1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/* Library libcerf:
* Compute complex error functions, based on a new implementation of
* Faddeeva's w_of_z. Also provide Dawson and Voigt functions.
*
* File erfcx.c:
* Compute erfcx(x) = exp(x^2) erfc(x) function, for real x,
* using a novel algorithm that is much faster than DERFC of SLATEC.
* This function is used in the computation of Faddeeva, Dawson, and
* other complex error functions.
*
* Copyright:
* (C) 2012 Massachusetts Institute of Technology
* (C) 2013, 2025 Forschungszentrum Jülich GmbH
*
* Licence:
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Steven G. Johnson, Massachusetts Institute of Technology, 2012
* Joachim Wuttke, Forschungszentrum Jülich, 2013, 2025
*
* Website:
* http://apps.jcns.fz-juelich.de/libcerf
*
* Revision history:
* libcerf-2.5, April 2025:
* - For large |x|, continuous fractions replaced with asymptotic expansions.
* - Expanded the small |x| range where Taylor series is used.
* - Code for intermediate |x| entirely rewritten, using methods described in:
* Joachim Wuttke and Alexander Kleinsorge:
* "Code generation for piecewise Chebyshev approximation."
*
* See also ../CHANGELOG
*
* Manual page:
* man 3 erfcx
*/
#include "cerf.h"
#include "defs.h" // defines _cerf_cmplx, NaN, C, cexp, ...
#include <math.h>
#include <stdalign.h>
#include <stdio.h>
#include <stdlib.h>
#include "auto_cheb_erfcx.c"
//! Returns polynomial approximation to f(x), using auto-tabulated expansion coefficients.
//! Code taken from https://jugit.fz-juelich.de/mlz/ppapp.
static double chebInterpolant(double x)
{
// Application-specific constants:
static const int loff = (ppapp_j0 + 1) * (1 << ppapp_M) + ppapp_l0; // precomputed offset
// For given x, obtain mantissa xm and exponent je:
int je; // will be set in next line
const double xm = frexp2(x, &je); // sets xm and je
// Integer arithmetics to obtain reduced coordinate t:
const int ip = (int)((1 << (ppapp_M+1)) * xm); // index in octave + 2^M
const int lij = je * (1 << ppapp_M) + ip - loff; // index in lookup table
const double t = (1 << (ppapp_M+2)) * xm - (1 + 2*ip);
const double *const P = ppapp_Coeffs0 + lij*8;
const double *const Q = ppapp_Coeffs1 + lij*2;
return ((((((((P[0] * t
+ P[1]) * t
+ P[2]) * t
+ P[3]) * t
+ P[4]) * t
+ P[5]) * t
+ P[6]) * t
+ P[7]) * t
+ Q[0]) * t
+ Q[1];
}
/******************************************************************************/
/* Library function erfcx */
/******************************************************************************/
double erfcx(double x) {
// Uses the following methods:
// - asymptotic expansion for large positive x,
// - Chebyshev polynomials for medium positive x,
// - Taylor (Maclaurin) series for small |x|,
// - 2*exp(x^2)-erfcx(-x) for medium negative x,
// - Asymptote 2exp(x^2) for large negative x.
double ax = fabs(x);
if (ax < .125) {
// Use Taylor expansion
return ((((((((((((((+1.9841269841269841e-04) * x -
5.3440090793734269e-04) * x +
1.3888888888888889e-03) * x -
3.4736059015927274e-03) * x +
8.3333333333333332e-03) * x -
1.9104832458760001e-02) * x +
4.1666666666666664e-02) * x -
8.5971746064419999e-02) * x +
1.6666666666666666e-01) * x -
3.0090111122547003e-01) * x +
5.0000000000000000e-01) * x -
7.5225277806367508e-01) * x +
1.0000000000000000e+00) * x -
1.1283791670955126e+00) * x +
1.0000000000000000e+00;
}
if (x < 0) {
if (x < -26.7)
return HUGE_VAL;
if (x < -6.1)
return 2 * exp(x * x);
return 2 * exp(x * x) - chebInterpolant(-x);
}
if (x < 12)
return chebInterpolant(x);
/* else */ {
// Use asymptotic expansion
//
// Coefficient are a_0 = 1/sqrt(pi), a_N = (2N-1)!!/2^N/sqrt(pi).
const double r = 1 / x;
if (x < 150) {
if (x < 23.2)
return (((((((((((+3.6073371500083758e+05) * (r * r) -
3.7971970000088164e+04) * (r * r) +
4.4672905882456671e+03) * (r * r) -
5.9563874509942218e+02) * (r * r) +
9.1636730015295726e+01) * (r * r) -
1.6661223639144676e+01) * (r * r) +
3.7024941420321507e+00) * (r * r) -
1.0578554691520430e+00) * (r * r) +
4.2314218766081724e-01) * (r * r) -
2.8209479177387814e-01) * (r * r) +
5.6418958354775628e-01) * r;
return (((((((+9.1636730015295726e+01) * (r * r) -
1.6661223639144676e+01) * (r * r) +
3.7024941420321507e+00) * (r * r) -
1.0578554691520430e+00) * (r * r) +
4.2314218766081724e-01) * (r * r) -
2.8209479177387814e-01) * (r * r) +
5.6418958354775628e-01) * r;
}
if (x < 6.9e7)
return ((((-1.0578554691520430e+00) * (r * r) +
4.2314218766081724e-01) * (r * r) -
2.8209479177387814e-01) * (r * r) +
5.6418958354775628e-01) * r;
// 1-term expansion, important to avoid overflow
return 0.56418958354775629 * r;
}
} // erfcx
|