1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*
*
* Some functions (mini_mktime, strftime_xs) are borrowed from
* Matt Sergeant's Time::Object module
*
* $Id: Date.xs 58 2003-08-16 12:41:29Z dlux $
*
*/
#ifdef __cplusplus
#extern "C" {
#endif
#include "config.h"
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"
#include <time.h>
/* These lines are borrowed from the perl #9823 patch */
/* Mac OSX does not include a definition of tzname in a .h file */
#if defined (HAS_TZNAME) && defined(__APPLE__) && defined(__MACH__)
extern char *tzname[2];
#endif
#define BUFFER_SIZE 254
char buffer[BUFFER_SIZE];
#if 0
#define CLASSDATE_TM_DEBUG(x) strftime(buffer, BUFFER_SIZE-1, "%Z", &x); \
printf("TZ: %5s, %4s,%4s, %02d:%02d:%02d, %02d-%02d-%03d %1d,%03d,%1d,%s:%s\n", \
getenv("TZ"), tzname[0], tzname[1], \
x.tm_sec, x.tm_min, x.tm_hour, x.tm_mday, x.tm_mon, x.tm_year, x.tm_wday, x.tm_yday,x.tm_isdst, \
asctime(&x), buffer)
#else
#define CLASSDATE_TM_DEBUG(x)
#endif
#ifdef __cplusplus
}
#endif
/* XXX struct tm on some systems (SunOS4/BSD) contains extra (non POSIX)
* fields for which we don't have Configure support yet:
* char *tm_zone; -- abbreviation of timezone name
* long tm_gmtoff; -- offset from GMT in seconds
* To workaround core dumps from the uninitialised tm_zone we get the
* system to give us a reasonable struct to copy. This fix means that
* strftime uses the tm_zone and tm_gmtoff values returned by
* localtime(time()). That should give the desired result most of the
* time. But probably not always!
*
* This is a temporary workaround to be removed once Configure
* support is added and NETaa14816 is considered in full.
* It does not address tzname aspects of NETaa14816.
*/
#ifdef HAS_GNULIBC
# ifndef STRUCT_TM_HASZONE
# define STRUCT_TM_HASZONE
# endif
#endif
/*
* classdate_mini_mktime - normalise struct tm values without the localtime()
* semantics (and overhead) of mktime().
*/
static void
classdate_mini_mktime(struct tm *ptm)
{
int yearday;
int secs;
int month, mday, year, jday;
int odd_cent, odd_year;
#define DAYS_PER_YEAR 365
#define DAYS_PER_QYEAR (4*DAYS_PER_YEAR+1)
#define DAYS_PER_CENT (25*DAYS_PER_QYEAR-1)
#define DAYS_PER_QCENT (4*DAYS_PER_CENT+1)
#define SECS_PER_HOUR (60*60)
#define SECS_PER_DAY (24*SECS_PER_HOUR)
/* parentheses deliberately absent on these two, otherwise they don't work */
#define MONTH_TO_DAYS 153/5
#define DAYS_TO_MONTH 5/153
/* offset to bias by March (month 4) 1st between month/mday & year finding */
#define YEAR_ADJUST (4*MONTH_TO_DAYS+1)
/* as used here, the algorithm leaves Sunday as day 1 unless we adjust it */
#define WEEKDAY_BIAS 6 /* (1+6)%7 makes Sunday 0 again */
/*
* Year/day algorithm notes:
*
* With a suitable offset for numeric value of the month, one can find
* an offset into the year by considering months to have 30.6 (153/5) days,
* using integer arithmetic (i.e., with truncation). To avoid too much
* messing about with leap days, we consider January and February to be
* the 13th and 14th month of the previous year. After that transformation,
* we need the month index we use to be high by 1 from 'normal human' usage,
* so the month index values we use run from 4 through 15.
*
* Given that, and the rules for the Gregorian calendar (leap years are those
* divisible by 4 unless also divisible by 100, when they must be divisible
* by 400 instead), we can simply calculate the number of days since some
* arbitrary 'beginning of time' by futzing with the (adjusted) year number,
* the days we derive from our month index, and adding in the day of the
* month. The value used here is not adjusted for the actual origin which
* it normally would use (1 January A.D. 1), since we're not exposing it.
* We're only building the value so we can turn around and get the
* normalised values for the year, month, day-of-month, and day-of-year.
*
* For going backward, we need to bias the value we're using so that we find
* the right year value. (Basically, we don't want the contribution of
* March 1st to the number to apply while deriving the year). Having done
* that, we 'count up' the contribution to the year number by accounting for
* full quadracenturies (400-year periods) with their extra leap days, plus
* the contribution from full centuries (to avoid counting in the lost leap
* days), plus the contribution from full quad-years (to count in the normal
* leap days), plus the leftover contribution from any non-leap years.
* At this point, if we were working with an actual leap day, we'll have 0
* days left over. This is also true for March 1st, however. So, we have
* to special-case that result, and (earlier) keep track of the 'odd'
* century and year contributions. If we got 4 extra centuries in a qcent,
* or 4 extra years in a qyear, then it's a leap day and we call it 29 Feb.
* Otherwise, we add back in the earlier bias we removed (the 123 from
* figuring in March 1st), find the month index (integer division by 30.6),
* and the remainder is the day-of-month. We then have to convert back to
* 'real' months (including fixing January and February from being 14/15 in
* the previous year to being in the proper year). After that, to get
* tm_yday, we work with the normalised year and get a new yearday value for
* January 1st, which we subtract from the yearday value we had earlier,
* representing the date we've re-built. This is done from January 1
* because tm_yday is 0-origin.
*
* Since POSIX time routines are only guaranteed to work for times since the
* UNIX epoch (00:00:00 1 Jan 1970 UTC), the fact that this algorithm
* applies Gregorian calendar rules even to dates before the 16th century
* doesn't bother me. Besides, you'd need cultural context for a given
* date to know whether it was Julian or Gregorian calendar, and that's
* outside the scope for this routine. Since we convert back based on the
* same rules we used to build the yearday, you'll only get strange results
* for input which needed normalising, or for the 'odd' century years which
* were leap years in the Julian calander but not in the Gregorian one.
* I can live with that.
*
* This algorithm also fails to handle years before A.D. 1 gracefully, but
* that's still outside the scope for POSIX time manipulation, so I don't
* care.
*/
year = 1900 + ptm->tm_year;
month = ptm->tm_mon;
mday = ptm->tm_mday;
/* allow given yday with no month & mday to dominate the result */
if (ptm->tm_yday >= 0 && mday <= 0 && month <= 0) {
month = 0;
mday = 0;
jday = 1 + ptm->tm_yday;
}
else {
jday = 0;
}
if (month >= 2)
month+=2;
else
month+=14, year--;
yearday = DAYS_PER_YEAR * year + year/4 - year/100 + year/400;
yearday += month*MONTH_TO_DAYS + mday + jday;
/*
* Note that we don't know when leap-seconds were or will be,
* so we have to trust the user if we get something which looks
* like a sensible leap-second. Wild values for seconds will
* be rationalised, however.
*/
if ((unsigned) ptm->tm_sec <= 60) {
secs = 0;
}
else {
secs = ptm->tm_sec;
ptm->tm_sec = 0;
}
secs += 60 * ptm->tm_min;
secs += SECS_PER_HOUR * ptm->tm_hour;
if (secs < 0) {
if (secs-(secs/SECS_PER_DAY*SECS_PER_DAY) < 0) {
/* got negative remainder, but need positive time */
/* back off an extra day to compensate */
yearday += (secs/SECS_PER_DAY)-1;
secs -= SECS_PER_DAY * (secs/SECS_PER_DAY - 1);
}
else {
yearday += (secs/SECS_PER_DAY);
secs -= SECS_PER_DAY * (secs/SECS_PER_DAY);
}
}
else if (secs >= SECS_PER_DAY) {
yearday += (secs/SECS_PER_DAY);
secs %= SECS_PER_DAY;
}
ptm->tm_hour = secs/SECS_PER_HOUR;
secs %= SECS_PER_HOUR;
ptm->tm_min = secs/60;
secs %= 60;
ptm->tm_sec += secs;
/* done with time of day effects */
/*
* The algorithm for yearday has (so far) left it high by 428.
* To avoid mistaking a legitimate Feb 29 as Mar 1, we need to
* bias it by 123 while trying to figure out what year it
* really represents. Even with this tweak, the reverse
* translation fails for years before A.D. 0001.
* It would still fail for Feb 29, but we catch that one below.
*/
jday = yearday; /* save for later fixup vis-a-vis Jan 1 */
yearday -= YEAR_ADJUST;
year = (yearday / DAYS_PER_QCENT) * 400;
yearday %= DAYS_PER_QCENT;
odd_cent = yearday / DAYS_PER_CENT;
year += odd_cent * 100;
yearday %= DAYS_PER_CENT;
year += (yearday / DAYS_PER_QYEAR) * 4;
yearday %= DAYS_PER_QYEAR;
odd_year = yearday / DAYS_PER_YEAR;
year += odd_year;
yearday %= DAYS_PER_YEAR;
if (!yearday && (odd_cent==4 || odd_year==4)) { /* catch Feb 29 */
month = 1;
yearday = 29;
}
else {
yearday += YEAR_ADJUST; /* recover March 1st crock */
month = yearday*DAYS_TO_MONTH;
yearday -= month*MONTH_TO_DAYS;
/* recover other leap-year adjustment */
if (month > 13) {
month-=14;
year++;
}
else {
month-=2;
}
}
ptm->tm_year = year - 1900;
if (yearday) {
ptm->tm_mday = yearday;
ptm->tm_mon = month;
}
else {
ptm->tm_mday = 31;
ptm->tm_mon = month - 1;
}
/* re-build yearday based on Jan 1 to get tm_yday */
year--;
yearday = year*DAYS_PER_YEAR + year/4 - year/100 + year/400;
yearday += 14*MONTH_TO_DAYS + 1;
ptm->tm_yday = jday - yearday;
/* fix tm_wday if not overridden by caller */
if ((unsigned)ptm->tm_wday > 6)
ptm->tm_wday = (jday + WEEKDAY_BIAS) % 7;
}
MODULE = Class::Date PACKAGE = Class::Date
void
strftime_xs(fmt, sec, min, hour, mday, mon, year, wday = -1, yday = -1, isdst = -1)
char * fmt
int sec
int min
int hour
int mday
int mon
int year
int wday
int yday
int isdst
PPCODE:
{
char tmpbuf[128];
struct tm mytm;
int len;
memset(&mytm, 0, sizeof(mytm));
mytm.tm_sec = sec;
mytm.tm_min = min;
mytm.tm_hour = hour;
mytm.tm_mday = mday;
mytm.tm_mon = mon;
mytm.tm_year = year;
mytm.tm_wday = wday;
mytm.tm_yday = yday;
mytm.tm_isdst = isdst;
classdate_mini_mktime(&mytm);
CLASSDATE_TM_DEBUG(mytm);
len = strftime(tmpbuf, sizeof tmpbuf, fmt, &mytm);
/*
** The following is needed to handle to the situation where
** tmpbuf overflows. Basically we want to allocate a buffer
** and try repeatedly. The reason why it is so complicated
** is that getting a return value of 0 from strftime can indicate
** one of the following:
** 1. buffer overflowed,
** 2. illegal conversion specifier, or
** 3. the format string specifies nothing to be returned(not
** an error). This could be because format is an empty string
** or it specifies %p that yields an empty string in some locale.
** If there is a better way to make it portable, go ahead by
** all means.
*/
if ((len > 0 && len < sizeof(tmpbuf)) || (len == 0 && *fmt == '\0'))
ST(0) = sv_2mortal(newSVpv(tmpbuf, len));
else {
/* Possibly buf overflowed - try again with a bigger buf */
int fmtlen = strlen(fmt);
int bufsize = fmtlen + sizeof(tmpbuf);
char* buf;
int buflen;
New(0, buf, bufsize, char);
while (buf) {
CLASSDATE_TM_DEBUG(mytm);
buflen = strftime(buf, bufsize, fmt, &mytm);
if (buflen > 0 && buflen < bufsize)
break;
/* heuristic to prevent out-of-memory errors */
if (bufsize > 100*fmtlen) {
Safefree(buf);
buf = NULL;
break;
}
bufsize *= 2;
Renew(buf, bufsize, char);
}
if (buf) {
ST(0) = sv_2mortal(newSVpv(buf, buflen));
Safefree(buf);
}
else
ST(0) = sv_2mortal(newSVpv(tmpbuf, len));
}
}
XSRETURN(1);
MODULE = Class::Date PACKAGE = Class::Date
void
tzset_xs()
CODE:
tzset();
MODULE = Class::Date PACKAGE = Class::Date
void
tzname_xs()
PPCODE:
EXTEND(SP,2);
PUSHs(sv_2mortal(newSVpv(tzname[0],0)));
PUSHs(sv_2mortal(newSVpv(tzname[1],0)));
XSRETURN(2);
|