1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
|
/* created by combine 2.0 */
/* file ADF_AAA_var.c */
/* file ADF_AAA_var.c */
/***
File: ADF_interface.c
----------------------------------------------------------------------
BOEING
----------------------------------------------------------------------
Project: CGNS
Author: Tom Dickens 234-1024 tpd6908@yak.ca.boeing.com
Date: 3/2/1995
Purpose: The code which implements the ADF-Core capabilities.
----------------------------------------------------------------------
----------------------------------------------------------------------
***/
/***********************************************************************
Library and Database "what" strings.
***********************************************************************/
/** Change the major revision letter in the Library Version for changes
to the API (new public functions, changes to public header files,
changes to existings functions or their defined behavior)
and/or changes to the internal file format resulting in
incompatibilites with previous library versions. Change the
internal revision number for internal changes and bug fixes;
reset to zero for major revision letter changes. **/
/** change suggested by Kevin Mack of Adapco
With the original ADF library, there is no binary data for at least
the first 560 bytes, which causes a lot of programs
(mailers, WinZip) to think that the file is text and try to do
a \n -> \n\r conversion. Since this string is only used for the
'what' command, I am deciding that we don't need this functionality
and am putting binary characters here. Specifically, I am putting
control characters, because while some programs (Evolution/gnome-vfs)
look for unprintable characters, some look for a ratio (Mozilla). **/
/** modification by Bruce Wedan
I'm modifying the 1st 4 bytes of the header, @(#), by turning on the
high bit. This makes these bytes non-ASCII and should not effect the
check/reporting of version number **/
static char ADF_L_identification[] = "\300\250\243\251ADF Library Version E01>" ;
/* 0 1 2 3 4567890123456789012345678901 = 32 */
/** Change version database version number every time the library
version changes according to the following philosophy.
The format:
AXXxxx
where:
A Major revision number. Major internal structure changes.
This number is not expected to change very often if at all
because backward compatibility is only available by explicit
policy decision.
One alphabetic character.
Range of values: A-Za-z
In unlikely event of reaching z, then can use any other
unused printable ASCII character except blank or symbols
used by "what" command: @, (, #, ), ~, >, \.
XX Minor revision number. New features and minor changes and
bug fixes. Files are backward but NOT forward compatible.
Two digit hexadecimal number (uppercase letters).
Range of values: 00 - FF
Reset to 00 with changes in major revision number.
xxx Incremental number. Incremented with every new version of
library (even if no changes are made to file format).
Files are forward AND backward compatible.
Three digit hexadecimal number (lowercase letters)
Range of values: 000 to fff
Does not reset.
Definitions:
forward compatible Older versions of libraries can read and write
to files created by newer versions of libraries.
backward compatible Newer versions of libraries can read and write
to files created by older versions of libraries.
**/
/* AXXxxx */
static char ADF_D_identification[] = "\300\250\243\251ADF Database Version A02011>" ;
/* 0 1 2 3 4567890123456789012345678901 = 32 */
/***********************************************************************
Includes
***********************************************************************/
#include <stdio.h>
#include <errno.h>
#include <string.h>
#if defined(_WIN32) && !defined(__NUTC__)
#include <io.h>
#else
#include <unistd.h>
#endif
#include <stdlib.h>
#include <ctype.h>
#include "ADF.h"
#include "ADF_internals.h"
#if defined(_WIN32) && !defined(__NUTC__)
#include <ctype.h>
#ifndef F_OK
#define R_OK 004 /* Test for Read permission */
#define W_OK 002 /* Test for Write permission */
#define X_OK 001 /* Test for eXecute permission */
#define F_OK 000 /* Test for existence of File */
#endif
#endif
#ifdef MEM_DEBUG
#include "cg_malloc.h"
#endif
/***********************************************************************
Error strings
These strings must be kept in sync with the error defines in ADF.h.
***********************************************************************/
const char *ADF_error_string[] = {
"ADF -1: No Error.",
"ADF 1: Integer number is less than given minimum value.",
"ADF 2: Integer number is greater than given maximum value.",
"ADF 3: String length of zero or blank string detected.",
"ADF 4: String length longer than maximum allowable length.",
"ADF 5: String is not an ASCII-HEX string.",
"ADF 6: Too many ADF files opened.",
"ADF 7: ADF file status was not recognized.",
"ADF 8: ADF file-open error.",
"ADF 9: ADF file not currently opened.",
"ADF 10: ADF file index out of legal range.",
"ADF 11: Block/offset out of legal range.",
"ADF 12: A string pointer is NULL.",
"ADF 13: FSEEK error.",
"ADF 14: FWRITE error.",
"ADF 15: FREAD error.",
"ADF 16: Internal error: Memory boundary tag bad.",
"ADF 17: Internal error: Disk boundary tag bad.",
"ADF 18: File Open Error: NEW - File already exists.",
"ADF 19: ADF file format was not recognized.",
"ADF 20: Attempt to free the RootNode disk information.",
"ADF 21: Attempt to free the FreeChunkTable disk information.",
"ADF 22: File Open Error: OLD - File does not exist.",
"ADF 23: Entered area of Unimplemented Code...",
"ADF 24: Sub-Node.entries is bad.",
"ADF 25: Memory allocation failed.",
"ADF 26: Duplicate child name under a parent node.",
"ADF 27: Node has no dimensions.",
"ADF 28: Node's number-of-dimensions is not in legal range.",
"ADF 29: Specified child is NOT a child of the specified parent.",
"ADF 30: Data-Type is too long.",
"ADF 31: Invalid Data-Type.",
"ADF 32: A pointer is NULL.",
"ADF 33: Node has no data associated with it.",
"ADF 34: Error zeroing out memory.",
"ADF 35: Requested data exceeds actual data available.",
"ADF 36: Bad end value.",
"ADF 37: Bad stride value.",
"ADF 38: Minimum values is greater than the maximum value.",
"ADF 39: The format of this machine does not match a known signature.",
"ADF 40: Cannot convert to or from an unknown Native format.",
"ADF 41: The two conversion formats are equal, no conversion done.",
"ADF 42: The data format is not support on a particular machine.",
"ADF 43: File Close error.",
"ADF 44: Numeric overflow/underflow in data conversion.",
"ADF 45: Bad start value.",
"ADF 46: A value of zero is not allowable.",
"ADF 47: Bad dimension value.",
"ADF 48: Error state must be either a 0 (zero) or a 1 (one).",
"ADF 49: Dimensional specifications for disk and memory are unequal.",
"ADF 50: Too many link level used. May be caused by a recursive link.",
"ADF 51: The node is not a link. It was expected to be a link.",
"ADF 52: The linked-to node does not exist.",
"ADF 53: The ADF file of a linked-node is not accessable.",
"ADF 54: A node-id of 0.0 is not valid.",
"ADF 55: Incomplete Data when reading multiple data blocks.",
"ADF 56: Node name contains invalid characters.",
"ADF 57: ADF file version incompatible with this library version.",
"ADF 58: Nodes are not from the same file.",
"ADF 59: Priority Stack Error.",
"ADF 60: Machine format and file format are incompatable.",
"ADF 61: FFLUSH error",
"ADF 62: The node ID pointer is NULL.",
"ADF 63: The maximum size for a file exceeded.",
"ADF x: Last error mesage"
} ;
/***********************************************************************
Global Variables:
***********************************************************************/
int ADF_sys_err = 0;
static int ADF_abort_on_error = FALSE ;
int ADF_n_paths = 0;
char **ADF_paths = 0;
extern char data_chunk_start_tag[];
#define CHECK_ADF_ABORT( error_flag ) if( error_flag != NO_ERROR ) { \
if( ADF_abort_on_error == TRUE ) { \
ADF_Error_Message( error_flag, 0L );\
ADFI_Abort( error_flag) ; } \
else { return ; } }
/* Added to remove memory leaks in ADF_Get_Node_ID */
#define CHECK_ADF_ABORT1( error_flag ) if( error_flag != NO_ERROR ) { \
free (name_tmp); \
if( ADF_abort_on_error == TRUE ) { \
ADF_Error_Message( error_flag, 0L );\
ADFI_Abort( error_flag) ; } \
else { return ; } }
/***********************************************************************
ADF_Search_Add - add a path to link file search list
************************************************************************/
void ADF_Search_Add(const char *path, int *error_return)
{
if (path == NULL || !*path) {
*error_return = NULL_STRING_POINTER;
return;
}
if (ADF_n_paths)
ADF_paths = (char **)realloc(ADF_paths,(ADF_n_paths+1)*sizeof(char *));
else
ADF_paths = (char **)malloc(sizeof(char *));
if (ADF_paths == NULL) {
*error_return = MEMORY_ALLOCATION_FAILED;
return;
}
ADF_paths[ADF_n_paths] = (char *)malloc(strlen(path)+1);
if (ADF_paths[ADF_n_paths] == NULL) {
*error_return = MEMORY_ALLOCATION_FAILED;
return;
}
strcpy(ADF_paths[ADF_n_paths], path);
ADF_n_paths++;
*error_return = NO_ERROR;
}
/***********************************************************************
ADF_Search_Delete - delete the link path search list
************************************************************************/
void ADF_Search_Delete(int *error_return)
{
if (ADF_n_paths) {
int n;
for (n = 0; n < ADF_n_paths; n++) {
if (ADF_paths[n] != NULL) free(ADF_paths[n]);
}
free(ADF_paths);
ADF_n_paths = 0;
ADF_paths = 0;
*error_return = NO_ERROR;
}
else
*error_return = NO_DATA;
}
/***********************************************************************
Data Query:
Note: If the node is a link, the data query will occur on the linked-to
node, not the node which is the link.
Internal Implementation: A linked node will have a data-type of "LK",
dimension of 1 and a dimension value of the length of a data string
containing the file-path and the node-path within the file. The
routines ADF_Is_Link and ADF_Get_Link_Path allow viewing of a link's
data-type and data.
***********************************************************************/
/***********************************************************************
Data I/O:
A 1-based system is used with all index values (the first element has an
index of 1, not 0).
***********************************************************************/
/* end of file ADF_AAA_var.c */
/* end of file ADF_AAA_var.c */
/* file ADF_Children_Names.c */
/***********************************************************************
ADF Children names:
Get Children names of a Node. Return the name of children nodes
directly associated with a parent node. The names of the children
are NOT guaranteed to be returned in any particular order. If a new
child is added, it is NOT guaranteed to be returned as the last child.
Null-terminated names will be written into the names array and thus
there needs to be room for the null character. As an example,
the array can be defined as:
char names[IMAX_NUM][IMAX_NAME_LENGTH+1];
where IMAX_NUM and IMAX_NAME_LENGTH are defined by the using application
and correspond to this function's "imax_num" and "imax_name_len" parameters
respectively. "imax_name_len" is the maximum length of a name to be copied
into the names array. This value can be equal to ADF_NAME_LENGTH but does
not have to be. However, the name dimension of the array MUST be declared
to be "imax_name_len" + 1. The name will be returned truncated (but still
null-terminated) if the actual name is longer than "imax_name_len" and
if "imax_name_len" is less than ADF_NAME_LENGTH.
Note that the names array parameter is declared as a single dimension
character array inside this function. Therefore, use a (char *) cast to
cast a two dimensional array argument.
ADF_Children_Names( PID, istart, imax_num, imax_name_len, inum_ret,
names, error_return )
input: const double PID The ID of the Node to use.
input: const int istart The Nth child's name to start with (first is 1).
input: const int imax_num Maximum number of names to return.
input: const int imax_name_len Maximum Length of a name to return.
output: int *inum_ret The number of names returned.
output: char *names The returned names (cast with (char *)).
output: int *error_return Error return.
Possible errors:
NO_ERROR
NULL_STRING_POINTER
NULL_POINTER
NUMBER_LESS_THAN_MINIMUM
***********************************************************************/
void ADF_Children_Names(
const double PID,
const int istart,
const int imax_num,
const int imax_name_len,
int *inum_ret,
char *names,
int *error_return )
{
int i ;
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
struct SUB_NODE_TABLE_ENTRY sub_node_table_entry ;
double LID ;
*error_return = NO_ERROR ;
if( inum_ret == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*inum_ret = 0 ;
if( names == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( (istart <=0) || (imax_num <= 0) || (imax_name_len <= 0) ) {
*error_return = NUMBER_LESS_THAN_MINIMUM ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
ADFI_chase_link( PID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Check for zero children, return if 0 **/
if( node.num_sub_nodes == 0 ) {
return ;
} /* end if */
/** point to the first child wanted **/
block_offset.block = node.sub_node_table.block ;
block_offset.offset = node.sub_node_table.offset +
(TAG_SIZE + DISK_POINTER_SIZE +
(ADF_NAME_LENGTH + DISK_POINTER_SIZE) * (istart-1)) ;
/** Return the data for the requested children **/
for( i=(istart-1); i< MIN(istart-1+imax_num, (int) node.num_sub_nodes); i++ ) {
ADFI_adjust_disk_pointer( &block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Read the sun-node entry table **/
ADFI_read_sub_node_table_entry( file_index, &block_offset,
&sub_node_table_entry, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Convert the child's name from blank-filled into a C string **/
ADFI_string_2_C_string( sub_node_table_entry.child_name,
MIN(imax_name_len,ADF_NAME_LENGTH),
&names[(i-(istart-1))*(imax_name_len+1)],
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Increment the disk-pointer and the number of names returned **/
block_offset.offset += (ADF_NAME_LENGTH + DISK_POINTER_SIZE) ;
*inum_ret = *inum_ret + 1 ;
} /* end for */
} /* end of ADF_Children_Names */
/* end of file ADF_Children_Names.c */
/* file ADF_Children_IDs.c */
/***********************************************************************
ADF Children IDs:
Get Children node IDs of a Node. Return the node IDs of children nodes
directly associated with a parent node.
ADF_Children_IDs( PID, istart, imax_num, inum_ret, IDs, error_return)
input: const double PID The ID of the Node to use.
input: const int istart The Nth child's name to start with (first is 1).
input: const int imax_num Maximum number of names to return.
output: int *inum_ret The number of names returned.
output: double *IDs The returned node IDs
output: int *error_return Error return.
Possible errors:
NO_ERROR
NULL_STRING_POINTER
NULL_POINTER
NUMBER_LESS_THAN_MINIMUM
***********************************************************************/
void ADF_Children_IDs (
const double PID,
const int istart,
const int imax_num,
int *inum_ret,
double *IDs,
int *error_return )
{
int i ;
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
struct SUB_NODE_TABLE_ENTRY sub_node_table_entry ;
double LID ;
*error_return = NO_ERROR ;
if( inum_ret == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*inum_ret = 0 ;
if( IDs == NULL ) {
*error_return = NULL_NODEID_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( (istart <=0) || (imax_num <= 0) ) {
*error_return = NUMBER_LESS_THAN_MINIMUM ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
ADFI_chase_link( PID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Check for zero children, return if 0 **/
if( node.num_sub_nodes == 0 ) {
return ;
} /* end if */
/** point to the first child wanted **/
block_offset.block = node.sub_node_table.block ;
block_offset.offset = node.sub_node_table.offset +
(TAG_SIZE + DISK_POINTER_SIZE +
(ADF_NAME_LENGTH + DISK_POINTER_SIZE) * (istart-1)) ;
/** Return the data for the requested children **/
for( i=(istart-1); i< MIN(istart-1+imax_num, (int) node.num_sub_nodes); i++ ) {
ADFI_adjust_disk_pointer( &block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Read the sub-node entry table **/
ADFI_read_sub_node_table_entry( file_index, &block_offset,
&sub_node_table_entry, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get the ID from the sub-node table **/
ADFI_file_block_offset_2_ID( file_index,
sub_node_table_entry.child_location.block,
sub_node_table_entry.child_location.offset,
&IDs[i-(istart-1)], error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Increment the disk-pointer and the number of IDs returned **/
block_offset.offset += (ADF_NAME_LENGTH + DISK_POINTER_SIZE) ;
*inum_ret = *inum_ret + 1 ;
} /* end for */
} /* end of ADF_Children_IDs */
/* end of file ADF_Children_IDs.c */
/* file ADF_Create.c */
/***********************************************************************
ADF Create:
Create a Node. Create a new node (not a link-node) as a child of a
given parent. Default values in this new node are:
label=blank,
number of sub-nodes = 0,
data-type = "MT",
number of dimensions = 0,
data = NULL.
ADF_Create( PID, name, ID, error_return )
input: const double PID The ID of the parent node, to whom we
are creating a new child node.
input: const char *name The name of the new child.
output: double *ID The ID of the newly created node.
output: int *error_return Error return.
Possible errors:
NO_ERROR
NULL_STRING_POINTER
NULL_POINTER
***********************************************************************/
void ADF_Create(
const double PID,
const char *name,
double *ID,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER parent_block_offset, child_block_offset ;
struct DISK_POINTER sub_node_entry_location ;
struct NODE_HEADER parent_node, child_node ;
struct SUB_NODE_TABLE_ENTRY sub_node_entry ;
int i, name_length, name_start, found ;
double LID ;
ADFI_check_string_length( name, ADF_NAME_LENGTH, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( ID == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( PID, &LID, &file_index, &parent_block_offset,
&parent_node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Initialize node header **/
ADFI_fill_initial_node_header( &child_node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Skip any leading blanks in the name **/
name_start = 0 ;
while( name[ name_start ] == ' ' ) {
name_start++ ;
} /* end while */
name_length = strlen( &name[ name_start ] ) ;
if( name_length > ADF_NAME_LENGTH ) {
*error_return = STRING_LENGTH_TOO_BIG ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Check for uniqueness and legality of the name **/
ADFI_check_4_child_name( file_index, &parent_block_offset,
&name[ name_start ], &found, &sub_node_entry_location,
&sub_node_entry, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( found == 1 ) {
*error_return = DUPLICATE_CHILD_NAME ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
for ( i=0; i < name_length; i++ ) {
if ( ! isprint ( name[ name_start + i ] ) ||
name[ name_start + i ] == '/' ) {
*error_return = INVALID_NODE_NAME;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
} /* end for */
/** Assign the name to the new node **/
strncpy( child_node.name, &name[ name_start ], name_length ) ;
/** Allocate disk space for the new node **/
ADFI_file_malloc( file_index, NODE_HEADER_SIZE, &child_block_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write out the new node header **/
ADFI_write_node_header( file_index, &child_block_offset, &child_node,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** OK, new node is on disk. Now, update the list of
children for the parent...
**/
ADFI_add_2_sub_node_table( file_index, &parent_block_offset,
&child_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Return the ID of the new child **/
ADFI_file_block_offset_2_ID( file_index, child_block_offset.block,
child_block_offset.offset, ID, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Create */
/* end of file ADF_Create.c */
/* file ADF_Database_Close.c */
/***********************************************************************
ADF Database Close:
Close an opened database. If the ADF database spans multiple files,
then all files used will also be closed. If an ADF file which is
linked to by this database is also opened through another
database, only the opened file stream associated with this database
will be closed.
ADF_Database_Close( Root_ID, error_return )
input: const double Root_ID Root-ID of the ADF database.
output: int *error_return Error return.
***********************************************************************/
void ADF_Database_Close(
const double Root_ID,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
*error_return = NO_ERROR ;
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( Root_ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Close the ADF file (which may close other sub-files) **/
ADFI_close_file( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Database_Close */
/* end of file ADF_Database_Close.c */
/* file ADF_Database_Delete.c */
/***********************************************************************
ADF Database Delete:
Delete an existing database. This will delete one or more ADF files
which are linked together under file top ADF file named "filename".
ADF_Database_Delete( filename, error_return )
input: char *filename Filename of the ADF database to delete.
output: int *error_return Error return.
***********************************************************************/
void ADF_Database_Delete(
const char *filename,
int *error_return )
{
ADFI_check_string_length( filename, ADF_FILENAME_LENGTH, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
fprintf(stderr,"Subroutine ADF_Database_Delete is not yet implemented...\n" ) ;
*error_return = UNIMPLEMENTED_CODE ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Database_Delete */
/* end of file ADF_Database_Delete.c */
/* file ADF_Database_Garbage_Collection.c */
/***********************************************************************
ADF Database Garbage Collection:
Garbage Collection. This capability will most likely be implemented
internally and will not be user-callable.
ADF_Database_Garbage_Collection( ID, error_return )
input: const double ID The ID of a node in the ADF file in which
to do garbage collection.
output: int *error_return Error return.
***********************************************************************/
void ADF_Database_Garbage_Collection(
const double ID,
int *error_return )
{
fprintf(stderr,
"Subroutine ADF_Database_Garbage_Collection is not yet implemented...\n" ) ;
*error_return = UNIMPLEMENTED_CODE ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Database_Garbage_Collection */
/* end of file ADF_Database_Garbage_Collection.c */
/* file ADF_Database_Get_Format.c */
/***********************************************************************
ADF Database Get Format:
Get the data format used in an existing database.
ADF_Database_Get_Format( Root_ID, format, error_return )
input: const double Root_ID The root_ID of the ADF file.
output: char *format See format for ADFDOPN. Maximum of 20
characters returned.
output: int *error_return Error return.
***********************************************************************/
void ADF_Database_Get_Format(
const double Root_ID,
char *format,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct FILE_HEADER file_header ;
if( format == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( Root_ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get node_header for the node **/
ADFI_read_file_header( file_index, &file_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
#define EVAL_2_BYTES( C0, C1 ) (((C0)<<8)+((C1)))
switch( EVAL_2_BYTES( file_header.numeric_format, file_header.os_size ) ) {
case EVAL_2_BYTES( 'B', 'L' ) :
strcpy( format, IEEE_BIG_32_FORMAT_STRING ) ;
break ;
case EVAL_2_BYTES( 'L', 'L' ) :
strcpy( format, IEEE_LITTLE_32_FORMAT_STRING ) ;
break ;
case EVAL_2_BYTES( 'B', 'B' ) :
strcpy( format, IEEE_BIG_64_FORMAT_STRING ) ;
break ;
case EVAL_2_BYTES( 'L', 'B' ) :
strcpy( format, IEEE_LITTLE_64_FORMAT_STRING ) ;
break ;
case EVAL_2_BYTES( 'C', 'B' ) :
strcpy( format, CRAY_FORMAT_STRING ) ;
break ;
case EVAL_2_BYTES( 'N', 'L' ) :
case EVAL_2_BYTES( 'N', 'B' ) :
strcpy( format, NATIVE_FORMAT_STRING ) ;
break ;
default:
*error_return = ADF_FILE_FORMAT_NOT_RECOGNIZED ;
return ;
} /* end switch */
} /* end of ADF_Database_Get_Format */
/* end of file ADF_Database_Get_Format.c */
/* file ADF_Database_Open.c */
/***********************************************************************
ADF Database Open:
Open a database. Open either a new or an existing ADF file. If links to
other ADF files are used, these additional file will be opened
automatically as required.
ADF_Database_Open( filename, status, format, root_ID, error_return)
input: const char *filename Not used if status SCRATCH is used.
Filename must be a legal name and may include a relative or
absolute path. It must be directly usable by the C fopen()
system routine.
input: const char *status_in Like FORTRAN OPEN() status.
Allowable values are:
READ_ONLY - File must exist. Writing NOT allowed.
OLD - File must exist. Reading and writing allowed.
NEW - File must not exist.
SCRATCH - New file. Filename is ignored.
UNKNOWN - OLD if file exists, else NEW is used.
input: const char *format Specifies the numeric format for the
file. If blank or NULL, the machine's native format is
used. This field is only used when a file is created.
NATIVE - Determine the format on the machine. If the
native format is not one of the formats
supported, the created file cannot be used on
other machines.
IEEE_BIG - Use the IEEE big ENDIAN format.
IEEE_LITTLE - Use the IEEE little ENDIAN format.
CRAY - Use the native Cray format.
output: double *root_ID Root-ID of the opened ADF database.
output: int *error_return Error return.
Possible errors:
NO_ERROR
NULL_STRING_POINTER
ADF_FILE_STATUS_NOT_RECOGNIZED
REQUESTED_NEW_FILE_EXISTS
FILE_OPEN_ERROR
***********************************************************************/
void ADF_Database_Open(
const char *filename,
const char *status_in,
const char *format,
double *Root_ID,
int *error_return )
{
int iret ;
int error_dummy ;
char machine_format, format_to_use, os_to_use ;
char *status ;
int formats_compare ;
unsigned int file_index ;
unsigned int file_minor_version, lib_minor_version ;
struct FILE_HEADER file_header ;
struct NODE_HEADER node_header ;
struct FREE_CHUNK_TABLE free_chunk_table ;
file_header.tag0[0] = '\0' ;
status = (char *)status_in ;
if( status == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( Root_ID == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** DO NOT Check filename for NULL here, it may NOT be used... **/
*error_return = NO_ERROR ;
/** Get this machine's numeric format **/
ADFI_figure_machine_format( format, &machine_format, &format_to_use,
&os_to_use, error_return ) ;
if( ADFI_stridx_c( status, "SCRATCH" ) != 0 ) {
ADFI_check_string_length( filename, ADF_FILENAME_LENGTH, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
ADFI_check_string_length( status, ADF_STATUS_LENGTH, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Determine the requested STATUS **/
if( ADFI_stridx_c( status, "UNKNOWN" ) == 0 ) {
/** Determine the assessability of the filename **/
iret = access( filename, F_OK ) ;
if( iret != 0 ) /* File does not exist, set status to NEW */
status = "NEW" ;
else
status = "OLD" ;
} /* end else if */
if( (ADFI_stridx_c( status, "READ_ONLY" ) == 0) ||
(ADFI_stridx_c( status, "OLD" ) == 0) ) {
/** Determine the assessability of the filename **/
iret = access( filename, F_OK ) ;
if( iret != 0 ) { /* File does not exist, this is BAD for OLD */
*error_return = REQUESTED_OLD_FILE_NOT_FOUND ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** open the file **/
ADFI_open_file( filename, status, &file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else if */
else if( (ADFI_stridx_c( status, "NEW" ) == 0) ||
(ADFI_stridx_c( status, "SCRATCH" ) == 0) ) {
/** Determine the assessability of the filename **/
if( ADFI_stridx_c( status, "NEW" ) == 0 ) {
iret = access( filename, F_OK ) ;
if( iret == 0 ) { /* File exists, this is BAD for NEW */
*error_return = REQUESTED_NEW_FILE_EXISTS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( errno != ENOENT ) {
*error_return = FILE_OPEN_ERROR ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
} /* end if */
/** Compose the file header **/
ADFI_fill_initial_file_header( format_to_use, os_to_use,
ADF_D_identification,
&file_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Open the new file **/
ADFI_open_file( filename, status, &file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** write out the file header **/
ADFI_write_file_header( file_index, &file_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Compose Initial root-node header **/
ADFI_fill_initial_node_header( &node_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
strncpy( node_header.name, ROOT_NODE_NAME, strlen( ROOT_NODE_NAME )) ;
strncpy( node_header.label, ROOT_NODE_LABEL, strlen( ROOT_NODE_LABEL ) ) ;
/** Write out the root-node header **/
ADFI_write_node_header( file_index, &file_header.root_node,
&node_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Compose Initial Free-Chunk Table **/
ADFI_fill_initial_free_chunk_table( &free_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write out Free-Chunk Table **/
ADFI_write_free_chunk_table( file_index, &free_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else if */
else {
*error_return = ADF_FILE_STATUS_NOT_RECOGNIZED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
/** Read the header of the ADF file **/
if( file_header.tag0[0] == '\0' ) {
ADFI_read_file_header( file_index, &file_header, error_return ) ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
/** Check Database version numbers for compatibility **/
if( file_header.what[25] != ADF_D_identification[25] ) {
/* Look at major revision letter: version in file must equal what
this library would write unless there is a policy decision to
support both versions. */
*error_return = INVALID_VERSION ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
} /* end if */
if( file_header.what[28] == '>' )
{
/* we have an old file created before this version numbering scheme
was instituted - probably will not work */
*error_return = INVALID_VERSION ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
}
else /* check version number for file format compatibility */
{
/* Look at minor revision number: version in file must be less than
or equal to what this library would write. */
ADFI_ASCII_Hex_2_unsigned_int( 0, 255, 2, &file_header.what[26],
&file_minor_version, error_return) ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
ADFI_ASCII_Hex_2_unsigned_int( 0, 255, 2, &ADF_D_identification[26],
&lib_minor_version, error_return) ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
if( file_minor_version > lib_minor_version ) {
*error_return = INVALID_VERSION ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
} /* end if */
if( file_minor_version < lib_minor_version ) {
/** If a new feature is added which requires that the file version
be changed then it is done here. Care must be take not to
break forward compatibility by changing the file version. Thus
new features may not be available for older file versions.
For instance version A1 files cannot be upgraded to version
A2 and above since a change was made to how links were store
and the file version is used to decide how to treat links. **/
if ( ADF_D_identification[25] == 'A' && file_minor_version > 1 ) {
ADFI_remember_version_update( file_index, ADF_D_identification,
error_return ) ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
} /* end if */
/** The link separator was changed from " " to ">" in order
to support blanks in filenames under Windows. This change
is for version A02 and higher **/
if ( ADF_D_identification[25] == 'A' && file_minor_version < 2 ) {
ADF_file[file_index].link_separator = ' ' ;
} /* end if */
} /* end if */
} /* end if */
} /* end if */
/** get the root ID for the user **/
ADFI_file_block_offset_2_ID( file_index, file_header.root_node.block,
file_header.root_node.offset, Root_ID, error_return ) ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
/** Remember the file's data format **/
ADFI_remember_file_format( file_index, file_header.numeric_format,
file_header.os_size, error_return ) ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
/** check machine modes, if machine is native the file must be !! **/
ADFI_file_and_machine_compare( file_index, NULL, &formats_compare,
error_return ) ;
if ( *error_return != NO_ERROR ) goto Open_Error ;
return ;
Open_Error:
/** Close the ADF file and free its index **/
ADFI_close_file( file_index, &error_dummy ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Database_Open */
/* end of file ADF_Database_Open.c */
/***********************************************************************
ADF Database Valid:
Checks if a file is a valid ADF file. If status if given, then
check if the file can be opened in that mode.
ADF_Database_Valid( filename, status, error_return)
input: const char *filename
Filename must be a legal name and may include a relative or
absolute path. It must be directly usable by the C fopen()
system routine.
output: int *error_return Error return.
Possible errors:
NO_ERROR
NULL_STRING_POINTER
FILE_OPEN_ERROR
ADF_FILE_FORMAT_NOT_RECOGNIZED
***********************************************************************/
void ADF_Database_Valid(
const char *filename,
int *error_return )
{
FILE *fp;
char header[33];
if (NULL == filename || 0 == *filename) {
*error_return = NULL_STRING_POINTER;
return;
}
if (access(filename, F_OK)) {
*error_return = REQUESTED_OLD_FILE_NOT_FOUND;
return;
}
if ((fp = fopen(filename, "r+b")) == NULL) {
if (errno == EMFILE)
*error_return = TOO_MANY_ADF_FILES_OPENED;
else
*error_return = FILE_OPEN_ERROR;
return;
}
fread (header, sizeof(char), 32, fp);
fclose (fp);
header[32] = 0;
if (strncmp (&header[4], "ADF Database Version", 20))
*error_return = ADF_FILE_FORMAT_NOT_RECOGNIZED;
else
*error_return = NO_ERROR;
}
/* file ADF_Database_Set_Format.c */
/***********************************************************************
ADF Database Set Format:
Set the data format used in an existing database.
Note: Use with extreme caution. Needed only
for data conversion utilities and NOT intended
for the general user!!!
ADF_Database_Set_Format( Root_ID, format, error_return )
input: const double Root_ID The root_ID if the ADF file.
input: const char *format See format for ADFDOPN.
output: int *error_return Error return.
***********************************************************************/
void ADF_Database_Set_Format(
const double Root_ID,
const char *format,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct FILE_HEADER file_header ;
char machine_format, format_to_use, os_to_use ;
ADFI_check_string_length( format, ADF_FORMAT_LENGTH, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( Root_ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get node_header for the node **/
ADFI_read_file_header( file_index, &file_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_figure_machine_format( format, &machine_format, &format_to_use,
&os_to_use, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
file_header.numeric_format = format_to_use ;
file_header.os_size = os_to_use ;
/** Get modification date to be updated with the header **/
ADFI_get_current_date ( file_header.modification_date );
/** Now write the disk header out... **/
ADFI_write_file_header( file_index, &file_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_remember_file_format( file_index, format_to_use, os_to_use,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Database_Set_Format */
/* end of file ADF_Database_Set_Format.c */
/* file ADF_Database_Version.c */
/***********************************************************************
ADF Database Version:
Get ADF File Version ID. This is the version number of the ADF library
routines which created an ADF database. Modified ADF databases
will take on the version ID of the current ADF library version if
it is higher than the version indicated in the file.
The format of the version ID is: "ADF Database Version 000.01"
ADF_Database_Version( Root_ID, version, creation_date, modification_date,
error_return )
input: const double Root_ID The ID of the root node in the ADF file.
output: char *version A 32-byte character string containing the
version ID.
output: char *creation_date A 32-byte character string containing the
creation date of the file.
output: char *modification_date A 32-byte character string containing the
last modification date of the file.
output: int *error_return Error return.
***********************************************************************/
void ADF_Database_Version(
const double Root_ID,
char *version,
char *creation_date,
char *modification_date,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct FILE_HEADER file_header ;
if( (version == NULL) || (creation_date == NULL) ||
(modification_date == NULL) ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( Root_ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get node_header for the node **/
ADFI_read_file_header( file_index, &file_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
*error_return = NO_ERROR ;
/** Convert the "what" string into a C string **/
ADFI_string_2_C_string( &file_header.what[4], strcspn ( file_header.what, ">" ) - 4,
version, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Convert the creation date string into a C string **/
ADFI_string_2_C_string( file_header.creation_date, 28,
creation_date, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Convert the modification date string into a C string **/
ADFI_string_2_C_string( file_header.modification_date, 28,
modification_date, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Database_Version */
/* end of file ADF_Database_Version.c */
/* file ADF_Delete.c */
/***********************************************************************
ADF Delete:
Delete a Node. If the node is NOT a link, then the specified node and all
sub-nodes anywhere under it are also deleted. For a link, and also
for links farther down in the tree, the link-node will be deleted,
but the node which the link is linked to is not affected. When a
node is deleted, other link-nodes which point to it are left
dangling. For example, if N13 is deleted, then L1 and L2 point to a
non-existing node. This is OK until L1 and L2 are used.
ADF_Delete( PID, ID, error_return )
input: const double PID The ID of the node's parent.
input: const double ID The ID of the node to use.
output: int *error_return Error return.
***********************************************************************/
void ADF_Delete(
const double PID,
const double ID,
int *error_return )
{
int num_ids , i, link_path_length ;
double *ids ;
unsigned int file_index ;
struct DISK_POINTER parent ;
struct DISK_POINTER child ;
struct NODE_HEADER node_header ;
/** Don't use ADFI_chase_link() - delete link nodes but NOT the
nodes they are linked too **/
ADFI_ID_2_file_block_offset( ID, &file_index, &child.block, &child.offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADF_Is_Link( ID, &link_path_length, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_read_node_header( file_index, &child, &node_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Delete node data **/
if( link_path_length > 0 ) { /** this node IS a link **/
/** Delete the link path data for this node **/
ADFI_delete_data( file_index, &node_header, error_return ) ;
}
else { /** this node is NOT a link **/
/** Recursively delete all sub-nodes (children) of this node **/
ADFI_get_direct_children_ids( file_index, &child, &num_ids, &ids,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
for( i=0; i<num_ids; i++ ) {
ADF_Delete( ID, ids[i], error_return ) ; /* resursion */
CHECK_ADF_ABORT( *error_return ) ;
} /* end for */
if( num_ids > 0 ) {
free( ids ) ;
} /* end if */
/** Delete all data for this node **/
ADF_Put_Dimension_Information( ID, "MT", 0, (int *)0, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if-else */
/** Disassociate node from parent **/
ADFI_ID_2_file_block_offset( PID, &file_index,
&parent.block, &parent.offset, error_return ) ;
/* file_index should be same as before since parent and child
should be in the same file */
CHECK_ADF_ABORT( *error_return ) ;
ADFI_delete_from_sub_node_table( file_index, &parent, &child, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Delete this node's sub node table **/
if( node_header.entries_for_sub_nodes > 0 ) {
ADFI_delete_sub_node_table( file_index, &node_header.sub_node_table,
node_header.entries_for_sub_nodes, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Delete node header from disk **/
ADFI_file_free( file_index, &child, 0, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Delete */
/* end of file ADF_Delete.c */
/* file ADF_Error_Message.c */
/***********************************************************************
ADF Error message:
Return Error Message. Given an error_return from an ADF routine,
get a textual description of the error.
ADF_Error_Message( error_return, error_string )
input: const int error_return An ADF-generated error code.
output: char *error_string An 80-byte description of the specified error.
If the number is NULL, then print out error message.
***********************************************************************/
void ADF_Error_Message(
const int error_return_input,
char *error_string )
{
char err_msg_str[ADF_MAX_ERROR_STR_LENGTH+1] ;
/** If return pointer is NULL, print message to stdout **/
if( error_string == NULL ) {
ADF_Error_Message( error_return_input, err_msg_str ) ;
fprintf(stderr,"%s\n", err_msg_str ) ;
return ;
} /* end if */
/** NO_ERROR is NOT zero for pointer-assignment checking **/
if( error_return_input == NO_ERROR ) {
strcpy( error_string, ADF_error_string[ 0 ] ) ;
} /* end if */
/** Check range of error code **/
else if( (error_return_input <= 0) ||
(error_return_input >= sizeof( ADF_error_string )/sizeof(char *) - 1 ) ) {
sprintf( error_string, "ADF: Unrecognized error number %d.",
error_return_input ) ;
} /* end else if */
/** Error-code good, copy it for the user **/
else if (ADF_sys_err &&
(FILE_OPEN_ERROR == error_return_input ||
FILE_CLOSE_ERROR == error_return_input ||
FSEEK_ERROR == error_return_input ||
FREAD_ERROR == error_return_input ||
FWRITE_ERROR == error_return_input ||
FFLUSH_ERROR == error_return_input)) {
char *p;
strncpy (err_msg_str, strerror(ADF_sys_err), ADF_MAX_ERROR_STR_LENGTH-8);
err_msg_str[ADF_MAX_ERROR_STR_LENGTH-8] = 0;
p = err_msg_str + strlen(err_msg_str) - 1;
if (*p == '\n') *p = 0;
sprintf (error_string, "ADF %d: %s", error_return_input, err_msg_str);
}
else {
strcpy( error_string, ADF_error_string[error_return_input] ) ;
} /* end else */
} /* end of ADF_Error_Message */
/* end of file ADF_Error_Message.c */
/* file ADF_Flush_to_Disk.c */
/***********************************************************************
ADF Flush to Disk:
Flush data to disk. This routine is used force any modified information
to be flushed to the physical disk. This ensures that data will not
be lost if a program aborts. This control of when to flush all data
to disk is provided to the user rather than to flush the data every
time it is modified, which would result in reduced performance.
ADF_Flush_to_Disk( ID, error_return )
input: const double ID The ID of a node in the ADF file to flush.
output: int *error_return Error return.
***********************************************************************/
void ADF_Flush_to_Disk(
const double ID,
int *error_return )
{
double LID ;
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_fflush_file( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Flush_to_Disk */
/* end of file ADF_Flush_to_Disk.c */
/* file ADF_Get_Data_Type.c */
/***********************************************************************
ADF Get Data Type:
Get Data Type. Return the 32 character string in a node's data-type field.
In C, the name will be null terminated after the last non-blank character.
A maximum of 33 characters may be used (32 for the name plus 1 for the null).
ADF_Get_Data_Type( ID, data_type, error_return )
input: const double ID The ID of the node to use.
output: char *data_type The 32-character data-type of the node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Get_Data_Type(
const double ID,
char *data_type,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
double LID ;
if( data_type == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Copy the blank-filled data-type into a C string **/
ADFI_string_2_C_string( node.data_type, ADF_DATA_TYPE_LENGTH, data_type,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Get_Data_Type */
/* end of file ADF_Get_Data_Type.c */
/* file ADF_Get_Dimension_Values.c */
/***********************************************************************
ADF Get Dimension Values:
Get Dimension Values. Return the dimension values for a node. Values
will be in the range of 1 to 100,000. Values will only be returned
for the number of dimensions defined in the node. If the number
of dimensions for the node is zero, an error is returned.
ADF_Get_Dimension_Values( ID, dim_vals, error_return )
input: const double ID The ID of the node to use.
output: int dim_vals[] Array for returned dimension values.
output: int *error_return Error return.
***********************************************************************/
void ADF_Get_Dimension_Values(
const double ID,
int dim_vals[],
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
int i ;
double LID ;
if( dim_vals == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Check for zero dimensions **/
if( node.number_of_dimensions == 0 ) {
*error_return = ZERO_DIMENSIONS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Check for too-large-of dimensions **/
if( node.number_of_dimensions > ADF_MAX_DIMENSIONS ) {
*error_return = BAD_NUMBER_OF_DIMENSIONS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Copy the dimension information **/
for( i=0; i<(int)node.number_of_dimensions; i++ )
dim_vals[i] = node.dimension_values[i] ;
} /* end of ADF_Get_Dimension_Values */
/* end of file ADF_Get_Dimension_Values.c */
/* file ADF_Get_Error_State.c */
/***********************************************************************
ADF Get Error State:
Get Error State. Return the current error state.
ADF_Get_Error_State( error_state, error_return )
output: int *error_state Flag for ABORT on error (1) or return error
status (0).
output: int *error_return Error return.
***********************************************************************/
void ADF_Get_Error_State(
int *error_state,
int *error_return )
{
if( error_state == 0L ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
if( ADF_abort_on_error == TRUE )
*error_state = 1 ;
else
*error_state = 0 ;
} /* end of ADF_Get_Error_State */
/* end of file ADF_Get_Error_State.c */
/* file ADF_Get_Label.c */
/***********************************************************************
ADF Get Label:
Return the 32 character string in a node's label field.
ADF_Get_Label( ID, label, error_return )
input: const double ID The ID of the node to use.
output: char *label The 32-character label of the node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Get_Label(
const double ID,
char *label,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
double LID ;
if( label == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Copy the blank-filled label type into a C string **/
ADFI_string_2_C_string( node.label, ADF_LABEL_LENGTH, label,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Get_Label */
/* end of file ADF_Get_Label.c */
/* file ADF_Get_Link_Path.c */
/***********************************************************************
ADF Get Link path:
Get path information from a link. If the node is a link-node, return
the path information. Else, return an error. If the link is in the same
file, then the filename returned is zero length.
ADF_Get_Link_Path( ID, file, name_in_file, error_return )
input: const double ID The ID of the node to use.
output: char *file The returned filename
output: char *name_in_file The returned name of node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Get_Link_Path(
const double ID,
char *file,
char *name_in_file,
int *error_return )
{
unsigned int file_index ;
int file_bytes, machine_bytes, total_bytes ;
char file_format, machine_format ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node_header ;
struct TOKENIZED_DATA_TYPE tokenized_data_type[ 2 ] ;
char link_data[ADF_FILENAME_LENGTH + ADF_MAX_LINK_DATA_SIZE + 1 + 1] ;
size_t lenfilename ;
char *separator;
if( file == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( name_in_file == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get node_header for the node **/
ADFI_read_node_header( file_index, &block_offset, &node_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( (node_header.data_type[0] != 'L') || (node_header.data_type[1] != 'K')) {
*error_return = NODE_IS_NOT_A_LINK ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Get tokenized datatype **/
ADFI_evaluate_datatype( file_index, node_header.data_type,
&file_bytes, &machine_bytes, tokenized_data_type,
&file_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
total_bytes = file_bytes * node_header.dimension_values[0] ;
ADFI_read_data_chunk( file_index, &node_header.data_chunks,
tokenized_data_type, file_bytes, total_bytes,
0, total_bytes, link_data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/* NULL terminate the string */
link_data[ node_header.dimension_values[0] ] = '\0' ;
file[0] = '\0' ;
name_in_file[0] = '\0' ;
/** look for file/link delimiter **/
separator = strchr (link_data, ADF_file[file_index].link_separator);
if (separator == NULL) {
lenfilename = 0;
} else {
lenfilename = (size_t)(separator - link_data);
}
if ( lenfilename == 0 ) /** no filename **/
{
strcpy( name_in_file, &link_data[1] );
}
else if ( lenfilename > 0 && lenfilename == strlen( link_data ) )
{
strcpy( file, link_data) ; /** no link ? **/
}
else
{
strncpy( file, link_data, lenfilename) ;
file[lenfilename] = '\0';
strcpy( name_in_file, &link_data[lenfilename+1] );
} /* end if */
} /* end of ADF_Get_Link_Path */
/* end of file ADF_Get_Link_Path.c */
/* file ADF_Get_Name.c */
/***********************************************************************
ADF get name:
Get Name of a Node. Given a node's ID, return the 32 character name of
that node.
ADF_Get_Name( ID, name, error_return )
input: const double ID The ID of the node to use.
output: char *name The simple name of the node (no path info).
output: int *error_return Error return.
***********************************************************************/
void ADF_Get_Name(
const double ID,
char *name,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
if( name == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get node_header for the node **/
ADFI_read_node_header( file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Copy the blank-filled name into a C string **/
ADFI_string_2_C_string( node.name, ADF_NAME_LENGTH, name,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Get_Name */
/* end of file ADF_Get_Name.c */
/* file ADF_Get_Node_ID.c */
/***********************************************************************
ADF get Node ID:
Get Unique-Identifier of a Node. Given a parent node ID and a name of
a child node, this routine returns the ID of the child. If the child
node is a link, the ID of the link node is returned (not the ID of the
linked-to node) - otherwise there would be no way to obtain the ID
of a link node.
The child name may be a simple name or a compound path name.
If the name is a compound path name and it begins with a '/',
then the parent node ID may be any valid ID in the same database
as the first node in the path. If the name is only "/" and the
parent ID is any valid ID in the database, the root ID is returned.
If the name is a compound path name and does not begin with a '/',
then the parent node ID is the ID of the parent of the first node
in the path. If the path name contains a link node (except for
the ending leaf node), then the link is followed.
ADF_Get_Node_ID( PID, name, ID, error_return )
input: const double PID The ID of name's parent.
input: const char *name The name of the node. Compound
names including path information use a slash "/" notation between
node names. If a leading slash is used, then PID can be any
valid node ID in the ADF database of the first name in the path.
output: double *ID The ID of the named node.
output: int *error_return Error return.
Possible errors:
NO_ERROR
NULL_STRING_POINTER
NULL_POINTER
***********************************************************************/
void ADF_Get_Node_ID(
const double PID,
const char *name,
double *ID,
int *error_return )
{
double LID ;
int found ;
int name_length ;
unsigned int file_index ;
struct DISK_POINTER parent_block_offset, sub_node_entry_location ;
struct SUB_NODE_TABLE_ENTRY sub_node_entry ;
struct NODE_HEADER node_header ;
char *name_tmp, *name_ptr, *name_pos ;
if( name == NULL ) {
*error_return = NULL_STRING_POINTER ;
return ;
} /* end if */
name_length = strlen( name ) ;
if( name_length == 0 ) {
*error_return = STRING_LENGTH_ZERO ;
return ;
} /* end if */
if( ID == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
*ID = PID ; /** initialize the ID variable to use in intermediate steps **/
if( name[0] == '/' ) { /** start at the root node **/
/** according to user documentation, PID can be any valid node
in the database, but we need to use it to get the root ID
in order to start at the top **/
ADF_Get_Root_ID( PID, ID, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** This is the root-node, return the Root-ID **/
if( name[ 1 ] == '\0' ) {
return ; /** NOT an error, just done and need to get out **/
} /* end if */
} /* end if */
name_tmp = (char *) malloc( (name_length + 1) * sizeof( char ) ) ;
if( name_tmp == NULL ) {
*error_return = MEMORY_ALLOCATION_FAILED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
strcpy( name_tmp, name ) ;
/** start search for tokens (names separated by '/') **/
name_pos = name_tmp ;
name_ptr = ADFI_strtok( name_tmp, &name_pos, "/" ) ;
if( name_ptr == NULL ) { /** this should never happen but check anyway **/
*error_return = INVALID_NODE_NAME ;
CHECK_ADF_ABORT1( *error_return ) ;
} /* end if */
/** Get file-index, etc. to start. Note: Parent ID may be a link **/
ADFI_chase_link( *ID, &LID, &file_index,
&parent_block_offset, &node_header, error_return ) ;
CHECK_ADF_ABORT1( *error_return ) ;
*ID = LID ;
/** Track through the possible compound name string **/
while( name_ptr ) {
/** Find this child under the current parent **/
ADFI_check_4_child_name( file_index, &parent_block_offset, name_ptr, &found,
&sub_node_entry_location, &sub_node_entry, error_return ) ;
CHECK_ADF_ABORT1( *error_return ) ;
if( found == 0 ) { /** Child NOT found **/
*error_return = CHILD_NOT_OF_GIVEN_PARENT ;
CHECK_ADF_ABORT1( *error_return ) ;
} /* end if */
/** create the child ID **/
ADFI_file_block_offset_2_ID( file_index,
sub_node_entry.child_location.block,
sub_node_entry.child_location.offset, ID, error_return ) ;
/** Get the next node-name token (NULL if no more). This is needed
for the while-loop check and normally would be done at the
end of the loop, but it is useful in the next step to see if
there are any more branches in the path. **/
name_ptr = ADFI_strtok( name_tmp, &name_pos, "/" ) ;
/** If this node is the last in the path it may be a link, but
there needs to be a mechanism by which a link's ID can
be determined and so we cannot follow the link at this time. **/
if( name_ptr != NULL ) {
/* Make sure we have a real ID so we can continue the search */
ADFI_chase_link( *ID, &LID, &file_index, &parent_block_offset,
&node_header, error_return ) ;
CHECK_ADF_ABORT1( *error_return ) ;
*ID = LID ;
/** This child now becomes the parent. Do it again... **/
ADFI_ID_2_file_block_offset( *ID, &file_index,
&parent_block_offset.block,
&parent_block_offset.offset,
error_return ) ;
CHECK_ADF_ABORT1( *error_return ) ;
} /* end if */
} /* end while */
free( name_tmp ) ;
} /* end of ADF_Get_Node_ID */
/* end of file ADF_Get_Node_ID.c */
/* file ADF_Get_Number_of_Dimensions.c */
/***********************************************************************
ADF Get Number of Dimensions:
Get Number of Dimensions. Return the number of data dimensions
used in a node. Valid values are from 0 to 12.
ADF_Get_Number_of_Dimensions( ID, num_dims, error_return)
input: const double ID The ID of the node to use.
output: int *num_dims The returned number of dimensions.
output: int *error_return Error return.
***********************************************************************/
void ADF_Get_Number_of_Dimensions(
const double ID,
int *num_dims,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
double LID ;
if( num_dims == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset,
&node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Return the number of dimensions **/
*num_dims = node.number_of_dimensions ;
} /* end of ADF_Get_Number_of_Dimensions */
/* end of file ADF_Get_Number_of_Dimensions.c */
/* file ADF_Get_Root_ID.c */
/***********************************************************************
ADF_Get_Root_ID:
Get root-ID for an ADF system from any ID in the system.
input: const double ID The ID of the node to use.
output: *double Root_ID The returned ID of the root node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Get_Root_ID(
const double ID,
double *Root_ID,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct FILE_HEADER file_header ;
if( Root_ID == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
/** Get the file ID **/
ADFI_ID_2_file_block_offset( ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Use the file header to find the root ID **/
ADFI_read_file_header( file_index, &file_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Format the root ID **/
ADFI_file_block_offset_2_ID( file_index, file_header.root_node.block,
file_header.root_node.offset, Root_ID, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Get_Root_ID */
/* end of file ADF_Get_Root_ID.c */
/* file ADF_Is_Link.c */
/***********************************************************************
ADF Is Link:
Test if a Node is a link. If the actual data-type of the node is "LK"
(created with ADF_Link), return the link path length. Otherwise,
return 0.
ADF_Is_Link( ID, link_path_length, error_return )
input: const double ID The ID of the node to use.
output: int *link_path_length 0 if the node is NOT a link. If the
node is a link, the length of the path string is returned.
output: int *error_return Error return.
***********************************************************************/
void ADF_Is_Link(
const double ID,
int *link_path_length,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node_header ;
if( link_path_length == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get node_header for the node **/
ADFI_read_node_header( file_index, &block_offset, &node_header, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( (node_header.data_type[0] == 'L') && (node_header.data_type[1] == 'K'))
*link_path_length = node_header.dimension_values[0] ;
else
*link_path_length = 0 ;
} /* end of ADF_Is_Link */
/* end of file ADF_Is_Link.c */
/* file ADF_Library_Version.c */
/***********************************************************************
ADF Library Version:
Get ADF Library Version ID. This is the version number of the ADF
library routines which your program is currently using.
The format of the version ID is: "ADF Library Version 000.01"
ADF_Library_Version( version, error_return )
output: char *version A 32-byte character string containing
the ADF Library version ID information.
output: int *error_return Error return.
***********************************************************************/
void ADF_Library_Version(
char *version,
int *error_return )
{
int lversion;
if( version == NULL ) {
*error_return = NULL_STRING_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
/** Copy the proper portion of the "what" string **/
strcpy ( version, &ADF_L_identification[4] ) ;
lversion = strlen ( version ) ;
version[lversion-1] = '\0' ; /** remove trailing "what" delimiter ('>') **/
} /* end of ADF_Library_Version */
/* end of file ADF_Library_Version.c */
/* file ADF_Link.c */
/***********************************************************************
ADF Link:
Create a link. Note: The Node linked to does not have to exist when the
link is created (but it may exist and that is OK). However, when
the link is used, an error will occur if the linked to node does not
exist.
ADF_Link( PID, name, file, name_in_file, ID, error_return )
input: const double PID The ID of the Node's parent.
input: const char *name The name of the link node.
input: const char *file The filename to use for the link (directly
usable by a C open() routine). If blank (null),
the link will be within the same file.
input: const char *name_in_file The name of the node which
the link will point to. This can be a simple or compound name.
output: double ID The returned ID of the link-node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Link(
const double PID,
const char *name,
const char *file_name,
const char *name_in_file,
double *ID,
int *error_return )
{
char link_data[ADF_FILENAME_LENGTH +
ADF_MAX_LINK_DATA_SIZE + 2] ;
int null_filename = FALSE ;
int filename_length, linked_to_length, data_length ;
int dim_vals[1] ;
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node_header ;
/** Don't check file since it can be a NULL pointer **/
ADFI_check_string_length( name, ADF_NAME_LENGTH, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_check_string_length( name_in_file, ADF_MAX_LINK_DATA_SIZE, error_return );
CHECK_ADF_ABORT( *error_return ) ;
ADF_Is_Link( PID, &linked_to_length, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if ( linked_to_length > 0 ) {
*error_return = LINKS_TOO_DEEP ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Create the node in the normal way **/
ADF_Create( PID, name, ID, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( *ID, &file_index, &block_offset.block,
&block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Add the file and linked-to name as data in the child **/
ADFI_check_string_length( file_name, ADF_FILENAME_LENGTH, error_return ) ;
if( *error_return != NO_ERROR ) {
null_filename = TRUE ;
filename_length = 0 ;
} /* end if */
else {
filename_length = strlen( file_name) ;
} /* end else */
linked_to_length = strlen( name_in_file ) ;
data_length = filename_length + linked_to_length + 1 ;
if( data_length > ADF_FILENAME_LENGTH + ADF_MAX_LINK_DATA_SIZE + 1 ) {
*error_return = STRING_LENGTH_TOO_BIG ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( null_filename == TRUE ) {
sprintf( link_data, "%c%s", ADF_file[file_index].link_separator,
name_in_file ) ;
} /* end if */
else {
sprintf( link_data, "%s%c%s", file_name,
ADF_file[file_index].link_separator, name_in_file ) ;
} /* end else */
/** We must use a datatype of "C1" to put the data into this node.
With a datatype of "Lk" (a link), the written data will go
into the linked-to node (that's the whole point). To set
this up we must be careful...
**/
dim_vals[0] = data_length ;
ADF_Put_Dimension_Information( *ID, "C1", 1, dim_vals, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADF_Write_All_Data( *ID, link_data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Change the datatype to be LK, without deleting the data.
We can't use ADF_Put_Dimension_Information since the change
of datatype will delete the data. We must do this manually.
**/
ADFI_read_node_header( file_index, &block_offset, &node_header, error_return );
CHECK_ADF_ABORT( *error_return ) ;
if( (node_header.data_type[0] != 'C') || (node_header.data_type[1] != '1') ||
(node_header.data_type[2] != ' ') ) {
*error_return = INVALID_DATA_TYPE ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
node_header.data_type[0] = 'L' ;
node_header.data_type[1] = 'K' ;
ADFI_write_node_header( file_index, &block_offset, &node_header, error_return );
CHECK_ADF_ABORT( *error_return ) ;
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Link */
/* end of file ADF_Link.c */
/* file ADF_Move_Child.c */
/***********************************************************************
ADF Move Child:
Change Parent (move a Child Node). The node and the 2 parents must
all exist within a single ADF file. If the node is pointed to by a
link-node, changing the node's parent will break the link.
ADF_Move_Child( PID, ID, NPID, error_return )
input: double PID The ID of the Node's parent.
input: double ID The ID of the node to use.
input: double NPID The ID of the Node's New Parent
output: int *error_return Error return.
***********************************************************************/
void ADF_Move_Child(
const double PID,
const double ID,
const double NPID,
int *error_return )
{
unsigned int parent_file_index, child_file_index,
new_parent_file_index, file_index ;
char child_name[ ADF_NAME_LENGTH ] ;
int found ;
struct DISK_POINTER parent, child, new_parent, sub_node_entry_location ;
struct SUB_NODE_TABLE_ENTRY sub_node_entry ;
*error_return = NO_ERROR ;
ADFI_ID_2_file_block_offset( PID, &parent_file_index, &parent.block,
&parent.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_ID_2_file_block_offset( ID, &child_file_index, &child.block,
&child.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( child_file_index != parent_file_index ) {
*error_return = NODES_NOT_IN_SAME_FILE ;
CHECK_ADF_ABORT( *error_return ) ;
}
ADFI_ID_2_file_block_offset( NPID, &new_parent_file_index, &new_parent.block,
&new_parent.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( new_parent_file_index != parent_file_index ) {
*error_return = NODES_NOT_IN_SAME_FILE ;
CHECK_ADF_ABORT( *error_return ) ;
}
file_index = parent_file_index ; /* use a shorter, more generic name -
file indices should now be the same
for all 3 nodes */
/** check that child is really a child of parent **/
ADF_Get_Name( ID, child_name, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_check_4_child_name( file_index, &parent, child_name, &found,
&sub_node_entry_location, &sub_node_entry, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( found == 0 ) { /* child not found */
*error_return = CHILD_NOT_OF_GIVEN_PARENT ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** add child to its new parent's sub node table **/
ADFI_add_2_sub_node_table( file_index, &new_parent, &child, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** remove child from its old parent's sub node table **/
ADFI_delete_from_sub_node_table( file_index, &parent, &child, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Move_Child */
/* end of file ADF_Move_Child.c */
/* file ADF_Number_of_Children.c */
/***********************************************************************
ADF Number of Children;
Get Number of Children of a Node. Return the number of children
nodes directly associated with a parent node.
ADF_Number_of_Children( ID, num_children, error_return )
input: const double ID The ID of the node to use.
output: int *num_children The number of children directly
associated with this node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Number_of_Children(
const double ID,
int *num_children,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
double LID ;
if( num_children == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Return the number of children **/
*num_children = node.num_sub_nodes ;
} /* end of ADF_Number_of_Children */
/* end of file ADF_Number_of_Children.c */
/* file ADF_Put_Dimension_Information.c */
/***********************************************************************
ADF Put Dimension Information:
Set/change the data-type and Dimension Information of a Node. Valid
user-definable data-types are:
No data MT
Integer 32 I4
Integer 64 I8
Unsigned Int 32 U4
Unsigned Int 64 U8
Real 32 R4
Real 64 R8
Complex 64 X4
Complex 128 X8
Character (unsigned byte) C1
Byte (unsigned byte) B1
Compound data-types can be used which combine types
("I4,I4,R8"), define an array ("I4[25]"), or a combination of these
("I4,C1[20],R8[3]").
dims can be a number from 0 to 12.
dim_vals is an array of integers. The number of integers used is
determined by the dims argument. If dims is zero, the dim_values
are not used. Valid range for dim_values are from 1 to 2,147,483,648.
The total data size, calculated by the data-type-size times the
dimension value(s), cannot exceed 2,147,483,648.
Note: When this routine is called and the data-type or the
number of dimensions changes, any data currently associated
with the node is lost!! The dimension values can be changed and
the data space will be extended as needed.
ADF_Put_Dimension_Information( ID, data_type, dims, dim_vals, error_return )
input: const double ID The ID of the node.
input: const char *data-type The data-type to use.
input: const int dims The number of dimensions this node has.
input: const int dim_vals[] The dimension values for this node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Put_Dimension_Information(
const double ID,
const char *data_type,
const int dims,
const int dim_vals[],
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
struct TOKENIZED_DATA_TYPE
tokenized_data_type[ 1 + (ADF_DATA_TYPE_LENGTH + 1)/3 ] ;
char file_format, machine_format ;
int file_bytes[2], machine_bytes[2] ;
int data_bytes, old_data_bytes ;
int i, datatype_length ;
int preserve_data = FALSE ;
double LID ;
ADFI_check_string_length( data_type, ADF_DATA_TYPE_LENGTH, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( dim_vals == NULL && dims > 0 ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Check new datatype **/
ADFI_evaluate_datatype( file_index, data_type,
&file_bytes[0], &machine_bytes[0],
tokenized_data_type, &file_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Look at old datatype **/
ADFI_evaluate_datatype( file_index, node.data_type,
&file_bytes[1], &machine_bytes[1],
tokenized_data_type, &file_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Calculate new data-size **/
if( dims < 0 ) {
*error_return = NUMBER_LESS_THAN_MINIMUM ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( dims > ADF_MAX_DIMENSIONS) {
*error_return = BAD_NUMBER_OF_DIMENSIONS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** If the number of dimensions is zero, set data-bytes to zero **/
if( dims == 0 )
data_bytes = 0 ;
else { /** Calculate the total number of bytes in the data **/
for( data_bytes=file_bytes[0], i=0; i<dims; i++ ) {
if( dim_vals[i] <=0 ) {
*error_return = BAD_DIMENSION_VALUE ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
data_bytes *= dim_vals[i] ;
} /* end for */
} /* end else */
/** Calculate old data-size **/
if( node.number_of_dimensions == 0 )
old_data_bytes = 0 ;
else {
for( old_data_bytes=file_bytes[1], i=0;
i<(int)node.number_of_dimensions; i++ )
old_data_bytes *= node.dimension_values[i] ;
} /* end else */
/** If the data-types are the same... **/
if( ADFI_stridx_c( node.data_type, data_type ) == 0 ) { /* datatypes the same */
if( dims == (int) node.number_of_dimensions )
preserve_data = TRUE ;
} /* end if */
/** If a different datatype, throw-away the data, record new datatype **/
else {
datatype_length = strlen( data_type ) ;
/** Copy the datatype **/
for( i=0; i<MIN(datatype_length, ADF_DATA_TYPE_LENGTH); i++ ) {
node.data_type[i] = data_type[i] ;
} /* end for */
/** Blank fill the remaining space **/
for( ; i<ADF_DATA_TYPE_LENGTH; i++ ) {
node.data_type[i] = ' ' ;
} /* end for */
} /* end else */
/** Record the number of dimensions and the dimension values **/
node.number_of_dimensions = dims ;
for( i=0; i<dims; i++ )
node.dimension_values[i] = dim_vals[i] ;
for( ; i<ADF_MAX_DIMENSIONS; i++ ) /** Zero out remaining dimension values **/
node.dimension_values[i] = 0 ;
if( preserve_data != TRUE ) { /** Free the old data **/
ADFI_delete_data( file_index, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
node.number_of_data_chunks = 0 ;
ADFI_set_blank_disk_pointer( &node.data_chunks ) ;
} /* end if */
/** Write modified node_header for the node **/
ADFI_write_node_header( file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Put_Dimension_Information */
/* end of file ADF_Put_Dimension_Information.c */
/* file ADF_Put_Name.c */
/***********************************************************************
ADF Put name:
Put (change) Name of a Node. Warning: If the node is pointed to by a
link-node, changing the node's name will break the link.
ADF_Put_Name( PID, ID, name, error_return )
input: const double PID The ID of the Node's parent.
input: const double ID The ID of the node to use.
input: const char *name The new name of the node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Put_Name(
const double PID,
const double ID,
const char *name,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER parent_block_offset, child_block_offset ;
struct DISK_POINTER sub_node_entry_location ;
struct NODE_HEADER parent_node, child_node ;
struct SUB_NODE_TABLE_ENTRY sub_node_entry ;
int i, name_start, name_length, found ;
ADFI_check_string_length( name, ADF_NAME_LENGTH, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
*error_return = NO_ERROR ;
/** Get the file, block, and offset numbers from the PID **/
ADFI_ID_2_file_block_offset( PID, &file_index, &parent_block_offset.block,
&parent_block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get the file, block, and offset numbers from the ID **/
ADFI_ID_2_file_block_offset( ID, &file_index, &child_block_offset.block,
&child_block_offset.offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get node_header for the node (parent) **/
ADFI_read_node_header( file_index, &parent_block_offset,
&parent_node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get node_header for the node (child) **/
ADFI_read_node_header( file_index, &child_block_offset,
&child_node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Skip any leading blanks in the name **/
name_start = 0 ;
while( name[ name_start ] == ' ' )
name_start++ ;
name_length = strlen( &name[ name_start ] ) ;
if( name_length > ADF_NAME_LENGTH ) {
*error_return = STRING_LENGTH_TOO_BIG ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( name_length == 0 ) {
*error_return = STRING_LENGTH_ZERO ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Need to check for uniqueness and legality of the name **/
ADFI_check_4_child_name( file_index, &parent_block_offset,
&name[ name_start ], &found, &sub_node_entry_location,
&sub_node_entry, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( found == 1 ) {
*error_return = DUPLICATE_CHILD_NAME ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
for ( i=0; i < name_length; i++ ) {
if ( ! isprint ( name[ name_start + i ] ) ||
name[ name_start + i ] == '/' ) {
*error_return = INVALID_NODE_NAME;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
} /* end for */
/** Confirm that child is from the parent **/
ADFI_check_4_child_name( file_index, &parent_block_offset,
child_node.name, &found, &sub_node_entry_location,
&sub_node_entry, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( found == 0 ) {
*error_return = CHILD_NOT_OF_GIVEN_PARENT ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( (child_block_offset.block != sub_node_entry.child_location.block) ||
(child_block_offset.offset != sub_node_entry.child_location.offset) ) {
*error_return = CHILD_NOT_OF_GIVEN_PARENT ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Copy the name **/
name_length = strlen( name ) ;
for( i=0; i<MIN(name_length, ADF_NAME_LENGTH); i++ ) {
child_node.name[i] = name[i] ;
sub_node_entry.child_name[i] = name[i] ;
} /* end for */
/** Blank fill the remaining space **/
for( ; i<ADF_NAME_LENGTH; i++ ) {
child_node.name[i] = ' ' ;
sub_node_entry.child_name[i] = ' ' ;
} /* end for */
/** Write modified node_header **/
ADFI_write_node_header( file_index, &child_block_offset,
&child_node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** replace the child's name in the parent's sub-node_table **/
ADFI_write_sub_node_table_entry( file_index, &sub_node_entry_location,
&sub_node_entry, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Put_Name */
/* end of file ADF_Put_Name.c */
/* file ADF_Read_All_Data.c */
/***********************************************************************
ADF Read All Data:
Read all data from a Node. Reads all the node's data and returns it into
a contiguous memory space.
ADF_Read_All_Data( ID, data, error_return )
input: const double ID The ID of the node to use.
output: char *data The start of the data in memory.
output: int *error_return Error return.
***********************************************************************/
void ADF_Read_All_Data(
const double ID,
char *data,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
struct TOKENIZED_DATA_TYPE
tokenized_data_type[ 1 + (ADF_DATA_TYPE_LENGTH + 1)/3 ] ;
struct DATA_CHUNK_TABLE_ENTRY *data_chunk_table ;
char *data_pointer ;
char file_format, machine_format ;
int file_bytes, memory_bytes, bytes_to_read ;
long total_bytes, bytes_read ;
int i, j ;
double LID ;
if( data == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get datatype size **/
ADFI_evaluate_datatype( file_index, node.data_type, &file_bytes, &memory_bytes,
tokenized_data_type, &file_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( (file_bytes == 0) || (node.number_of_dimensions == 0) ) {
*error_return = NO_DATA ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Calculate total number of bytes in the data **/
total_bytes = file_bytes ;
for( j=0; j<(int)node.number_of_dimensions; j++ )
total_bytes *= node.dimension_values[j] ;
/** If there is NO DATA, fill data space with zeros, return error **/
if( node.number_of_data_chunks == 0 ) {
memset( data, 0, total_bytes*memory_bytes/file_bytes ) ;
*error_return = NO_DATA ;
return ; /** NO_DATA is really a warning, so don't check & abort... **/
} /* end if */
/** Read the data from disk **/
else if( node.number_of_data_chunks == 1 ) {
ADFI_read_data_chunk( file_index, &node.data_chunks, tokenized_data_type,
file_bytes, total_bytes, 0, total_bytes, data,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else if */
else {
/** Allocate memory for the required table space in memory **/
data_chunk_table = (struct DATA_CHUNK_TABLE_ENTRY *)
malloc( node.number_of_data_chunks * sizeof( *data_chunk_table ) ) ;
if( data_chunk_table == NULL ) {
*error_return = MEMORY_ALLOCATION_FAILED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Read in the table **/
ADFI_read_data_chunk_table( file_index, &node.data_chunks,
data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Read data from each entry in the table **/
bytes_read = 0 ;
data_pointer = data ;
for( i=0; i<(int)node.number_of_data_chunks; i++ ) {
bytes_to_read =
(data_chunk_table[i].end.block - data_chunk_table[i].start.block) *
DISK_BLOCK_SIZE +
(data_chunk_table[i].end.offset - data_chunk_table[i].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
/** Check to be sure we aren't reading too much data
(shrinking a data block can cause this)
**/
if( bytes_read + bytes_to_read > total_bytes ) {
bytes_to_read = total_bytes - bytes_read ;
} /* end if */
if( bytes_to_read == 0 )
break ;
ADFI_read_data_chunk( file_index, &data_chunk_table[i].start,
tokenized_data_type, file_bytes, bytes_to_read, 0,
bytes_to_read, data_pointer, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** note: memory_bytes and file_bytes might be different (e.g., if machine
is "IEEE_BIG" and file is "CRAY") in which case data pointer advances
at a different rate from file pointer. **/
data_pointer += (bytes_to_read * memory_bytes) / file_bytes ;
bytes_read += bytes_to_read ;
} /* end for */
free( data_chunk_table ) ;
if( bytes_read < total_bytes ) {
*error_return = INCOMPLETE_DATA ;
memset( data_pointer, 0, total_bytes - bytes_read ) ;
} /* end if */
} /* end else */
} /* end of ADF_Read_All_Data */
/* end of file ADF_Read_All_Data.c */
/* file ADF_Read_Block_Data.c */
/***********************************************************************
ADF Read Block Data:
Read a continous block of data from a Node. Reads a block the node's data
and returns it into a contiguous memory space.
ADF_Read_Block_Data( ID, data, error_return )
input: const double ID The ID of the node to use.
input: const long b_start The starting point in block in token space
input: const long b_end The ending point in block in token space
output: char *data The start of the data in memory.
output: int *error_return Error return.
***********************************************************************/
void ADF_Read_Block_Data(
const double ID,
const long b_start,
const long b_end,
char *data,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
struct TOKENIZED_DATA_TYPE
tokenized_data_type[ 1 + (ADF_DATA_TYPE_LENGTH + 1)/3 ] ;
struct DATA_CHUNK_TABLE_ENTRY *data_chunk_table ;
char *data_pointer ;
char file_format, machine_format ;
int file_bytes, memory_bytes, bytes_to_read ;
long total_bytes, bytes_read, start_offset ;
long chunk_size, chunk_end_byte ;
long start_byte, end_byte, block_bytes ;
int i, j ;
double LID ;
if( data == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get datatype size **/
ADFI_evaluate_datatype( file_index, node.data_type, &file_bytes, &memory_bytes,
tokenized_data_type, &file_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( (file_bytes == 0) || (node.number_of_dimensions == 0) ) {
*error_return = NO_DATA ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Calculate total number of bytes in the data **/
total_bytes = file_bytes ;
for( j=0; j<(int)node.number_of_dimensions; j++ )
total_bytes *= node.dimension_values[j] ;
if( total_bytes == 0 ) {
*error_return = ZERO_DIMENSIONS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Calculate the starting and ending range in the file **/
start_byte = file_bytes * (b_start-1) ;
end_byte = file_bytes * b_end ;
if ( start_byte < 0 || start_byte > end_byte || end_byte > total_bytes ) {
*error_return = START_OUT_OF_DEFINED_RANGE ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
block_bytes = end_byte - start_byte ;
/** If there is NO DATA, fill data space with zeros, return error **/
if( node.number_of_data_chunks == 0 ) {
memset( data, 0, block_bytes*memory_bytes/file_bytes ) ;
*error_return = NO_DATA ;
return ; /** NO_DATA is really a warning, so don't check & abort... **/
} /* end if */
/** Read the data from disk **/
else if( node.number_of_data_chunks == 1 ) {
ADFI_read_data_chunk( file_index, &node.data_chunks, tokenized_data_type,
file_bytes, total_bytes, start_byte, block_bytes,
data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else if */
else {
/** Allocate memory for the required table space in memory **/
data_chunk_table = (struct DATA_CHUNK_TABLE_ENTRY *)
malloc( node.number_of_data_chunks * sizeof( *data_chunk_table ) ) ;
if( data_chunk_table == NULL ) {
*error_return = MEMORY_ALLOCATION_FAILED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Read in the table **/
ADFI_read_data_chunk_table( file_index, &node.data_chunks,
data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Read data from each entry in the table **/
bytes_read = 0 ;
chunk_end_byte = 0 ;
data_pointer = data ;
for( i=0; i<(int)node.number_of_data_chunks; i++ ) {
chunk_size =
(data_chunk_table[i].end.block - data_chunk_table[i].start.block) *
DISK_BLOCK_SIZE +
(data_chunk_table[i].end.offset - data_chunk_table[i].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
/** Check to be sure we don't think the chunk is bigger than it is
(shrinking a data block can cause this)
**/
if( chunk_end_byte + chunk_size > total_bytes ) {
chunk_size = total_bytes - chunk_end_byte ;
} /* end if */
if( chunk_size == 0 )
break ;
chunk_end_byte += chunk_size ;
/** If start of block not in this chunk then continue **/
if ( start_byte >= chunk_end_byte )
continue ;
/** Set offset into the current chunk **/
if ( start_byte > (chunk_end_byte - chunk_size) )
/** The start of the block is inside the current chunk so
adjust the offset to the beginning of the block **/
start_offset = ( start_byte - (chunk_end_byte-chunk_size) ) ;
else
start_offset = 0 ;
/** Calculate the number of bytes needed in this chunk **/
bytes_to_read = chunk_size - start_offset ;
if( bytes_read + bytes_to_read > block_bytes ) {
bytes_to_read = block_bytes - bytes_read ;
} /* end if */
if( bytes_to_read == 0 || (chunk_end_byte-chunk_size) > end_byte )
break ;
ADFI_read_data_chunk( file_index, &data_chunk_table[i].start,
tokenized_data_type, file_bytes, chunk_size, start_offset,
bytes_to_read, data_pointer, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** note: memory_bytes and file_bytes might be different (e.g., if machine
is "IEEE_BIG" and file is "CRAY") in which case data pointer advances
at a different rate from file pointer. **/
data_pointer += (bytes_to_read * memory_bytes) / file_bytes ;
bytes_read += bytes_to_read ;
} /* end for */
free( data_chunk_table ) ;
if( bytes_read < block_bytes ) {
*error_return = INCOMPLETE_DATA ;
memset( data_pointer, 0, total_bytes - bytes_read ) ;
} /* end if */
} /* end else */
} /* end of ADF_Read_Block_Data */
/* end of file ADF_Read_Block_Data.c */
/* file ADF_Read_Data.c */
/***********************************************************************
ADF Read Data:
Read data from a node, with partial capabilities. The partial
capabilities are both in the node's data and also in memory.
Vectors of integers are used to indicate the data to be accessed
from the node, and another set of integer vectors is used to
describe the memory location for the data.
Note: If the data-type of the node is a compound data-type ("I4[3],R8")
for example, the partial capabilities will access one or more of
these 20-byte data entities. You cannot access a subset of an
occurrence of the data-type.
ADF_Read_Data( ID, s_start[], s_end[], s_stride[], m_num_dims,
m_dims[], m_start[], m_end[], m_stride[], data, error_return )
input: const double ID The ID of the node to use.
input: const int s_start[] The starting dimension values to use in
the database (node).
input: const int s_end[] The ending dimension values to use in
the database (node).
input: const int s_stride[] The stride values to use in the database (node).
input: const int m_num_dims The number of dimensions to use in memory.
input: const int m_dims[] The dimensionality to use in memory.
input: const int m_start[] The starting dimension values to use in memory.
input: const int m_end[] The ending dimension values to use in memory.
input: const int m_stride[] The stride values to use in memory.
output: char *data The start of the data in memory.
output: int *error_return Error return.
***********************************************************************/
void ADF_Read_Data(
const double ID,
const int s_start[],
const int s_end[],
const int s_stride[],
const int m_num_dims,
const int m_dims[],
const int m_start[],
const int m_end[],
const int m_stride[],
char *data,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset, relative_block ;
struct NODE_HEADER node ;
struct TOKENIZED_DATA_TYPE
tokenized_data_type[ 1 + (ADF_DATA_TYPE_LENGTH + 1)/3 ] ;
int current_disk[ADF_MAX_DIMENSIONS] ;
int current_memory[ADF_MAX_DIMENSIONS] ;
unsigned long total_disk_elements, total_memory_elements ;
unsigned long disk_offset, memory_offset ;
char disk_format, machine_format ;
int formats_compare ;
int i ;
int file_bytes = 0 ;
int memory_bytes = 0 ;
int no_data = FALSE ;
double LID ;
unsigned long relative_offset = 0, current_chunk_size = 0,
past_chunk_sizes, current_chunk ;
struct DATA_CHUNK_TABLE_ENTRY *data_chunk_table = NULL ;
if( (s_start == NULL) || (s_end == NULL) || (s_stride == NULL) ||
(m_dims == NULL) || (m_start == NULL) || (m_end == NULL) ||
(m_stride == NULL) || (data == NULL) ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get datatype length **/
ADFI_evaluate_datatype( file_index, node.data_type, &file_bytes, &memory_bytes,
tokenized_data_type, &disk_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( (file_bytes == 0) || (node.number_of_dimensions == 0) ) {
*error_return = NO_DATA ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
ADFI_count_total_array_points( node.number_of_dimensions,
node.dimension_values,
s_start, s_end, s_stride,
&total_disk_elements, &disk_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_count_total_array_points( (unsigned int)m_num_dims,
(unsigned int *)m_dims,
m_start, m_end, m_stride,
&total_memory_elements, &memory_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( total_disk_elements != total_memory_elements ) {
*error_return = UNEQUAL_MEMORY_AND_DISK_DIMS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
ADFI_file_and_machine_compare( file_index, tokenized_data_type,
&formats_compare, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Check to see if there is actual data to use **/
if( node.number_of_data_chunks == 0 ) {
no_data = TRUE ;
} /* end if */
/** Check for multiple data-chunks **/
else if( node.number_of_data_chunks == 1 ) { /** A single data chunk **/
/** Point to the start of the data **/
block_offset.block = node.data_chunks.block ;
block_offset.offset = node.data_chunks.offset + TAG_SIZE +
DISK_POINTER_SIZE + disk_offset * file_bytes ;
ADFI_adjust_disk_pointer( &block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else if */
else if( node.number_of_data_chunks > 1 ) { /** Multiple data chunks **/
current_chunk = 0 ;
past_chunk_sizes = 0 ;
relative_offset = disk_offset * file_bytes ;
/** Allocate memory for the required table space in memory **/
data_chunk_table = (struct DATA_CHUNK_TABLE_ENTRY *)
malloc( node.number_of_data_chunks * sizeof( *data_chunk_table ) ) ;
if( data_chunk_table == NULL ) {
*error_return = MEMORY_ALLOCATION_FAILED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Read in the table **/
ADFI_read_data_chunk_table( file_index, &node.data_chunks,
data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
current_chunk_size = (data_chunk_table[ current_chunk ].end.block -
data_chunk_table[ current_chunk ].start.block) * DISK_BLOCK_SIZE +
(data_chunk_table[ current_chunk ].end.offset -
data_chunk_table[ current_chunk ].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
} /* end else if */
/** Setup initial indexing **/
for( i=0; i<(int)node.number_of_dimensions; i++ )
current_disk[i] = s_start[i] ;
for( i=0; i<m_num_dims; i++ )
current_memory[i] = m_start[i] ;
/** Adjust data pointer **/
if( memory_offset != 0 )
data += memory_offset * memory_bytes ;
for( i=0; i<total_disk_elements; i++ ) {
/** If there is no data on disk, return zeros **/
if( no_data == TRUE ) {
memset( data, 0, memory_bytes ) ;
} /* end if */
else if( node.number_of_data_chunks == 1 ) { /** A single data chunk **/
/** Get the data off of disk **/
if ( block_offset.offset > DISK_BLOCK_SIZE ) {
ADFI_adjust_disk_pointer( &block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
if( formats_compare ) {
/** Read the data off of disk directly **/
ADFI_read_file( file_index, block_offset.block, block_offset.offset,
file_bytes, (char *)data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else { /** Read and translate data **/
ADFI_read_data_translated( file_index, block_offset.block,
block_offset.offset, tokenized_data_type, file_bytes,
file_bytes, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
/** Increment disk pointers, for the special case of one dimensional
data we will a simple increment to maximize the throught. Thus for
block reads you can temporarily change to 1D for the read to
improve efficiency. Note total size shouldn't change!! **/
if( i < total_disk_elements - 1 ) {
if ( node.number_of_dimensions == 1 ) {
disk_offset = s_stride[0];
current_disk[0] += disk_offset;
if ( current_disk[0] > s_end[0] ) current_disk[0] = s_end[0] ;
} /* end if */
else {
ADFI_increment_array(
node.number_of_dimensions, node.dimension_values,
s_start, s_end, s_stride, current_disk, &disk_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
block_offset.offset += disk_offset * file_bytes ;
if ( block_offset.offset > DISK_BLOCK_SIZE ) {
ADFI_adjust_disk_pointer( &block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
} /* end if */
} /* end else if */
else if( node.number_of_data_chunks > 1 ) { /** Multiple data chunks **/
while( relative_offset >= past_chunk_sizes + current_chunk_size ) {
if( ++current_chunk >= node.number_of_data_chunks ) {
*error_return = INCOMPLETE_DATA ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else {
past_chunk_sizes += current_chunk_size ;
current_chunk_size = (data_chunk_table[ current_chunk ].end.block -
data_chunk_table[ current_chunk ].start.block) * DISK_BLOCK_SIZE +
(data_chunk_table[ current_chunk ].end.offset -
data_chunk_table[ current_chunk ].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
} /* end else */
} /* end while */
/** Get the data off of disk **/
relative_block.block = data_chunk_table[ current_chunk ].start.block ;
relative_block.offset = data_chunk_table[ current_chunk ].start.offset +
(TAG_SIZE + DISK_POINTER_SIZE) +
(relative_offset - past_chunk_sizes) ;
if ( relative_block.offset > DISK_BLOCK_SIZE ) {
ADFI_adjust_disk_pointer( &relative_block, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
}
if( formats_compare ) {
/** Read the data off of disk directly **/
ADFI_read_file( file_index, relative_block.block, relative_block.offset,
file_bytes, (char *)data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else { /** Read and translate data **/
ADFI_read_data_translated( file_index, relative_block.block,
relative_block.offset, tokenized_data_type, file_bytes,
file_bytes, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
/** Increment disk pointers **/
if( i < total_disk_elements - 1 ) {
if ( node.number_of_dimensions == 1 ) {
disk_offset = s_stride[0];
current_disk[0] += disk_offset;
if ( current_disk[0] > s_end[0] ) current_disk[0] = s_end[0] ;
} /* end if */
else {
ADFI_increment_array(
node.number_of_dimensions, node.dimension_values,
s_start, s_end, s_stride, current_disk, &disk_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
relative_offset += disk_offset * file_bytes ;
} /* end if */
} /* end else if */
if( i < total_disk_elements - 1 ) {
/** Increment memory pointers **/
if ( m_num_dims == 1 ) {
memory_offset = m_stride[0];
current_memory[0] += disk_offset;
if ( current_memory[0] > m_end[0] ) current_memory[0] = m_end[0] ;
} /* end if */
else {
ADFI_increment_array(
(unsigned int)m_num_dims, (unsigned int* )m_dims,
m_start, m_end, m_stride,
current_memory, &memory_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
/** Adjust data pointer **/
data += memory_offset * memory_bytes ;
} /* end if */
} /* end for */
if( node.number_of_data_chunks > 1 ) /** Multiple data chunks **/
free( data_chunk_table ) ;
} /* end of ADF_Read_Data */
/* end of file ADF_Read_Data.c */
/* file ADF_Set_Error_State.c */
/***********************************************************************
ADF Set Error State:
Set Error State. For all ADF calls, set the error handling convention;
either return error codes, or abort the program on an error. The
default state for the ADF interface is to return error codes and NOT abort.
ADF_Set_Error_State( error_state, error_return )
input: const int error_state Flag for ABORT on error (1) or return error
status (0).
output: int *error_return Error return.
***********************************************************************/
void ADF_Set_Error_State(
const int error_state,
int *error_return )
{
*error_return = NO_ERROR ;
if( error_state == 0 )
ADF_abort_on_error = FALSE ;
else if( error_state == 1 )
ADF_abort_on_error = TRUE ;
else {
*error_return = BAD_ERROR_STATE ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
} /* end of ADF_Set_Error_State */
/* end of file ADF_Set_Error_State.c */
/* file ADF_Set_Label.c */
/***********************************************************************
ADF Set Label:
Set Label. Set the 32 character string in a node's label field.
ADF_Set_Label( ID, label, error_return )
input: const double ID The ID of the node to use.
input: const char *label The 32-character label of the node.
output: int *error_return Error return.
***********************************************************************/
void ADF_Set_Label(
const double ID,
const char *label,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset ;
struct NODE_HEADER node ;
int i, label_length ;
double LID ;
/** Don't check for NULL or BLANK label, these are OK **/
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Copy the label **/
if( label == NULL )
label_length = 0 ; /* copy none, then blank fill */
else
label_length = strlen( label ) ;
if( label_length > ADF_LABEL_LENGTH ) {
*error_return = STRING_LENGTH_TOO_BIG ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
for( i=0; i<MIN(label_length, ADF_LABEL_LENGTH); i++ )
node.label[i] = label[i] ;
/** Blank fill the remaining space **/
for( ; i<ADF_LABEL_LENGTH; i++ )
node.label[i] = ' ' ;
/** Write modified node_header **/
ADFI_write_node_header( file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Set_Label */
/* end of file ADF_Set_Label.c */
/* file ADF_Write_All_Data.c */
/* file ADF_Write_All_Data.c */
/***********************************************************************
ADF Write All Data:
Write all data to a Node. Writes all the node's data from a contiguous
memory space.
ADF_Write_All_Data( ID, data, error_return )
input: const double ID The ID of the node to use.
input: const char *data The start of the data in memory.
output: int *error_return Error return.
***********************************************************************/
void ADF_Write_All_Data(
const double ID,
const char *data,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset, new_block_offset, dct_block_offset ;
struct NODE_HEADER node ;
struct TOKENIZED_DATA_TYPE
tokenized_data_type[ 1 + (ADF_DATA_TYPE_LENGTH + 1)/3 ] ;
struct DATA_CHUNK_TABLE_ENTRY data_chunk_entry_table[2], *data_chunk_table ;
int file_bytes, memory_bytes ;
long total_bytes, current_bytes ;
int i, j ;
char tag[TAG_SIZE+1] ;
struct DISK_POINTER data_start, chunk_start, end_of_chunk_tag ;
long chunk_total_bytes ;
char file_format, machine_format ;
double LID ;
if( data == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get the datatype length **/
ADFI_evaluate_datatype( file_index, node.data_type, &file_bytes, &memory_bytes,
tokenized_data_type, &file_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Calculate the total number of data bytes **/
total_bytes = file_bytes ;
for( j=0; j<(int)node.number_of_dimensions; j++ )
total_bytes *= node.dimension_values[j] ;
if( total_bytes == 0 ) {
*error_return = ZERO_DIMENSIONS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** If there currently is NO data, allocate disk space for it **/
if( node.number_of_data_chunks == 0 ) {
ADFI_file_malloc( file_index,
total_bytes + TAG_SIZE + TAG_SIZE + DISK_POINTER_SIZE,
&node.data_chunks, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write the new data **/
ADFI_write_data_chunk( file_index, &node.data_chunks, tokenized_data_type,
file_bytes, total_bytes, 0, total_bytes, data,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Record the modified the node-header **/
node.number_of_data_chunks = 1 ;
ADFI_write_node_header( file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else if( node.number_of_data_chunks == 1 ) {
/** Get the data length **/
ADFI_read_chunk_length( file_index, &node.data_chunks, tag,
&end_of_chunk_tag, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
tag[TAG_SIZE] = '\0' ;
/** Check start-of-chunk tag **/
if( ADFI_stridx_c( tag, data_chunk_start_tag ) != 0 ) {
*error_return = ADF_DISK_TAG_ERROR ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Point to the start of the data **/
data_start.block = node.data_chunks.block ;
data_start.offset = node.data_chunks.offset + TAG_SIZE + DISK_POINTER_SIZE ;
ADFI_adjust_disk_pointer( &data_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** See if the new data exceedes the existing data space **/
chunk_total_bytes = end_of_chunk_tag.offset - data_start.offset +
(end_of_chunk_tag.block - data_start.block) * DISK_BLOCK_SIZE ;
/** If Data grew: Write old size, then allocate more
data-space and write the rest **/
if( total_bytes > chunk_total_bytes ) {
/** Write the part of the new data to existing data-chunk **/
ADFI_write_data_chunk( file_index, &node.data_chunks,
tokenized_data_type, file_bytes, chunk_total_bytes, 0,
chunk_total_bytes, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Allocate a second data chunk **/
total_bytes -= chunk_total_bytes ;
ADFI_file_malloc( file_index,
total_bytes + TAG_SIZE + TAG_SIZE + DISK_POINTER_SIZE,
&new_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write the rest of the data **/
/** note: memory_bytes and file_bytes might be different (e.g., if machine
is "IEEE_BIG" and file is "CRAY") in which case data pointer advances
at a different rate from file pointer. **/
data += (chunk_total_bytes * memory_bytes ) / file_bytes ;
ADFI_write_data_chunk( file_index, &new_block_offset,
tokenized_data_type, file_bytes, total_bytes, 0,
total_bytes, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Allocate a data-chunk-table for two entries **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE + 5 * DISK_POINTER_SIZE,
&dct_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write data-chunk-table to disk **/
data_chunk_entry_table[0].start.block = node.data_chunks.block ;
data_chunk_entry_table[0].start.offset = node.data_chunks.offset ;
chunk_start.block = node.data_chunks.block ;
chunk_start.offset = node.data_chunks.offset + TAG_SIZE ;
ADFI_adjust_disk_pointer( &chunk_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** get the size of the data_chunk for the table end pointer **/
ADFI_read_disk_pointer_from_disk( file_index,
chunk_start.block, chunk_start.offset,
&data_chunk_entry_table[0].end, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
data_chunk_entry_table[1].start.block = new_block_offset.block ;
data_chunk_entry_table[1].start.offset = new_block_offset.offset ;
chunk_start.block = new_block_offset.block ;
chunk_start.offset = new_block_offset.offset + TAG_SIZE ;
ADFI_adjust_disk_pointer( &chunk_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** get the size of the data_chunk for the table end pointer **/
ADFI_read_disk_pointer_from_disk( file_index,
chunk_start.block, chunk_start.offset,
&data_chunk_entry_table[1].end, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_write_data_chunk_table( file_index, &dct_block_offset,
2, data_chunk_entry_table, error_return ) ;
/** Update node header with number of data-chunks = 2 and the
pointer to the data-chunk-table **/
node.data_chunks.block = dct_block_offset.block ;
node.data_chunks.offset = dct_block_offset.offset ;
node.number_of_data_chunks = 2 ;
ADFI_write_node_header( file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else {
/** Write the new data to existing data-chunk **/
ADFI_write_data_chunk( file_index, &node.data_chunks,
tokenized_data_type, file_bytes, total_bytes, 0,
total_bytes, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
} /* end else if */
else { /** Multiple data chunks **/
/** Allocate memory for the data-chunk-table, with an additional
entry in case we need to grow it
**/
data_chunk_table = (struct DATA_CHUNK_TABLE_ENTRY *)
malloc( (node.number_of_data_chunks + 1 ) *
sizeof( *data_chunk_table ) ) ;
if( data_chunk_table == NULL ) {
*error_return = MEMORY_ALLOCATION_FAILED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Read in the table **/
ADFI_read_data_chunk_table( file_index, &node.data_chunks,
data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** looping on the data-chunks, write the size of the current chunk **/
for( i=0; i<(int)node.number_of_data_chunks; i++ ) {
current_bytes = (data_chunk_table[i].end.block -
data_chunk_table[i].start.block) * DISK_BLOCK_SIZE +
(data_chunk_table[i].end.offset -
data_chunk_table[i].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
/** Limit the number of bytes written by whats left to write. **/
current_bytes = MIN( current_bytes, total_bytes ) ;
ADFI_write_data_chunk( file_index, &data_chunk_table[i].start,
tokenized_data_type, file_bytes, current_bytes, 0,
current_bytes, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** note: memory_bytes and file_bytes might be different (e.g., if machine
is "IEEE_BIG" and file is "CRAY") in which case data pointer advances
at a different rate from file pointer. **/
data += (current_bytes * memory_bytes ) / file_bytes ;
total_bytes -= current_bytes ;
if( total_bytes <= 0 )
break ;
} /* end for */
/** If we are out of data-chunks and have data left, allocate a
new data-chunk in the file. **/
if( total_bytes > 0 ) {
/** Write data-chunk-table to disk **/
/** allocate data space in the file **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE + DISK_POINTER_SIZE +
total_bytes,
&data_chunk_table[ node.number_of_data_chunks ].start,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
data_chunk_table[ node.number_of_data_chunks ].end.block =
data_chunk_table[ node.number_of_data_chunks ].start.block ;
data_chunk_table[ node.number_of_data_chunks ].end.offset =
data_chunk_table[ node.number_of_data_chunks ].start.offset +
TAG_SIZE + DISK_POINTER_SIZE + total_bytes ;
ADFI_adjust_disk_pointer(
&data_chunk_table[ node.number_of_data_chunks ].end,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** allocate space for the new data-chunk-entry-table **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE +
(2 * (node.number_of_data_chunks + 1) + 1) * DISK_POINTER_SIZE,
&dct_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_write_data_chunk_table( file_index, &dct_block_offset,
node.number_of_data_chunks+1, data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_write_data_chunk( file_index,
&data_chunk_table[node.number_of_data_chunks ].start,
tokenized_data_type, file_bytes, total_bytes, 0,
total_bytes, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Free the old data-chunk-table **/
ADFI_file_free( file_index, &node.data_chunks, 0, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Update node header with number of data-chunks++ and the
pointer to the data-chunk-table **/
node.number_of_data_chunks++ ;
node.data_chunks.block = dct_block_offset.block ;
node.data_chunks.offset = dct_block_offset.offset ;
ADFI_write_node_header( file_index, &block_offset, &node,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
free( data_chunk_table ) ;
} /* end else */
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Write_All_Data */
/* end of file ADF_Write_All_Data.c */
/* end of file ADF_Write_All_Data.c */
/* file ADF_Write_Block_Data.c */
/***********************************************************************
ADF Write Block Data:
Write all data to a Node. Writes all the node's data from a contiguous
memory space.
ADF_Write_All_Data( ID, data, error_return )
input: const double ID The ID of the node to use.
input: const long b_start The starting point in block in token space
input: const long b_end The ending point in block in token space
input: const char *data The start of the data in memory.
output: int *error_return Error return.
***********************************************************************/
void ADF_Write_Block_Data(
const double ID,
const long b_start,
const long b_end,
char *data,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset, new_block_offset, dct_block_offset ;
struct NODE_HEADER node ;
struct TOKENIZED_DATA_TYPE
tokenized_data_type[ 1 + (ADF_DATA_TYPE_LENGTH + 1)/3 ] ;
struct DATA_CHUNK_TABLE_ENTRY data_chunk_entry_table[2], *data_chunk_table ;
char file_format, machine_format ;
int file_bytes, memory_bytes ;
long total_bytes, bytes_written, bytes_to_write = 0;
int i, j ;
char tag[TAG_SIZE+1] ;
struct DISK_POINTER data_start, chunk_start, end_of_chunk_tag ;
long start_offset ;
long chunk_size, chunk_end_byte ;
long start_byte, end_byte, block_bytes ;
double LID ;
if( data == NULL ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get the datatype length **/
ADFI_evaluate_datatype( file_index, node.data_type, &file_bytes, &memory_bytes,
tokenized_data_type, &file_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Calculate the total number of data bytes **/
total_bytes = file_bytes ;
for( j=0; j<(int)node.number_of_dimensions; j++ )
total_bytes *= node.dimension_values[j] ;
if( total_bytes == 0 ) {
*error_return = ZERO_DIMENSIONS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Calculate the starting and ending range in the file **/
start_byte = file_bytes * (b_start-1) ;
end_byte = file_bytes * b_end ;
if ( start_byte < 0 || start_byte > end_byte || end_byte > total_bytes ) {
*error_return = START_OUT_OF_DEFINED_RANGE ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
block_bytes = end_byte - start_byte ;
/** If there currently is NO data, allocate disk space for it **/
if( node.number_of_data_chunks == 0 ) {
ADFI_file_malloc( file_index,
total_bytes + TAG_SIZE + TAG_SIZE + DISK_POINTER_SIZE,
&node.data_chunks, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write the new data **/
ADFI_write_data_chunk( file_index, &node.data_chunks, tokenized_data_type,
file_bytes, total_bytes, start_byte, block_bytes, data,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Record the modified the node-header **/
node.number_of_data_chunks = 1 ;
ADFI_write_node_header( file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else if( node.number_of_data_chunks == 1 ) {
/** Get the data length **/
ADFI_read_chunk_length( file_index, &node.data_chunks, tag,
&end_of_chunk_tag, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
tag[TAG_SIZE] = '\0' ;
/** Check start-of-chunk tag **/
if( ADFI_stridx_c( tag, data_chunk_start_tag ) != 0 ) {
*error_return = ADF_DISK_TAG_ERROR ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Point to the start of the data **/
data_start.block = node.data_chunks.block ;
data_start.offset = node.data_chunks.offset + TAG_SIZE + DISK_POINTER_SIZE ;
ADFI_adjust_disk_pointer( &data_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** See if the new data exceedes the existing data space **/
chunk_size = end_of_chunk_tag.offset - data_start.offset +
(end_of_chunk_tag.block - data_start.block) * DISK_BLOCK_SIZE ;
/** If Data grew: Write old size, then allocate more
data-space and write the rest **/
if( total_bytes > chunk_size ) {
/** Write the part of the new data to existing data-chunk **/
bytes_written = 0 ;
if ( start_byte <= chunk_size ) {
bytes_to_write = MIN ( block_bytes, (chunk_size-start_byte) ) ;
ADFI_write_data_chunk( file_index, &node.data_chunks,
tokenized_data_type, file_bytes, chunk_size, start_byte,
bytes_to_write, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
bytes_written += bytes_to_write ;
} /* end if */
/** Allocate a second data chunk **/
total_bytes -= chunk_size ;
ADFI_file_malloc( file_index,
total_bytes + TAG_SIZE + TAG_SIZE + DISK_POINTER_SIZE,
&new_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write the rest of the data **/
/** note: memory_bytes and file_bytes might be different (e.g., if machine
is "IEEE_BIG" and file is "CRAY") in which case data pointer advances
at a different rate from file pointer. **/
data += (bytes_to_write * memory_bytes ) / file_bytes ;
if ( bytes_written < block_bytes ) {
bytes_to_write = block_bytes - bytes_written ;
start_offset = MAX ( 0L, (start_byte - chunk_size) ) ;
ADFI_write_data_chunk( file_index, &new_block_offset,
tokenized_data_type, file_bytes, total_bytes, start_offset,
bytes_to_write, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else {
ADFI_write_data_chunk( file_index, &new_block_offset,
tokenized_data_type, file_bytes, total_bytes, 0,
total_bytes, NULL, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
/** Allocate a data-chunk-table for two entries **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE + 5 * DISK_POINTER_SIZE,
&dct_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write data-chunk-table to disk **/
data_chunk_entry_table[0].start.block = node.data_chunks.block ;
data_chunk_entry_table[0].start.offset = node.data_chunks.offset ;
/** get the size of the data_chunk for the table end pointer **/
chunk_start.block = node.data_chunks.block ;
chunk_start.offset = node.data_chunks.offset + TAG_SIZE ;
ADFI_adjust_disk_pointer( &chunk_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_read_disk_pointer_from_disk( file_index,
chunk_start.block, chunk_start.offset,
&data_chunk_entry_table[0].end, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
data_chunk_entry_table[1].start.block = new_block_offset.block ;
data_chunk_entry_table[1].start.offset = new_block_offset.offset ;
chunk_start.block = new_block_offset.block ;
chunk_start.offset = new_block_offset.offset + TAG_SIZE ;
ADFI_adjust_disk_pointer( &chunk_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** get the size of the data_chunk for the table end pointer **/
ADFI_read_disk_pointer_from_disk( file_index,
chunk_start.block, chunk_start.offset,
&data_chunk_entry_table[1].end, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_write_data_chunk_table( file_index, &dct_block_offset,
2, data_chunk_entry_table, error_return ) ;
/** Update node header with number of data-chunks = 2 and the
pointer to the data-chunk-table **/
node.data_chunks.block = dct_block_offset.block ;
node.data_chunks.offset = dct_block_offset.offset ;
node.number_of_data_chunks = 2 ;
ADFI_write_node_header( file_index, &block_offset, &node, error_return );
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else {
/** Write the new data to existing data-chunk **/
ADFI_write_data_chunk( file_index, &node.data_chunks,
tokenized_data_type, file_bytes, chunk_size, start_byte,
block_bytes, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
} /* end else if */
else { /** Multiple data chunks **/
/** Allocate memory for the data-chunk-table, with an additional
entry in case we need to grow it
**/
data_chunk_table = (struct DATA_CHUNK_TABLE_ENTRY *)
malloc( (node.number_of_data_chunks + 1 ) *
sizeof( *data_chunk_table ) ) ;
if( data_chunk_table == NULL ) {
*error_return = MEMORY_ALLOCATION_FAILED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Read in the table **/
ADFI_read_data_chunk_table( file_index, &node.data_chunks,
data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** looping on the data-chunks, write the size of the current chunk **/
chunk_end_byte = 0 ;
bytes_written = 0 ;
for( i=0; i<(int)node.number_of_data_chunks; i++ ) {
chunk_size = (data_chunk_table[i].end.block -
data_chunk_table[i].start.block) * DISK_BLOCK_SIZE +
(data_chunk_table[i].end.offset -
data_chunk_table[i].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
chunk_end_byte += chunk_size ;
/** If start of block not in this chunk then continue **/
if ( start_byte > chunk_end_byte )
continue ;
/** Set offset into the current chunk **/
if ( start_byte > (chunk_end_byte - chunk_size) )
/** The start of the block is inside the current chunk so
adjust the offset to the beginning of the block **/
start_offset = ( start_byte - (chunk_end_byte-chunk_size) ) ;
else
start_offset = 0 ;
/** Check to be sure we aren't writing too much data **/
bytes_to_write = chunk_size - start_offset ;
if( bytes_written + bytes_to_write > block_bytes ) {
bytes_to_write = block_bytes - bytes_written ;
} /* end if */
if( bytes_to_write == 0 || (chunk_end_byte-chunk_size) > end_byte )
continue ;
/** Write the chunk **/
ADFI_write_data_chunk( file_index, &data_chunk_table[i].start,
tokenized_data_type, file_bytes, chunk_size, start_offset,
bytes_to_write, data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** note: memory_bytes and file_bytes might be different (e.g., if machine
is "IEEE_BIG" and file is "CRAY") in which case data pointer advances
at a different rate from file pointer. **/
data += (bytes_to_write * memory_bytes ) / file_bytes ;
bytes_written += bytes_to_write ;
} /* end for */
/** If we are out of data-chunks and have data left, allocate a
new data-chunk in the file. **/
total_bytes -= chunk_end_byte ;
if( total_bytes > 0 ) {
/** Write data-chunk-table to disk **/
/** allocate data space in the file **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE + DISK_POINTER_SIZE +
total_bytes,
&data_chunk_table[ node.number_of_data_chunks ].start,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
data_chunk_table[ node.number_of_data_chunks ].end.block =
data_chunk_table[ node.number_of_data_chunks ].start.block ;
data_chunk_table[ node.number_of_data_chunks ].end.offset =
data_chunk_table[ node.number_of_data_chunks ].start.offset +
TAG_SIZE + DISK_POINTER_SIZE + total_bytes ;
ADFI_adjust_disk_pointer(
&data_chunk_table[ node.number_of_data_chunks ].end,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** allocate space for the new data-chunk-entry-table **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE +
(2 * (node.number_of_data_chunks + 1) + 1) * DISK_POINTER_SIZE,
&dct_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_write_data_chunk_table( file_index, &dct_block_offset,
node.number_of_data_chunks+1, data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if ( bytes_written < block_bytes ) {
bytes_to_write = block_bytes - bytes_written ;
start_offset = MAX ( 0L, (start_byte - total_bytes) ) ;
ADFI_write_data_chunk( file_index,
&data_chunk_table[node.number_of_data_chunks ].start,
tokenized_data_type, file_bytes,
total_bytes, start_offset, bytes_to_write,
data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else {
ADFI_write_data_chunk( file_index,
&data_chunk_table[node.number_of_data_chunks ].start,
tokenized_data_type, file_bytes, total_bytes, 0,
total_bytes, NULL, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
/** Free the old data-chunk-table **/
ADFI_file_free( file_index, &node.data_chunks, 0, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Update node header with number of data-chunks++ and the
pointer to the data-chunk-table **/
node.number_of_data_chunks++ ;
node.data_chunks.block = dct_block_offset.block ;
node.data_chunks.offset = dct_block_offset.offset ;
ADFI_write_node_header( file_index, &block_offset, &node,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
free( data_chunk_table ) ;
} /* end else */
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Write_Block_Data */
/* end of file ADF_Write_Block_Data.c */
/* file ADF_Write_Data.c */
/***********************************************************************
ADF Write Data:
Write data to a Node, with partial capabilities. See ADF_Read_Data for
description.
ADF_Write_Data( ID, s_start[], s_end[], s_stride[], m_num_dims,
m_dims[], m_start[], m_end[], m_stride[], data, error_return )
input: const double ID The ID of the node to use.
input: const int s_start[] The starting dimension values to use in
the database (node).
input: const int s_end[] The ending dimension values to use in
the database (node).
input: const int s_stride[] The stride values to use in the database (node).
input: const int m_num_dims The number of dimensions to use in memory.
input: const int m_dims[] The dimensionality to use in memory.
input: const int m_start[] The starting dimension values to use in memory.
input: const int m_end[] The ending dimension values to use in memory.
input: const int m_stride[] The stride values to use in memory.
input: const char *data The start of the data in memory.
output: int *error_return Error return.
***********************************************************************/
void ADF_Write_Data(
const double ID,
const int s_start[],
const int s_end[],
const int s_stride[],
const int m_num_dims,
const int m_dims[],
const int m_start[],
const int m_end[],
const int m_stride[],
const char *data,
int *error_return )
{
unsigned int file_index ;
struct DISK_POINTER block_offset, dct_block_offset, relative_block ;
struct DISK_POINTER data_start, new_block_offset ;
struct DISK_POINTER chunk_start, end_of_chunk_tag ;
struct NODE_HEADER node ;
struct DATA_CHUNK_TABLE_ENTRY *data_chunk_table ;
struct TOKENIZED_DATA_TYPE
tokenized_data_type[ 1 + (ADF_DATA_TYPE_LENGTH + 1)/3 ] ;
int current_disk[ADF_MAX_DIMENSIONS] ;
int current_memory[ADF_MAX_DIMENSIONS] ;
unsigned long total_disk_elements, total_memory_elements ;
unsigned long disk_offset, memory_offset ;
int formats_compare ;
char disk_format, machine_format ;
int i ;
int file_bytes = 0 ;
int memory_bytes = 0 ;
char tag[TAG_SIZE+1] ;
unsigned long total_bytes ;
long current_bytes, chunk_total_bytes ;
double LID ;
unsigned long relative_offset, current_chunk, current_chunk_size,
past_chunk_sizes ;
if( (s_start == NULL) || (s_end == NULL) || (s_stride == NULL) ||
(m_dims == NULL) || (m_start == NULL) || (m_end == NULL) ||
(m_stride == NULL) || (data == NULL) ) {
*error_return = NULL_POINTER ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
*error_return = NO_ERROR ;
data_chunk_table = 0L ;
ADFI_chase_link( ID, &LID, &file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Get datatype length **/
ADFI_evaluate_datatype( file_index, node.data_type, &file_bytes, &memory_bytes,
tokenized_data_type, &disk_format, &machine_format, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( (file_bytes == 0) || (node.number_of_dimensions == 0) ) {
*error_return = NO_DATA ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
ADFI_count_total_array_points( node.number_of_dimensions,
node.dimension_values,
s_start, s_end, s_stride,
&total_disk_elements, &disk_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_count_total_array_points( (unsigned int)m_num_dims,
(unsigned int *)m_dims,
m_start, m_end, m_stride,
&total_memory_elements, &memory_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
if( total_disk_elements != total_memory_elements ) {
*error_return = UNEQUAL_MEMORY_AND_DISK_DIMS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Calculate the total number of data bytes **/
total_bytes = file_bytes ;
for( i=0; i<(int)node.number_of_dimensions; i++ )
total_bytes *= node.dimension_values[i] ;
if( total_bytes == 0 ) {
*error_return = ZERO_DIMENSIONS ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** check for need of data translation **/
ADFI_file_and_machine_compare( file_index, tokenized_data_type,
&formats_compare, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** If there currently is NO data, allocate disk space for it **/
if( node.number_of_data_chunks == 0 ) {
ADFI_file_malloc( file_index,
total_bytes + TAG_SIZE + TAG_SIZE + DISK_POINTER_SIZE,
&node.data_chunks, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** initialize the new disk_space with zero's, then we'll
write the partial data **/
ADFI_write_data_chunk( file_index, &node.data_chunks, tokenized_data_type,
file_bytes, total_bytes, 0, total_bytes, 0L,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Record the modified the node-header **/
node.number_of_data_chunks = 1 ;
ADFI_write_node_header( file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** If one data chunk, check to see if we need to add a second **/
else if( node.number_of_data_chunks == 1 ) {
/** Get the data length **/
ADFI_read_chunk_length( file_index, &node.data_chunks, tag,
&end_of_chunk_tag, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
tag[TAG_SIZE] = '\0' ;
/** Check start-of-chunk tag **/
if( ADFI_stridx_c( tag, data_chunk_start_tag ) != 0 ) {
*error_return = ADF_DISK_TAG_ERROR ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Point to the start of the data **/
data_start.block = node.data_chunks.block ;
data_start.offset = node.data_chunks.offset + TAG_SIZE + DISK_POINTER_SIZE ;
ADFI_adjust_disk_pointer( &data_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** See if the new data exceedes the existing data space **/
chunk_total_bytes = end_of_chunk_tag.offset - data_start.offset +
(end_of_chunk_tag.block - data_start.block) * DISK_BLOCK_SIZE ;
/** If Data grew: Allocate more data-space and initialize to zero**/
if( (long int) total_bytes > chunk_total_bytes ) {
/** Allocate memory for the data-chunk-table, with an additional
entry in case we need to grow it **/
data_chunk_table = (struct DATA_CHUNK_TABLE_ENTRY *)
malloc( (node.number_of_data_chunks + 1 ) *
sizeof( *data_chunk_table ) ) ;
if( data_chunk_table == NULL ) {
*error_return = MEMORY_ALLOCATION_FAILED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Allocate a second data chunk **/
total_bytes -= chunk_total_bytes ;
ADFI_file_malloc( file_index,
total_bytes + TAG_SIZE + TAG_SIZE + DISK_POINTER_SIZE,
&new_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Initialize the new data with zeros **/
ADFI_write_data_chunk( file_index, &new_block_offset,
tokenized_data_type, file_bytes, total_bytes, 0,
total_bytes, 0L, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Allocate a data-chunk-table for two entries **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE + 5 * DISK_POINTER_SIZE,
&dct_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Write data-chunk-table to disk **/
data_chunk_table[0].start.block = node.data_chunks.block ;
data_chunk_table[0].start.offset = node.data_chunks.offset ;
chunk_start.block = node.data_chunks.block ;
chunk_start.offset = node.data_chunks.offset + TAG_SIZE ;
ADFI_adjust_disk_pointer( &chunk_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** get the size of the data_chunk for the table end pointer **/
ADFI_read_disk_pointer_from_disk( file_index,
chunk_start.block, chunk_start.offset,
&data_chunk_table[0].end, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
data_chunk_table[1].start.block = new_block_offset.block ;
data_chunk_table[1].start.offset = new_block_offset.offset ;
chunk_start.block = new_block_offset.block ;
chunk_start.offset = new_block_offset.offset + TAG_SIZE ;
ADFI_adjust_disk_pointer( &chunk_start, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** get the size of the data_chunk for the table end pointer **/
ADFI_read_disk_pointer_from_disk( file_index,
chunk_start.block, chunk_start.offset,
&data_chunk_table[1].end, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_write_data_chunk_table( file_index, &dct_block_offset,
2, data_chunk_table, error_return ) ;
/** Update node header with number of data-chunks = 2 and the
pointer to the data-chunk-table **/
node.data_chunks.block = dct_block_offset.block ;
node.data_chunks.offset = dct_block_offset.offset ;
node.number_of_data_chunks = 2 ;
ADFI_write_node_header( file_index, &block_offset, &node, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
} /* end else if */
else { /** Multiple data chunks, check to see if we need to add one mode **/
/** Allocate memory for the data-chunk-table, with an additional
entry in case we need to grow it **/
data_chunk_table = (struct DATA_CHUNK_TABLE_ENTRY *)
malloc( (node.number_of_data_chunks + 1 ) *
sizeof( *data_chunk_table ) ) ;
if( data_chunk_table == NULL ) {
*error_return = MEMORY_ALLOCATION_FAILED ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Read in the table **/
ADFI_read_data_chunk_table( file_index, &node.data_chunks,
data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** looping on the data-chunks, look at the size of the chunks **/
for( i=0; i<(int)node.number_of_data_chunks; i++ ) {
current_bytes = (data_chunk_table[i].end.block -
data_chunk_table[i].start.block) * DISK_BLOCK_SIZE +
(data_chunk_table[i].end.offset -
data_chunk_table[i].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
total_bytes -= current_bytes ;
if( total_bytes <= 0 )
break ;
} /* end for */
/** If we are out of data-chunks and have data left, allocate a
new data-chunk in the file. **/
if( total_bytes > 0 ) {
/** Write data-chunk-table to disk **/
/** allocate data space in the file **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE + DISK_POINTER_SIZE +
total_bytes, &data_chunk_table[ node.number_of_data_chunks ].start,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
data_chunk_table[ node.number_of_data_chunks ].end.block =
data_chunk_table[ node.number_of_data_chunks ].start.block ;
data_chunk_table[ node.number_of_data_chunks ].end.offset =
data_chunk_table[ node.number_of_data_chunks ].start.offset +
TAG_SIZE + DISK_POINTER_SIZE + total_bytes ;
ADFI_adjust_disk_pointer(
&data_chunk_table[ node.number_of_data_chunks ].end, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** allocate space for the new data-chunk-entry-table **/
ADFI_file_malloc( file_index, 2 * TAG_SIZE +
(2 * (node.number_of_data_chunks + 1) + 1) * DISK_POINTER_SIZE,
&dct_block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
ADFI_write_data_chunk_table( file_index, &dct_block_offset,
node.number_of_data_chunks+1, data_chunk_table, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Initialize the new data chunk to zeros **/
ADFI_write_data_chunk( file_index,
&data_chunk_table[node.number_of_data_chunks ].start,
tokenized_data_type, file_bytes, total_bytes, 0,
total_bytes, 0L, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Free the old data-chunk-table **/
ADFI_file_free( file_index, &node.data_chunks, 0, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Update node header with number of data-chunks++ and the
pointer to the data-chunk-table **/
node.number_of_data_chunks++ ;
node.data_chunks.block = dct_block_offset.block ;
node.data_chunks.offset = dct_block_offset.offset ;
ADFI_write_node_header( file_index, &block_offset, &node,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
} /* end else */
/** Do single data-chunks here... **/
if( node.number_of_data_chunks == 1 ) {
/** Point to the start of the data **/
block_offset.block = node.data_chunks.block ;
block_offset.offset = node.data_chunks.offset + TAG_SIZE +
DISK_POINTER_SIZE + disk_offset * file_bytes ;
ADFI_adjust_disk_pointer( &block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
/** Setup initial indexing **/
for( i=0; i<(int)node.number_of_dimensions; i++ )
current_disk[i] = s_start[i] ;
for( i=0; i<m_num_dims; i++ )
current_memory[i] = m_start[i] ;
/** Adjust data pointer **/
if( memory_offset != 0 )
data += memory_offset * memory_bytes ;
for( i=0; i<total_disk_elements; i++ ) {
/** Put the data to disk **/
if ( block_offset.offset > DISK_BLOCK_SIZE ) {
ADFI_adjust_disk_pointer( &block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
}
/** Here is where we need to check for spanning multiple data-chunks **/
/** Put the data out to disk **/
if( formats_compare ) { /* directly */
ADFI_write_file( file_index, block_offset.block, block_offset.offset,
file_bytes, (char *)data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else { /* translated */
ADFI_write_data_translated( file_index, block_offset.block,
block_offset.offset, tokenized_data_type, file_bytes,
file_bytes, (char *)data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
/** Increment disk/memory pointers, for the special case of one dimensional
data we will a simple increment to maximize the throught. Thus for
block writes you can temporarily change to 1D for the read to
improve efficiency. Note total size shouldn't change!! **/
if( i < total_disk_elements - 1 ) {
if ( node.number_of_dimensions == 1 ) {
disk_offset = s_stride[0];
current_disk[0] += disk_offset;
if ( current_disk[0] > s_end[0] ) current_disk[0] = s_end[0] ;
} /* end if */
else {
ADFI_increment_array(
node.number_of_dimensions, node.dimension_values,
s_start, s_end, s_stride, current_disk, &disk_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
if ( m_num_dims == 1 ) {
memory_offset = m_stride[0];
current_memory[0] += disk_offset;
if ( current_memory[0] > m_end[0] ) current_memory[0] = m_end[0] ;
} /* end if */
else {
ADFI_increment_array(
(unsigned int)m_num_dims, (unsigned int* )m_dims,
m_start, m_end, m_stride,
current_memory, &memory_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
block_offset.offset += disk_offset * file_bytes ;
if ( block_offset.offset > DISK_BLOCK_SIZE ) {
ADFI_adjust_disk_pointer( &block_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Adjust data pointer **/
data += memory_offset * memory_bytes ;
} /* end if */
} /* end for */
} /* end if */
else {
/** Point to the start of the data **/
current_chunk = 0 ;
past_chunk_sizes = 0 ;
relative_offset = disk_offset * file_bytes ;
current_chunk_size = (data_chunk_table[ current_chunk ].end.block -
data_chunk_table[ current_chunk ].start.block) * DISK_BLOCK_SIZE +
(data_chunk_table[ current_chunk ].end.offset -
data_chunk_table[ current_chunk ].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
/** Setup initial indexing **/
for( i=0; i<(int)node.number_of_dimensions; i++ )
current_disk[i] = s_start[i] ;
for( i=0; i<m_num_dims; i++ )
current_memory[i] = m_start[i] ;
/** Adjust data pointer **/
if( memory_offset != 0 )
data += memory_offset * memory_bytes ;
for( i=0; i<total_disk_elements; i++ ) {
while( relative_offset >= past_chunk_sizes + current_chunk_size ) {
if( ++current_chunk >= node.number_of_data_chunks ) {
*error_return = INCOMPLETE_DATA ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else {
past_chunk_sizes += current_chunk_size ;
current_chunk_size = (data_chunk_table[ current_chunk ].end.block -
data_chunk_table[ current_chunk ].start.block) * DISK_BLOCK_SIZE +
(data_chunk_table[ current_chunk ].end.offset -
data_chunk_table[ current_chunk ].start.offset) -
(TAG_SIZE + DISK_POINTER_SIZE) ;
} /* end else */
} /* end while */
/** Put the data to disk **/
relative_block.block = data_chunk_table[ current_chunk ].start.block ;
relative_block.offset = data_chunk_table[ current_chunk ].start.offset +
(TAG_SIZE + DISK_POINTER_SIZE) +
(relative_offset - past_chunk_sizes) ;
if ( relative_block.offset > DISK_BLOCK_SIZE ) {
ADFI_adjust_disk_pointer( &relative_block, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Put the data out to disk **/
if( formats_compare ) { /* directly */
ADFI_write_file( file_index,
relative_block.block, relative_block.offset,
file_bytes, (char *)data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
else { /* translated */
ADFI_write_data_translated( file_index, relative_block.block,
relative_block.offset, tokenized_data_type, file_bytes,
file_bytes, (char *)data, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end if */
/** Increment disk and memory pointers **/
if( i < total_disk_elements - 1 ) {
if ( node.number_of_dimensions == 1 ) {
disk_offset = s_stride[0];
current_disk[0] += disk_offset;
if ( current_disk[0] > s_end[0] ) current_disk[0] = s_end[0] ;
} /* end if */
else {
ADFI_increment_array(
node.number_of_dimensions, node.dimension_values,
s_start, s_end, s_stride, current_disk, &disk_offset,
error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
relative_offset += disk_offset * file_bytes ;
if ( m_num_dims == 1 ) {
memory_offset = m_stride[0];
current_memory[0] += disk_offset;
if ( current_memory[0] > m_end[0] ) current_memory[0] = m_end[0] ;
} /* end if */
else {
ADFI_increment_array(
(unsigned int)m_num_dims, (unsigned int* )m_dims,
m_start, m_end, m_stride,
current_memory, &memory_offset, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end else */
/** Adjust data pointer **/
data += memory_offset * memory_bytes ;
} /* end if */
} /* end for */
} /* end else */
if( data_chunk_table != 0L )
free( data_chunk_table ) ;
/** Finally, update modification date **/
ADFI_write_modification_date( file_index, error_return ) ;
CHECK_ADF_ABORT( *error_return ) ;
} /* end of ADF_Write_Data */
/* end of file ADF_Write_Data.c */
/* end of combine 2.0 */
|