1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
!#############################################################################################
! Copyright (C) 2013 Antonio Cervellino
!
! Permission is hereby granted, free of charge, to any person obtaining a copy of
! this software and associated documentation files (the "Software"), to deal in
! the Software without restriction, including without limitation the rights to
! use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
! the Software, and to permit persons to whom the Software is furnished to do so,
! subject to the following conditions:
!
! The above copyright notice and this permission notice shall be included in all
! copies or substantial portions of the Software.
!
! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
! IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
! FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
! COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
! IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
! CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
!
! Authors:
! Antonio Cervellino
!
! E-mail:
! antonio.cervellino@psi.ch
!
!#############################################################################################
module use_libcerf
! f95 interfaces for the libcerf.* c library of error functions
! http://apps.jcns.fz-juelich.de/libcerf
!
use ISO_C_BINDING
private
public :: Voigt_F, Erfcx_F, Erfi_F, Im_w_of_x_F, Dawson_F, &
cerf_F, cerfc_F, cerfcx_F, cerfi_F, w_of_z_F, cdawson_F
public :: DP,DPC
! - - - - - - - - - - - -
! Fortran DOUBLE and DOUBLE COMPLEX types
INTEGER, PARAMETER :: DP = KIND(1.0D0)
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))
! - - - - - - - - - - - -
INTERFACE
FUNCTION voigt ( x, sigma, gamma ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! voigt(x,sigma,gamma) = \int_|R G(t,sigma) L(x-t,gamma) dt
! WITH: G(x,sigma) = (1/(sqrt(2*pi)*|sigma|)) * exp(-x**2/(2*sigma**2)) ;
! L(x,gamma) = |gamma| / (pi * ( x**2 + gamma**2 )) .
real(C_DOUBLE),intent(IN),VALUE :: x, sigma, gamma
real(C_DOUBLE) :: voigt
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION cerf ( z ) bind(c)
! cerf(z) = erf(z)
USE ISO_C_BINDING
IMPLICIT NONE
complex(C_DOUBLE_COMPLEX),intent(IN),VALUE :: z
complex(C_DOUBLE_COMPLEX) :: cerf
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION cerfc ( z ) bind(c)
! cerfc(z) = erfc(z)
USE ISO_C_BINDING
IMPLICIT NONE
complex(C_DOUBLE_COMPLEX),intent(IN),VALUE :: z
complex(C_DOUBLE_COMPLEX) :: cerfc
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION cerfcx ( z ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! cerfcx(z) = exp(z**2) * erfc(z)
complex(C_DOUBLE_COMPLEX),intent(IN),VALUE :: z
complex(C_DOUBLE_COMPLEX) :: cerfcx
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION erfcx ( x ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! erfcx(x) = exp(x**2) * erfc(x)
real(C_DOUBLE),intent(IN),VALUE :: x
real(C_DOUBLE) :: erfcx
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION cerfi ( z ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! cerfi(z) = -I * erf(I*z)
complex(C_DOUBLE_COMPLEX),intent(IN),VALUE :: z
complex(C_DOUBLE_COMPLEX) :: cerfi
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION erfi ( x ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! erfi(x) = -I * erf(I*x)
real(C_DOUBLE),intent(IN),VALUE :: x
real(C_DOUBLE) :: erfi
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION w_of_z ( z ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! w_of_z(z) = [ Faddeeva function w(z) ]
! = exp(-z**2) * erfc(-I*z)
complex(C_DOUBLE_COMPLEX),intent(IN),VALUE :: z
complex(C_DOUBLE_COMPLEX) :: w_of_z
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION im_w_of_x ( x ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! Im_w_of_x(x) = Im[w(x)]
real(C_DOUBLE),intent(IN),VALUE :: x
real(C_DOUBLE) :: im_w_of_x
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION cdawson ( z ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! cdawson(z) = [ Dawson's integral D(z) ]
! = exp(-z**2) \int_0^z exp(t**2) dt
! = sqrt(pi)/2 * exp(-z**2) * erfi(z)
complex(C_DOUBLE_COMPLEX),intent(IN),VALUE :: z
complex(C_DOUBLE_COMPLEX) :: cdawson
END FUNCTION
END INTERFACE
! - - - - - - - - - - - -
INTERFACE
FUNCTION dawson ( x ) bind(c)
USE ISO_C_BINDING
IMPLICIT NONE
! dawson(x) = [ Dawson's integral D(x) ]
! = exp(-x**2) \int_0^x exp(t**2) dt
! = sqrt(pi)/2 * exp(-x**2) * erfi(x)
real(C_DOUBLE),intent(IN),VALUE :: x
real(C_DOUBLE) :: dawson
END FUNCTION
END INTERFACE
contains
!********************************************************
function Voigt_F(x,sig,w) !bind(c)
! voigt(x,sigma,gamma) = \int_|R G(t,sigma) L(x-t,gamma) dt
! WITH: G(x,sigma) = (1/(sqrt(2*pi)*|sigma|)) * exp(-x**2/(2*sigma**2)) ;
! L(x,gamma) = |gamma| / (pi * ( x**2 + gamma**2 )) .
implicit none
real(DP),intent(IN) :: x,sig,w
real(DP) :: Voigt_F
Voigt_F = real(voigt( x=real(x,C_DOUBLE), sigma=real(sig,C_DOUBLE), gamma=real(w,C_DOUBLE) ), DP)
end function Voigt_F
!********************************************************
function Erfcx_F(x) !bind(c)
! erfcx(x) = exp(x**2) * erfc(x)
implicit none
real(DP),intent(IN) :: x
real(DP) :: Erfcx_F
Erfcx_F = real(erfcx( x=real(x,C_DOUBLE) ), DP)
end function Erfcx_F
!********************************************************
function Erfi_F(x) !bind(c)
! erfi(x) = -I * erf(I*x)
implicit none
real(DP),intent(IN) :: x
real(DP) :: Erfi_F
Erfi_F = real(erfi( x=real(x,C_DOUBLE) ), DP)
end function Erfi_F
!********************************************************
function Im_w_of_x_F(x) !bind(c)
! Im_w_of_x(x) = Im[w(x)]
implicit none
real(DP),intent(IN) :: x
real(DP) :: Im_w_of_x_F
Im_w_of_x_F = real(im_w_of_x( x=real(x,C_DOUBLE) ), DP)
end function Im_w_of_x_F
!********************************************************
function Dawson_F(x) !bind(c)
! dawson(x) = [ Dawson's integral D(x) ]
! = exp(-x**2) \int_0^x exp(t**2) dt
! = sqrt(pi)/2 * exp(-x**2) * erfi(x)
implicit none
real(DP),intent(IN) :: x
real(DP) :: Dawson_F
Dawson_F = real(dawson( x=real(x,C_DOUBLE) ), DP)
end function Dawson_F
!********************************************************
! Complex
!********************************************************
function cerf_F ( z ) !bind(c)
! cerf(z) = erf(z)
implicit none
complex(DPC),intent(IN) :: z
complex(DPC) :: cerf_F
cerf_F = CMPLX(cerf( z=CMPLX(z,kind=C_DOUBLE_COMPLEX) ), kind=DPC)
end function cerf_F
!********************************************************
function cerfc_F ( z ) !bind(c)
! cerfc(z) = erfc(z)
implicit none
complex(DPC),intent(IN) :: z
complex(DPC) :: cerfc_F
cerfc_F = CMPLX(cerfc( z=CMPLX(z,kind=C_DOUBLE_COMPLEX) ), kind=DPC)
end function cerfc_F
!********************************************************
function cerfcx_F ( z ) !bind(c)
implicit none
! cerfcx(z) = exp(z**2) * erfc(z)
complex(DPC),intent(IN) :: z
complex(DPC) :: cerfcx_F
cerfcx_F = CMPLX(cerfcx( z=CMPLX(z,kind=C_DOUBLE_COMPLEX) ), kind=DPC)
end function cerfcx_F
!********************************************************
function cerfi_F ( z ) !bind(c)
implicit none
! cerfi(z) = -I * erf(I*z)
complex(DPC),intent(IN) :: z
complex(DPC) :: cerfi_F
cerfi_F = CMPLX(cerfi( z=CMPLX(z,kind=C_DOUBLE_COMPLEX) ), kind=DPC)
end function cerfi_F
!********************************************************
function w_of_z_F ( z ) !bind(c)
implicit none
! w_of_z(z) = [ Faddeeva function w(z) ]
! = exp(-z**2) * erfc(-I*z)
complex(DPC),intent(IN) :: z
complex(DPC) :: w_of_z_F
w_of_z_F = CMPLX(w_of_z( z=CMPLX(z,kind=C_DOUBLE_COMPLEX) ), kind=DPC)
end function w_of_z_F
!********************************************************
function cdawson_F ( z ) !bind(c)
implicit none
! cdawson(z) = [ Dawson's integral D(z) ]
! = exp(-z**2) \int_0^z exp(t**2) dt
! = sqrt(pi)/2 * exp(-z**2) * erfi(z)
complex(DPC),intent(IN) :: z
complex(DPC) :: cdawson_F
cdawson_F = CMPLX(cdawson( z=CMPLX(z,kind=C_DOUBLE_COMPLEX) ), kind=DPC)
end function cdawson_F
!********************************************************
end module use_libcerf
|