File: weak_ringbuffer.cpp

package info (click to toggle)
libcds 2.3.3-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,632 kB
  • sloc: cpp: 135,002; ansic: 7,234; perl: 243; sh: 237; makefile: 6
file content (298 lines) | stat: -rw-r--r-- 10,522 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright (c) 2006-2018 Maxim Khizhinsky
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE or copy at http://www.boost.org/LICENSE_1_0.txt)

#include "test_bounded_queue.h"

#include <cds/container/weak_ringbuffer.h>
#include <cds_test/fixture.h>

namespace {
    namespace cc = cds::container;

    class WeakRingBuffer: public cds_test::bounded_queue
    {
    public:
        template <typename Queue>
        void test_array( Queue& q )
        {
            typedef typename Queue::value_type value_type;

            const size_t nSize = q.capacity();
            static const size_t nArrSize = 16;
            const size_t nArrCount = nSize / nArrSize;

            {
                value_type el[nArrSize];

                for ( unsigned pass = 0; pass < 3; ++pass ) {
                    // batch push
                    for ( size_t i = 0; i < nSize; i += nArrSize ) {
                        for ( size_t k = 0; k < nArrSize; ++k )
                            el[k] = static_cast<value_type>( i + k );

                        if ( i + nArrSize <= nSize ) {
                            ASSERT_TRUE( q.push( el, nArrSize ));
                        }
                        else {
                            ASSERT_FALSE( q.push( el, nArrSize ));
                        }
                    }

                    ASSERT_TRUE( !q.empty());
                    if ( nSize % nArrSize != 0 ) {
                        ASSERT_FALSE( q.full());
                        ASSERT_CONTAINER_SIZE( q, nArrCount * nArrSize );
                        for ( size_t i = nArrCount * nArrSize; i < nSize; ++i ) {
                            ASSERT_TRUE( q.enqueue( static_cast<value_type>( i )));
                        }
                    }
                    ASSERT_TRUE( q.full());
                    ASSERT_CONTAINER_SIZE( q, nSize );

                    // batch pop
                    value_type expected = 0;
                    while ( q.pop( el, nArrSize )) {
                        for ( size_t i = 0; i < nArrSize; ++i ) {
                            ASSERT_EQ( el[i], expected );
                            ++expected;
                        }
                    }

                    if ( nSize % nArrSize == 0 ) {
                        ASSERT_TRUE( q.empty());
                    }
                    else {
                        ASSERT_FALSE( q.empty());
                        ASSERT_CONTAINER_SIZE( q, nSize % nArrSize );
                        q.clear();
                    }
                    ASSERT_TRUE( q.empty());
                    ASSERT_FALSE( q.full());
                    ASSERT_CONTAINER_SIZE( q, 0u );
                }
            }

            {
                // batch push with functor
                size_t el[nArrSize];

                auto func_push = []( value_type& dest, size_t src ) { dest = static_cast<value_type>( src * 10 ); };

                for ( unsigned pass = 0; pass < 3; ++pass ) {
                    for ( size_t i = 0; i < nSize; i += nArrSize ) {
                        for ( size_t k = 0; k < nArrSize; ++k )
                            el[k] = i + k;

                        if ( i + nArrSize <= nSize ) {
                            ASSERT_TRUE( q.push( el, nArrSize, func_push ));
                        }
                        else {
                            ASSERT_FALSE( q.push( el, nArrSize, func_push ));
                        }
                    }

                    ASSERT_TRUE( !q.empty());
                    if ( nSize % nArrSize != 0 ) {
                        ASSERT_FALSE( q.full());
                        ASSERT_CONTAINER_SIZE( q, nArrCount * nArrSize );
                        for ( size_t i = nArrCount * nArrSize; i < nSize; ++i ) {
                            ASSERT_TRUE( q.push( &i, 1, func_push ));
                        }
                    }
                    ASSERT_TRUE( q.full());
                    ASSERT_CONTAINER_SIZE( q, nSize );

                    // batch pop with functor
                    auto func_pop = []( size_t& dest, value_type src ) { dest = static_cast<size_t>( src / 10 ); };
                    size_t expected = 0;
                    while ( q.pop( el, nArrSize, func_pop )) {
                        for ( size_t i = 0; i < nArrSize; ++i ) {
                            ASSERT_EQ( el[i], expected );
                            ++expected;
                        }
                    }

                    if ( nSize % nArrSize == 0 ) {
                        ASSERT_TRUE( q.empty());
                    }
                    else {
                        ASSERT_FALSE( q.empty());
                        ASSERT_CONTAINER_SIZE( q, nSize % nArrSize );
                        size_t v;
                        while ( q.pop( &v, 1, func_pop )) {
                            ASSERT_EQ( v, expected );
                            ++expected;
                        }
                    }
                    ASSERT_TRUE( q.empty());
                    ASSERT_FALSE( q.full());
                    ASSERT_CONTAINER_SIZE( q, 0u );
                }

                // front/pop_front
                for ( unsigned pass = 0; pass < 3; ++pass ) {
                    for ( size_t i = 0; i < nSize; i += nArrSize ) {
                        for ( size_t k = 0; k < nArrSize; ++k )
                            el[k] = i + k;

                        if ( i + nArrSize <= nSize ) {
                            ASSERT_TRUE( q.push( el, nArrSize, func_push ));
                        }
                        else {
                            ASSERT_FALSE( q.push( el, nArrSize, func_push ));
                        }
                    }

                    ASSERT_TRUE( !q.empty());
                    if ( nSize % nArrSize != 0 ) {
                        ASSERT_FALSE( q.full());
                        ASSERT_CONTAINER_SIZE( q, nArrCount * nArrSize );
                        for ( size_t i = nArrCount * nArrSize; i < nSize; ++i ) {
                            ASSERT_TRUE( q.push( &i, 1, func_push ));
                        }
                    }
                    ASSERT_TRUE( q.full());
                    ASSERT_CONTAINER_SIZE( q, nSize );

                    value_type cur = 0;
                    while ( !q.empty()) {
                        value_type* front = q.front();
                        ASSERT_TRUE( front != nullptr );
                        ASSERT_EQ( cur, *front );
                        ASSERT_TRUE( q.pop_front());
                        cur += 10;
                    }

                    ASSERT_TRUE( q.empty());
                    ASSERT_TRUE( q.front() == nullptr );
                    ASSERT_FALSE( q.pop_front());
                }
            }
        }

        template <typename Queue>
        void test_varsize_buffer( Queue& q )
        {
            size_t const capacity = q.capacity();

            ASSERT_TRUE( q.empty());
            ASSERT_EQ( q.size(), 0u );
            ASSERT_TRUE( q.front().first == nullptr );
            ASSERT_FALSE( q.pop_front());

            size_t total_push = 0;
            uint8_t chfill = 0;
            while ( total_push < capacity * 4 ) {
                unsigned buf_size = cds_test::fixture::rand( static_cast<unsigned>( capacity / 4 )) + 1;
                total_push += buf_size;

                void* buf = q.back( buf_size );
                ASSERT_TRUE( buf != nullptr );

                memset( buf, chfill, buf_size );
                q.push_back();

                ASSERT_GE( q.size(), buf_size );

                auto pair = q.front();
                ASSERT_TRUE( pair.first != nullptr );
                ASSERT_EQ( pair.second, buf_size );
                for ( size_t i = 0; i < pair.second; ++i )
                    ASSERT_EQ( *reinterpret_cast<uint8_t*>( pair.first ), chfill );

                ASSERT_TRUE( q.pop_front());
                ASSERT_FALSE( q.pop_front());
            }

            ASSERT_TRUE( q.empty());
            ASSERT_EQ( q.size(), 0u );
            ASSERT_TRUE( q.front().first == nullptr );
            ASSERT_FALSE( q.pop_front());
        }
    };

    TEST_F( WeakRingBuffer, defaulted )
    {
        typedef cds::container::WeakRingBuffer< int > test_queue;

        test_queue q( 128 );
        test( q );
        test_array( q );
    }

    TEST_F( WeakRingBuffer, stat )
    {
        struct traits: public cds::container::weak_ringbuffer::traits
        {
            typedef cds::opt::v::uninitialized_static_buffer<int, 128> buffer;
        };
        typedef cds::container::WeakRingBuffer< int, traits > test_queue;

        test_queue q;
        test( q );
        test_array( q );
    }

    TEST_F( WeakRingBuffer, dynamic )
    {
        struct traits: public cds::container::weak_ringbuffer::traits
        {
            typedef cds::opt::v::uninitialized_dynamic_buffer<int> buffer;
        };
        typedef cds::container::WeakRingBuffer< int, traits > test_queue;

        test_queue q( 128 );
        test( q );
        test_array( q );
    }

    TEST_F( WeakRingBuffer, dynamic_mod )
    {
        struct traits: public cds::container::weak_ringbuffer::traits
        {
            typedef cds::opt::v::uninitialized_dynamic_buffer<int, CDS_DEFAULT_ALLOCATOR, false> buffer;
        };
        typedef cds::container::WeakRingBuffer< int, traits > test_queue;

        test_queue q( 100 );
        test( q );
        test_array( q );
    }

    TEST_F( WeakRingBuffer, dynamic_padding )
    {
        struct traits: public cds::container::weak_ringbuffer::traits
        {
            typedef cds::opt::v::uninitialized_dynamic_buffer<int> buffer;
            enum { padding = 32 };
        };
        typedef cds::container::WeakRingBuffer< int, traits > test_queue;

        test_queue q( 128 );
        test( q );
        test_array( q );
    }

    TEST_F( WeakRingBuffer, var_sized )
    {
        typedef cds::container::WeakRingBuffer< void > test_queue;

        test_queue q( 1024 * 64 );
        test_varsize_buffer( q );
    }

    TEST_F( WeakRingBuffer, var_sized_static )
    {
        struct traits: public cds::container::weak_ringbuffer::traits
        {
            typedef cds::opt::v::uninitialized_static_buffer<int, 1024 * 64> buffer;
        };
        typedef cds::container::WeakRingBuffer< void, traits > test_queue;

        test_queue q;
        test_varsize_buffer( q );
    }

} // namespace