1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
/* Library libcerf:
* Compute complex error functions, based on a new implementation of
* Faddeeva's w_of_z. Also provide Dawson and Voigt functions.
*
* File err_fcts.c:
* Computate Dawson, Voigt, and several error functions,
* based on erfcx, im_w_of_x, w_of_z as implemented in separate files.
*
* Given w(z), the error functions are mostly straightforward
* to compute, except for certain regions where we have to
* switch to Taylor expansions to avoid cancellation errors
* [e.g. near the origin for erf(z)].
*
* Copyright:
* (C) 2012 Massachusetts Institute of Technology
* (C) 2013 Forschungszentrum Jülich GmbH
*
* Licence:
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Steven G. Johnson, Massachusetts Institute of Technology, 2012
* Joachim Wuttke, Forschungszentrum Jülich, 2013
*
* Website:
* http://apps.jcns.fz-juelich.de/libcerf
*
* Revision history:
* ../CHANGELOG
*
* Man pages:
* cerf(3), dawson(3), voigt(3)
*/
#include <math.h>
#include "cerf.h"
#include "defs.h" // defines _cerf_cmplx, NaN, C, cexp, ...
const double spi2 = 0.88622692545275801364908374167057; // sqrt(pi)/2
const double s2pi = 2.5066282746310005024157652848110; // sqrt(2*pi)
const double pi = 3.14159265358979323846264338327950;
/******************************************************************************/
/* Simple wrappers: cerfcx, cerfi, erfi, dawson */
/******************************************************************************/
_cerf_cmplx cerfcx(_cerf_cmplx z)
{
// Compute erfcx(z) = exp(z^2) erfc(z),
// the complex underflow-compensated complementary error function,
// trivially related to Faddeeva's w_of_z.
#if defined(__clang_major__)
// Work around clang bug: creal(0+I*inf)=>NaN
if (cimag(z)==0)
return erfcx(creal(z));
#endif
return w_of_z(C(-cimag(z), creal(z)));
}
_cerf_cmplx cerfi(_cerf_cmplx z)
{
// Compute erfi(z) = -i erf(iz),
// the rotated complex error function.
_cerf_cmplx e = cerf(C(-cimag(z),creal(z)));
return C(cimag(e), -creal(e));
}
double erfi(double x)
{
// Compute erfi(x) = -i erf(ix),
// the imaginary error function.
return x*x > 720 ? (x > 0 ? Inf : -Inf) : exp(x*x) * im_w_of_x(x);
}
double dawson(double x)
{
// Compute dawson(x) = sqrt(pi)/2 * exp(-x^2) * erfi(x),
// Dawson's integral for a real argument.
return spi2 * im_w_of_x(x);
}
double re_w_of_z( double x, double y )
{
return creal( w_of_z( C(x,y) ) );
}
double im_w_of_z( double x, double y )
{
return cimag( w_of_z( C(x,y) ) );
}
/******************************************************************************/
/* voigt */
/******************************************************************************/
double voigt( double x, double sigma, double gamma )
{
// Joachim Wuttke, January 2013.
// Compute Voigt's convolution of a Gaussian
// G(x,sigma) = 1/sqrt(2*pi)/|sigma| * exp(-x^2/2/sigma^2)
// and a Lorentzian
// L(x,gamma) = |gamma| / pi / ( x^2 + gamma^2 ),
// namely
// voigt(x,sigma,gamma) =
// \int_{-infty}^{infty} dx' G(x',sigma) L(x-x',gamma)
// using the relation
// voigt(x,sigma,gamma) = Re{ w(z) } / sqrt(2*pi) / |sigma|
// with
// z = (x+i*|gamma|) / sqrt(2) / |sigma|.
// Reference: Abramowitz&Stegun (1964), formula (7.4.13).
double gam = gamma < 0 ? -gamma : gamma;
double sig = sigma < 0 ? -sigma : sigma;
if ( gam==0 ) {
if ( sig==0 )
// It's kind of a delta function
return x ? 0 : Inf;
else
// It's a pure Gaussian (optimized, only 1 run-time division)
return exp( -0.5*(x*(1/sig))*(x*(1/sig)) ) * (1/s2pi) * (1/sig);
} else {
if ( sig==0 )
// It's a pure Lorentzian
return gam / (pi * (x*x + gam*gam));
else {
// Regular case, both parameters are nonzero
_cerf_cmplx z = C(x,gam) * sqrt(.5) * (1/sig);
return creal( w_of_z(z) ) * (1/s2pi) * (1/sig);
}
}
}
/******************************************************************************/
/* cerf */
/******************************************************************************/
_cerf_cmplx cerf(_cerf_cmplx z)
{
// Steven G. Johnson, October 2012.
// Compute erf(z), the complex error function,
// using w_of_z except for certain regions.
double x = creal(z), y = cimag(z);
if (y == 0)
return C(erf(x), y); // preserve sign of 0
if (x == 0) // handle separately for speed & handling of y = Inf or NaN
return C(x, // preserve sign of 0
/* handle y -> Inf limit manually, since
exp(y^2) -> Inf but Im[w(y)] -> 0, so
IEEE will give us a NaN when it should be Inf */
y*y > 720 ? (y > 0 ? Inf : -Inf)
: exp(y*y) * im_w_of_x(y));
double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow
double mIm_z2 = -2*x*y; // Im(-z^2)
if (mRe_z2 < -750) // underflow
return (x >= 0 ? 1.0 : -1.0);
/* Handle positive and negative x via different formulas,
using the mirror symmetries of w, to avoid overflow/underflow
problems from multiplying exponentially large and small quantities. */
if (x >= 0) {
if (x < 8e-2) {
if (fabs(y) < 1e-2)
goto taylor;
else if (fabs(mIm_z2) < 5e-3 && x < 5e-3)
goto taylor_erfi;
}
/* don't use complex exp function, since that will produce spurious NaN
values when multiplying w in an overflow situation. */
return 1.0 - exp(mRe_z2) *
(C(cos(mIm_z2), sin(mIm_z2))
* w_of_z(C(-y,x)));
}
else { // x < 0
if (x > -8e-2) { // duplicate from above to avoid fabs(x) call
if (fabs(y) < 1e-2)
goto taylor;
else if (fabs(mIm_z2) < 5e-3 && x > -5e-3)
goto taylor_erfi;
}
else if (isnan(x))
return C(NaN, y == 0 ? 0 : NaN);
/* don't use complex exp function, since that will produce spurious NaN
values when multiplying w in an overflow situation. */
return exp(mRe_z2) *
(C(cos(mIm_z2), sin(mIm_z2))
* w_of_z(C(y,-x))) - 1.0;
}
// Use Taylor series for small |z|, to avoid cancellation inaccuracy
// erf(z) = 2/sqrt(pi) * z * (1 - z^2/3 + z^4/10 - z^6/42 + z^8/216 + ...)
taylor:
{
_cerf_cmplx mz2 = C(mRe_z2, mIm_z2); // -z^2
return z * (1.1283791670955125739
+ mz2 * (0.37612638903183752464
+ mz2 * (0.11283791670955125739
+ mz2 * (0.026866170645131251760
+ mz2 * 0.0052239776254421878422))));
}
/* for small |x| and small |xy|,
use Taylor series to avoid cancellation inaccuracy:
erf(x+iy) = erf(iy)
+ 2*exp(y^2)/sqrt(pi) *
[ x * (1 - x^2 * (1+2y^2)/3 + x^4 * (3+12y^2+4y^4)/30 + ...
- i * x^2 * y * (1 - x^2 * (3+2y^2)/6 + ...) ]
where:
erf(iy) = exp(y^2) * Im[w(y)]
*/
taylor_erfi:
{
double x2 = x*x, y2 = y*y;
double expy2 = exp(y2);
return C
(expy2 * x * (1.1283791670955125739
- x2 * (0.37612638903183752464
+ 0.75225277806367504925*y2)
+ x2*x2 * (0.11283791670955125739
+ y2 * (0.45135166683820502956
+ 0.15045055561273500986*y2))),
expy2 * (im_w_of_x(y)
- x2*y * (1.1283791670955125739
- x2 * (0.56418958354775628695
+ 0.37612638903183752464*y2))));
}
} // cerf
/******************************************************************************/
/* cerfc */
/******************************************************************************/
_cerf_cmplx cerfc(_cerf_cmplx z)
{
// Steven G. Johnson, October 2012.
// Compute erfc(z) = 1 - erf(z), the complex complementary error function,
// using w_of_z except for certain regions.
double x = creal(z), y = cimag(z);
if (x == 0.)
return C(1,
/* handle y -> Inf limit manually, since
exp(y^2) -> Inf but Im[w(y)] -> 0, so
IEEE will give us a NaN when it should be Inf */
y*y > 720 ? (y > 0 ? -Inf : Inf)
: -exp(y*y) * im_w_of_x(y));
if (y == 0.) {
if (x*x > 750) // underflow
return C(x >= 0 ? 0.0 : 2.0,
-y); // preserve sign of 0
return C(x >= 0 ? exp(-x*x) * erfcx(x)
: 2. - exp(-x*x) * erfcx(-x),
-y); // preserve sign of zero
}
double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow
double mIm_z2 = -2*x*y; // Im(-z^2)
if (mRe_z2 < -750) // underflow
return (x >= 0 ? 0.0 : 2.0);
if (x >= 0)
return cexp(C(mRe_z2, mIm_z2))
* w_of_z(C(-y,x));
else
return 2.0 - cexp(C(mRe_z2, mIm_z2))
* w_of_z(C(y,-x));
} // cerfc
/******************************************************************************/
/* cdawson */
/******************************************************************************/
_cerf_cmplx cdawson(_cerf_cmplx z)
{
// Steven G. Johnson, October 2012.
// Compute Dawson(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z),
// Dawson's integral for a complex argument,
// using w_of_z except for certain regions.
double x = creal(z), y = cimag(z);
// handle axes separately for speed & proper handling of x or y = Inf or NaN
if (y == 0)
return C(spi2 * im_w_of_x(x),
-y); // preserve sign of 0
if (x == 0) {
double y2 = y*y;
if (y2 < 2.5e-5) { // Taylor expansion
return C(x, // preserve sign of 0
y * (1.
+ y2 * (0.6666666666666666666666666666666666666667
+ y2 * 0.26666666666666666666666666666666666667)));
}
return C(x, // preserve sign of 0
spi2 * (y >= 0
? exp(y2) - erfcx(y)
: erfcx(-y) - exp(y2)));
}
double mRe_z2 = (y - x) * (x + y); // Re(-z^2), being careful of overflow
double mIm_z2 = -2*x*y; // Im(-z^2)
_cerf_cmplx mz2 = C(mRe_z2, mIm_z2); // -z^2
/* Handle positive and negative x via different formulas,
using the mirror symmetries of w, to avoid overflow/underflow
problems from multiplying exponentially large and small quantities. */
if (y >= 0) {
if (y < 5e-3) {
if (fabs(x) < 5e-3)
goto taylor;
else if (fabs(mIm_z2) < 5e-3)
goto taylor_realaxis;
}
_cerf_cmplx res = cexp(mz2) - w_of_z(z);
return spi2 * C(-cimag(res), creal(res));
}
else { // y < 0
if (y > -5e-3) { // duplicate from above to avoid fabs(x) call
if (fabs(x) < 5e-3)
goto taylor;
else if (fabs(mIm_z2) < 5e-3)
goto taylor_realaxis;
}
else if (isnan(y))
return C(x == 0 ? 0 : NaN, NaN);
_cerf_cmplx res = w_of_z(-z) - cexp(mz2);
return spi2 * C(-cimag(res), creal(res));
}
// Use Taylor series for small |z|, to avoid cancellation inaccuracy
// dawson(z) = z - 2/3 z^3 + 4/15 z^5 + ...
taylor:
return z * (1.
+ mz2 * (0.6666666666666666666666666666666666666667
+ mz2 * 0.2666666666666666666666666666666666666667));
/* for small |y| and small |xy|,
use Taylor series to avoid cancellation inaccuracy:
dawson(x + iy)
= D + y^2 (D + x - 2Dx^2)
+ y^4 (D/2 + 5x/6 - 2Dx^2 - x^3/3 + 2Dx^4/3)
+ iy [ (1-2Dx) + 2/3 y^2 (1 - 3Dx - x^2 + 2Dx^3)
+ y^4/15 (4 - 15Dx - 9x^2 + 20Dx^3 + 2x^4 - 4Dx^5) ] + ...
where D = dawson(x)
However, for large |x|, 2Dx -> 1 which gives cancellation problems in
this series (many of the leading terms cancel). So, for large |x|,
we need to substitute a continued-fraction expansion for D.
dawson(x) = 0.5 / (x-0.5/(x-1/(x-1.5/(x-2/(x-2.5/(x...))))))
The 6 terms shown here seems to be the minimum needed to be
accurate as soon as the simpler Taylor expansion above starts
breaking down. Using this 6-term expansion, factoring out the
denominator, and simplifying with Maple, we obtain:
Re dawson(x + iy) * (-15 + 90x^2 - 60x^4 + 8x^6) / x
= 33 - 28x^2 + 4x^4 + y^2 (18 - 4x^2) + 4 y^4
Im dawson(x + iy) * (-15 + 90x^2 - 60x^4 + 8x^6) / y
= -15 + 24x^2 - 4x^4 + 2/3 y^2 (6x^2 - 15) - 4 y^4
Finally, for |x| > 5e7, we can use a simpler 1-term continued-fraction
expansion for the real part, and a 2-term expansion for the imaginary
part. (This avoids overflow problems for huge |x|.) This yields:
Re dawson(x + iy) = [1 + y^2 (1 + y^2/2 - (xy)^2/3)] / (2x)
Im dawson(x + iy) = y [ -1 - 2/3 y^2 + y^4/15 (2x^2 - 4) ] / (2x^2 - 1)
*/
taylor_realaxis:
{
double x2 = x*x;
if (x2 > 1600) { // |x| > 40
double y2 = y*y;
if (x2 > 25e14) {// |x| > 5e7
double xy2 = (x*y)*(x*y);
return C((0.5 + y2 * (0.5 + 0.25*y2
- 0.16666666666666666667*xy2)) / x,
y * (-1 + y2 * (-0.66666666666666666667
+ 0.13333333333333333333*xy2
- 0.26666666666666666667*y2))
/ (2*x2 - 1));
}
return (1. / (-15 + x2*(90 + x2*(-60 + 8*x2)))) *
C(x * (33 + x2 * (-28 + 4*x2)
+ y2 * (18 - 4*x2 + 4*y2)),
y * (-15 + x2 * (24 - 4*x2)
+ y2 * (4*x2 - 10 - 4*y2)));
}
else {
double D = spi2 * im_w_of_x(x);
double y2 = y*y;
return C
(D + y2 * (D + x - 2*D*x2)
+ y2*y2 * (D * (0.5 - x2 * (2 - 0.66666666666666666667*x2))
+ x * (0.83333333333333333333
- 0.33333333333333333333 * x2)),
y * (1 - 2*D*x
+ y2 * 0.66666666666666666667 * (1 - x2 - D*x * (3 - 2*x2))
+ y2*y2 * (0.26666666666666666667 -
x2 * (0.6 - 0.13333333333333333333 * x2)
- D*x * (1 - x2 * (1.3333333333333333333
- 0.26666666666666666667 * x2)))));
}
}
} // cdawson
|