1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/**
* \file main.cpp
* \brief This is an example program to show a basic use of the claw::automaton
* class.
* \author Julien Jorge
*/
#include <claw/automaton.hpp>
#include <fstream>
#include <iostream>
#include <vector>
#include <list>
#include <sstream>
/*----------------------------------------------------------------------------*/
/**
* \brief Print an automation.
* \param os The stream to write in.
* \param a The automaton to print.
* \return os.
*/
template<typename Automaton>
std::ostream& print_automaton( std::ostream& os, const Automaton& a )
{
typedef typename Automaton::state_type state_type;
typedef typename Automaton::edge_type edge_type;
std::vector<state_type> states;
std::vector<edge_type> alphabet;
typename std::vector<state_type>::const_iterator it_s;
typename std::vector<edge_type>::const_iterator it_a;
/* Print the alphabet. */
a.alphabet( alphabet );
if ( alphabet.empty() )
os << "A = {}" << std::endl;
else
{
it_a = alphabet.begin();
os << "A = { " << *it_a;
++it_a;
for (; it_a != alphabet.end(); ++it_a)
os << ", " << *it_a;
os << " }" << std::endl;
}
/* Print initial states. */
a.initial_states( states );
if ( states.empty() )
os << "I = {}" << std::endl;
else
{
it_s = states.begin();
os << "I = { " << *it_s;
++it_s;
for (; it_s != states.end(); ++it_s)
os << ", " << *it_s;
os << " }" << std::endl;
}
/* Print final states. */
a.final_states( states );
if ( states.empty() )
os << "F = {}" << std::endl;
else
{
it_s = states.begin();
os << "F = { " << *it_s;
++it_s;
for (; it_s != states.end(); ++it_s)
os << ", " << *it_s;
os << " }" << std::endl;
}
/* Print states and edges. */
a.states( states );
if ( states.empty() )
{
os << "E = {}" << std::endl;
os << "T = {}" << std::endl;
}
else
{
std::vector<edge_type> transitions;
typename std::vector<state_type>::const_iterator it_v;
/* states */
it_s = states.begin();
os << "E = { " << *it_s;
++it_s;
for(; it_s != states.end(); ++it_s)
os << ", " << *it_s;
os << " }" << std::endl;
/* edges */
os << "T = {" << std::endl;
for(it_s = states.begin(); it_s != states.end(); ++it_s)
{
os << *it_s << " -> { ";
for (it_v = states.begin(); it_v != states.end(); ++it_v)
{
a.edges( *it_s, *it_v, transitions );
for (it_a = transitions.begin(); it_a!=transitions.end(); ++it_a)
os << "(" << *it_v << ", " << *it_a << ") ";
}
os << "}" << std::endl;
}
os << "}" << std::endl;
}
return os;
} // print_automaton()
/*----------------------------------------------------------------------------*/
/**
* \brief Read a line describing a part of an automaton.
* \param is The stream in which we read the attributes.
* \param a The automaton in which we add the result of the line.
*
* The following actions can be done by this function:
* add an edge:
* E <source state> <target state> <symbol>
*
* add a state:
* S <state>
*
* add an initial state:
* I <state>
*
* add a final state:
* F <state>
*
* Other lines are ignored.
*/
template<typename Automaton>
void read_line( std::istream& is, Automaton& a )
{
typename Automaton::state_type src, target;
typename Automaton::edge_type edge;
char line_type;
if ( is >> line_type )
switch ( line_type )
{
case 'E':
{
is >> src >> target >> edge;
a.add_edge( src, target, edge );
break;
}
case 'S':
{
is >> src;
a.add_state( src );
break;
}
case 'I':
{
is >> src;
a.add_initial_state( src );
break;
}
case 'F':
{
is >> src;
a.add_final_state( src );
break;
}
}
} // read_line()
/*----------------------------------------------------------------------------*/
/**
* \brief Load an automation from a file.
* \param is The stream describing the automaton.
* \param a (out) The read automaton.
*/
template<typename Automaton>
void load_automaton( std::istream& is, Automaton& a )
{
std::string line;
while ( std::getline(is, line) )
{
std::istringstream iss(line);
read_line( iss, a );
}
} // load_automaton()
/*----------------------------------------------------------------------------*/
/**
* \brief Tell if a pattern is recognized by an automaton.
* \param pattern The pattern to check.
* \param a The automaton.
*/
bool valid_pattern
( const std::string& pattern, const claw::automaton<int, char>& a )
{
return a.match( pattern.begin(), pattern.end() );
} // valid_pattern()
/*----------------------------------------------------------------------------*/
int main( int argc, char* argv[] )
{
if (argc < 3)
std::cerr << "usage:\n" << argv[0] << " automaton_file pattern..."
<< std::endl;
else
{
std::ifstream f( argv[1] );
if ( !f )
std::cerr << "Can't open file '" << argv[1] << "'" << std::endl;
else
{
claw::automaton<int, char> a;
load_automaton( f, a );
print_automaton(std::cout, a) << std::endl;
for (int i=2; i!=argc; ++i)
if ( valid_pattern( argv[i], a ) )
std::cout << argv[i] << ": valid" << std::endl;
else
std::cout << argv[i] << ": not valid" << std::endl;
}
}
return 0;
}
|