s_nPushThreadCount;
pool.add( new Producer<Stack>( pool, stack, nPushCount ), s_nPushThreadCount );
pool.add( new Consumer<Stack>( pool, stack ), s_nPopThreadCount );
s_nWorkingProducers.store( s_nPushThreadCount );
s_nStackSize = nPushCount * s_nPushThreadCount;
propout() << std::make_pair( "producer_thread_count", s_nPushThreadCount )
<< std::make_pair( "consumer_thread_count", s_nPopThreadCount )
<< std::make_pair( "push_count", s_nStackSize )
;
std::chrono::milliseconds duration = pool.run();
propout() << std::make_pair( "duration", duration );
analyze( stack );
propout() << stack.statistics();
}
template <typename Stack>
void test_elimination( Stack& stack )
{
test( stack );
check_elimination_stat( stack.statistics());
}
void check_elimination_stat( cds::container::treiber_stack::empty_stat const& )
{}
void check_elimination_stat( cds::container::treiber_stack::stat<> const& s )
{
EXPECT_EQ( s.m_PushCount.get() + s.m_ActivePushCollision.get() + s.m_PassivePushCollision.get(), s_nStackSize );
EXPECT_EQ( s.m_PopCount.get() + s.m_ActivePopCollision.get() + s.m_PassivePopCollision.get(), s_nStackSize );
EXPECT_EQ( s.m_PushCount.get(), s.m_PopCount.get());
EXPECT_EQ( s.m_ActivePopCollision.get(), s.m_PassivePushCollision.get());
EXPECT_EQ( s.m_ActivePushCollision.get(), s.m_PassivePopCollision.get());
}
template< class Stack>
void analyze( Stack& /*stack*/ )
{
cds_test::thread_pool& pool = get_pool();
size_t nPushError = 0;
size_t nPopEmpty = 0;
size_t nPopCount = 0;
size_t arrVal[c_nValArraySize];
memset( arrVal, 0, sizeof( arrVal ));
size_t nDirtyPop = 0;
for ( size_t threadNo = 0; threadNo < pool.size(); ++threadNo ) {
cds_test::thread& thread = pool.get( threadNo );
if ( thread.type() == producer_thread ) {
Producer<Stack>& producer = static_cast<Producer<Stack>&>( thread );
nPushError += producer.m_nPushError;
for ( size_t i = 0; i < c_nValArraySize; ++i )
arrVal[i] += producer.m_arrPush[i];
}
else {
ASSERT_EQ( thread.type(), consumer_thread );
Consumer<Stack>& consumer = static_cast<Consumer<Stack>&>(thread);
nPopEmpty += consumer.m_nPopEmpty;
nPopCount += consumer.m_nPopCount;
nDirtyPop += consumer.m_nDirtyPop;
for ( size_t i = 0; i < c_nValArraySize; ++i )
arrVal[i] -= consumer.m_arrPop[i];
}
}
EXPECT_EQ( nPopCount, s_nStackSize );
EXPECT_EQ( nDirtyPop, 0u );
for ( size_t i = 0; i < sizeof( arrVal ) / sizeof( arrVal[0] ); ++i ) {
EXPECT_EQ( arrVal[i], 0u );
}
propout() << std::make_pair( "push_count", s_nStackSize )
<< std::make_pair( "push_error", nPushError )
<< std::make_pair( "pop_empty", nPopEmpty )
<< std::make_pair( "dirty_pop", nDirtyPop )
;
}
};
CDSSTRESS_TreiberStack( stack_push_pop )
CDSSTRESS_EliminationStack( stack_push_pop )
CDSSTRESS_FCStack( stack_push_pop )
CDSSTRESS_FCDeque( stack_push_pop )
CDSSTRESS_StdStack( stack_push_pop )
} // namespace
|