File: Algebra.java

package info (click to toggle)
libcolt-free-java 1.2.0%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster
  • size: 20,816 kB
  • sloc: java: 30,344; xml: 896; makefile: 24; sh: 3
file content (952 lines) | stat: -rw-r--r-- 34,896 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
/*
Copyright (c) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
*/
package cern.colt.matrix.linalg;

import cern.colt.matrix.DoubleFactory2D;
import cern.colt.matrix.DoubleMatrix1D;
import cern.colt.matrix.DoubleMatrix2D;
/**
 * Linear algebraic matrix operations operating on {@link DoubleMatrix2D}; concentrates most functionality of this package.
 *
 * @author wolfgang.hoschek@cern.ch
 * @version 1.0, 09/24/99
 */
public class Algebra extends cern.colt.PersistentObject {
	/**
	 * A default Algebra object; has {@link Property#DEFAULT} attached for tolerance. 
	 * Allows ommiting to construct an Algebra object time and again.
	 * 
	 * Note that this Algebra object is immutable.
	 * Any attempt to assign a new Property object to it (via method <tt>setProperty</tt>), or to alter the tolerance of its property object (via <tt>property().setTolerance(...)</tt>) will throw an exception.
	 */
	public static final Algebra DEFAULT;

	/**
	 * A default Algebra object; has {@link Property#ZERO} attached for tolerance. 
	 * Allows ommiting to construct an Algebra object time and again.
	 * 
	 * Note that this Algebra object is immutable.
	 * Any attempt to assign a new Property object to it (via method <tt>setProperty</tt>), or to alter the tolerance of its property object (via <tt>property().setTolerance(...)</tt>) will throw an exception.
	 */
	public static final Algebra ZERO;

	/**
	 * The property object attached to this instance.
	 */	
	protected Property property;

	static {
		 // don't use new Algebra(Property.DEFAULT.tolerance()), because then property object would be mutable.
		 DEFAULT = new Algebra();
		 DEFAULT.property = Property.DEFAULT; // immutable property object
		 
		 ZERO = new Algebra();
		 ZERO.property = Property.ZERO; // immutable property object
	}
/**
 * Constructs a new instance with an equality tolerance given by <tt>Property.DEFAULT.tolerance()</tt>.
 */
public Algebra() {
	this(Property.DEFAULT.tolerance());
}
/**
 * Constructs a new instance with the given equality tolerance.
 * @param tolerance the tolerance to be used for equality operations.
 */
public Algebra(double tolerance) {
	setProperty(new Property(tolerance));
}
/**
 * Constructs and returns the cholesky-decomposition of the given matrix.
 */
private CholeskyDecomposition chol(DoubleMatrix2D matrix) {
	return new CholeskyDecomposition(matrix);
}
/**
 * Returns a copy of the receiver.
 * The attached property object is also copied. Hence, the property object of the copy is mutable.
 *
 * @return a copy of the receiver.
 */
public Object clone() {
	return new Algebra(property.tolerance());
}
/**
 * Returns the condition of matrix <tt>A</tt>, which is the ratio of largest to smallest singular value.
 */
public double cond(DoubleMatrix2D A) {
	return svd(A).cond();
}
/**
 * Returns the determinant of matrix <tt>A</tt>.
 * @return the determinant.
 */
public double det(DoubleMatrix2D A) {
	return lu(A).det();
}
/**
 * Constructs and returns the Eigenvalue-decomposition of the given matrix.
 */
private EigenvalueDecomposition eig(DoubleMatrix2D matrix) {
	return new EigenvalueDecomposition(matrix);
}
/**
 * Returns sqrt(a^2 + b^2) without under/overflow.
 */
protected static double hypot(double a, double b) {
	double r;
	if (Math.abs(a) > Math.abs(b)) {
		r = b/a;
		r = Math.abs(a)*Math.sqrt(1+r*r);
	} else if (b != 0) {
		r = a/b;
		r = Math.abs(b)*Math.sqrt(1+r*r);
	} else {
		r = 0.0;
	}
	return r;
}
/**
 * Returns sqrt(a^2 + b^2) without under/overflow.
 */
protected static cern.colt.function.DoubleDoubleFunction hypotFunction() {
	return new cern.colt.function.DoubleDoubleFunction() {
		public final double apply(double a, double b) {
			return hypot(a,b);
		}
	};
}
/**
 * Returns the inverse or pseudo-inverse of matrix <tt>A</tt>.
 * @return a new independent matrix; inverse(matrix) if the matrix is square, pseudoinverse otherwise.
 */
public DoubleMatrix2D inverse(DoubleMatrix2D A) {
	if (property.isSquare(A) && property.isDiagonal(A)) {
		DoubleMatrix2D inv = A.copy();
		boolean isNonSingular = Diagonal.inverse(inv);
		if (!isNonSingular) throw new IllegalArgumentException("A is singular.");
		return inv;
	}
	return solve(A, DoubleFactory2D.dense.identity(A.rows()));
}
/**
 * Constructs and returns the LU-decomposition of the given matrix.
 */
private LUDecomposition lu(DoubleMatrix2D matrix) {
	return new LUDecomposition(matrix);
}
/**
 * Inner product of two vectors; <tt>Sum(x[i] * y[i])</tt>.
 * Also known as dot product.
 * <br>
 * Equivalent to <tt>x.zDotProduct(y)</tt>.
 *
 * @param x the first source vector.
 * @param y the second source matrix.
 * @return the inner product.
 *
 * @throws IllegalArgumentException if <tt>x.size() != y.size()</tt>.
 */
public double mult(DoubleMatrix1D x, DoubleMatrix1D y) {
	return x.zDotProduct(y);
}
/**
 * Linear algebraic matrix-vector multiplication; <tt>z = A * y</tt>.
 * <tt>z[i] = Sum(A[i,j] * y[j]), i=0..A.rows()-1, j=0..y.size()-1</tt>.
 * @param A the source matrix.
 * @param y the source vector.
 * @return <tt>z</tt>; a new vector with <tt>z.size()==A.rows()</tt>.
 * 
 * @throws IllegalArgumentException if <tt>A.columns() != y.size()</tt>.
 */
public DoubleMatrix1D mult(DoubleMatrix2D A, DoubleMatrix1D y) {
	return A.zMult(y,null);
}
/**
 * Linear algebraic matrix-matrix multiplication; <tt>C = A x B</tt>.
 * <tt>C[i,j] = Sum(A[i,k] * B[k,j]), k=0..n-1</tt>.
 * <br>
 * Matrix shapes: <tt>A(m x n), B(n x p), C(m x p)</tt>.
 *
 * @param A the first source matrix.
 * @param B the second source matrix.
 * @return <tt>C</tt>; a new matrix holding the results, with <tt>C.rows()=A.rows(), C.columns()==B.columns()</tt>.
 *
 * @throws IllegalArgumentException if <tt>B.rows() != A.columns()</tt>.
 */
public DoubleMatrix2D mult(DoubleMatrix2D A, DoubleMatrix2D B) {
	return A.zMult(B,null);
}
/**
 * Outer product of two vectors; Sets <tt>A[i,j] = x[i] * y[j]</tt>.
 *
 * @param x the first source vector.
 * @param y the second source vector.
 * @param A the matrix to hold the results. Set this parameter to <tt>null</tt> to indicate that a new result matrix shall be constructed.
 * @return A (for convenience only).
 * @throws IllegalArgumentException	if <tt>A.rows() != x.size() || A.columns() != y.size()</tt>.
 */
public DoubleMatrix2D multOuter(DoubleMatrix1D x, DoubleMatrix1D y, DoubleMatrix2D A) {
	int rows = x.size();
	int columns = y.size();
	if (A==null) A = x.like2D(rows,columns);
	if (A.rows() != rows || A.columns() != columns) throw new IllegalArgumentException();
	
	for (int row = rows; --row >= 0; ) A.viewRow(row).assign(y);
	
	for (int column = columns; --column >= 0; ) A.viewColumn(column).assign(x, cern.jet.math.Functions.mult);
	return A;
}
/**
 * Returns the one-norm of vector <tt>x</tt>, which is <tt>Sum(abs(x[i]))</tt>.
 */
public double norm1(DoubleMatrix1D x) {
	if (x.size()==0) return 0;
	return x.aggregate(cern.jet.math.Functions.plus,cern.jet.math.Functions.abs);
}
/**
 * Returns the one-norm of matrix <tt>A</tt>, which is the maximum absolute column sum.
 */
public double norm1(DoubleMatrix2D A) {
	double max = 0;
	for (int column = A.columns(); --column >=0; ) {
		max = Math.max(max, norm1(A.viewColumn(column)));
	}
	return max;
}
/**
 * Returns the two-norm (aka <i>euclidean norm</i>) of vector <tt>x</tt>; equivalent to <tt>mult(x,x)</tt>.
 */
public double norm2(DoubleMatrix1D x) {
	return mult(x,x);
}
/**
 * Returns the two-norm of matrix <tt>A</tt>, which is the maximum singular value; obtained from SVD.
 */
public double norm2(DoubleMatrix2D A) {
	return svd(A).norm2();
}
/**
 * Returns the Frobenius norm of matrix <tt>A</tt>, which is <tt>Sqrt(Sum(A[i,j]<sup>2</sup>))</tt>.
 */
public double normF(DoubleMatrix2D A) {
	if (A.size()==0) return 0;
	return A.aggregate(hypotFunction(),cern.jet.math.Functions.identity);
}
/**
 * Returns the infinity norm of vector <tt>x</tt>, which is <tt>Max(abs(x[i]))</tt>.
 */
public double normInfinity(DoubleMatrix1D x) {
	// fix for bug reported by T.J.Hunt@open.ac.uk
	if (x.size()==0) return 0;
	return x.aggregate(cern.jet.math.Functions.max ,cern.jet.math.Functions.abs);
//	if (x.size()==0) return 0;
//	return x.aggregate(cern.jet.math.Functions.plus,cern.jet.math.Functions.abs);
//	double max = 0;
//	for (int i = x.size(); --i >= 0; ) {
//		max = Math.max(max, x.getQuick(i));
//	}
//	return max;
}
/**
 * Returns the infinity norm of matrix <tt>A</tt>, which is the maximum absolute row sum.
 */
public double normInfinity(DoubleMatrix2D A) {
	double max = 0;
	for (int row = A.rows(); --row >=0; ) {
		//max = Math.max(max, normInfinity(A.viewRow(row)));
		max = Math.max(max, norm1(A.viewRow(row)));
	}
	return max;
}
/**
Modifies the given vector <tt>A</tt> such that it is permuted as specified; Useful for pivoting.
Cell <tt>A[i]</tt> will go into cell <tt>A[indexes[i]]</tt>.
<p>
<b>Example:</b>
<pre>
Reordering
[A,B,C,D,E] with indexes [0,4,2,3,1] yields 
[A,E,C,D,B]
In other words A[0]<--A[0], A[1]<--A[4], A[2]<--A[2], A[3]<--A[3], A[4]<--A[1].

Reordering
[A,B,C,D,E] with indexes [0,4,1,2,3] yields 
[A,E,B,C,D]
In other words A[0]<--A[0], A[1]<--A[4], A[2]<--A[1], A[3]<--A[2], A[4]<--A[3].
</pre>

@param   A   the vector to permute.
@param   indexes the permutation indexes, must satisfy <tt>indexes.length==A.size() && indexes[i] >= 0 && indexes[i] < A.size()</tt>;
@param   work the working storage, must satisfy <tt>work.length >= A.size()</tt>; set <tt>work==null</tt> if you don't care about performance.
@return the modified <tt>A</tt> (for convenience only).
@throws	IndexOutOfBoundsException if <tt>indexes.length != A.size()</tt>.
*/
public DoubleMatrix1D permute(DoubleMatrix1D A, int[] indexes, double[] work) {
	// check validity
	int size = A.size();
	if (indexes.length != size) throw new IndexOutOfBoundsException("invalid permutation");

	/*
	int i=size;
	int a;
	while (--i >= 0 && (a=indexes[i])==i) if (a < 0 || a >= size) throw new IndexOutOfBoundsException("invalid permutation");
	if (i<0) return; // nothing to permute
	*/

	if (work==null || size > work.length) {
		work = A.toArray();
	}
	else {
		A.toArray(work);
	}
	for (int i=size; --i >= 0; ) A.setQuick(i, work[indexes[i]]);
	return A;
}
/**
Constructs and returns a new row and column permuted <i>selection view</i> of matrix <tt>A</tt>; equivalent to {@link DoubleMatrix2D#viewSelection(int[],int[])}.
The returned matrix is backed by this matrix, so changes in the returned matrix are reflected in this matrix, and vice-versa.
Use idioms like <tt>result = permute(...).copy()</tt> to generate an independent sub matrix.
@return the new permuted selection view.
*/
public DoubleMatrix2D permute(DoubleMatrix2D A, int[] rowIndexes, int[] columnIndexes) {
	return A.viewSelection(rowIndexes,columnIndexes);
}
/**
Modifies the given matrix <tt>A</tt> such that it's columns are permuted as specified; Useful for pivoting.
Column <tt>A[i]</tt> will go into column <tt>A[indexes[i]]</tt>.
Equivalent to <tt>permuteRows(transpose(A), indexes, work)</tt>.
@param   A   the matrix to permute.
@param   indexes the permutation indexes, must satisfy <tt>indexes.length==A.columns() && indexes[i] >= 0 && indexes[i] < A.columns()</tt>;
@param   work the working storage, must satisfy <tt>work.length >= A.columns()</tt>; set <tt>work==null</tt> if you don't care about performance.
@return the modified <tt>A</tt> (for convenience only).
@throws	IndexOutOfBoundsException if <tt>indexes.length != A.columns()</tt>.
*/
public DoubleMatrix2D permuteColumns(DoubleMatrix2D A, int[] indexes, int[] work) {
	return permuteRows(A.viewDice(), indexes, work);
}
/**
Modifies the given matrix <tt>A</tt> such that it's rows are permuted as specified; Useful for pivoting.
Row <tt>A[i]</tt> will go into row <tt>A[indexes[i]]</tt>.
<p>
<b>Example:</b>
<pre>
Reordering
[A,B,C,D,E] with indexes [0,4,2,3,1] yields 
[A,E,C,D,B]
In other words A[0]<--A[0], A[1]<--A[4], A[2]<--A[2], A[3]<--A[3], A[4]<--A[1].

Reordering
[A,B,C,D,E] with indexes [0,4,1,2,3] yields 
[A,E,B,C,D]
In other words A[0]<--A[0], A[1]<--A[4], A[2]<--A[1], A[3]<--A[2], A[4]<--A[3].
</pre>

@param   A   the matrix to permute.
@param   indexes the permutation indexes, must satisfy <tt>indexes.length==A.rows() && indexes[i] >= 0 && indexes[i] < A.rows()</tt>;
@param   work the working storage, must satisfy <tt>work.length >= A.rows()</tt>; set <tt>work==null</tt> if you don't care about performance.
@return the modified <tt>A</tt> (for convenience only).
@throws	IndexOutOfBoundsException if <tt>indexes.length != A.rows()</tt>.
*/
public DoubleMatrix2D permuteRows(final DoubleMatrix2D A, int[] indexes, int[] work) {
	// check validity
	int size = A.rows();
	if (indexes.length != size) throw new IndexOutOfBoundsException("invalid permutation");

	/*
	int i=size;
	int a;
	while (--i >= 0 && (a=indexes[i])==i) if (a < 0 || a >= size) throw new IndexOutOfBoundsException("invalid permutation");
	if (i<0) return; // nothing to permute
	*/

	int columns = A.columns();
	if (columns < size/10) { // quicker
		double[] doubleWork = new double[size];
		for (int j=A.columns(); --j >= 0; ) permute(A.viewColumn(j), indexes, doubleWork);
		return A;
	}

	cern.colt.Swapper swapper = new cern.colt.Swapper() {
		public void swap(int a, int b) {
			A.viewRow(a).swap(A.viewRow(b));
		}
	};

	cern.colt.GenericPermuting.permute(indexes, swapper, work, null);
	return A;
}
/**
 * Linear algebraic matrix power; <tt>B = A<sup>k</sup> <==> B = A*A*...*A</tt>.
 * <ul>
 * <li><tt>p &gt;= 1: B = A*A*...*A</tt>.</li>
 * <li><tt>p == 0: B = identity matrix</tt>.</li>
 * <li><tt>p &lt;  0: B = pow(inverse(A),-p)</tt>.</li>
 * </ul>
 * Implementation: Based on logarithms of 2, memory usage minimized.
 * @param A the source matrix; must be square; stays unaffected by this operation.
 * @param p the exponent, can be any number.
 * @return <tt>B</tt>, a newly constructed result matrix; storage-independent of <tt>A</tt>.
 * 
 * @throws IllegalArgumentException if <tt>!property().isSquare(A)</tt>.
 */
public DoubleMatrix2D pow(DoubleMatrix2D A, int p) {
	// matrix multiplication based on log2 method: A*A*....*A is slow, ((A * A)^2)^2 * ... is faster
	// allocates two auxiliary matrices as work space

	Blas blas = SmpBlas.smpBlas; // for parallel matrix mult; if not initialized defaults to sequential blas
	Property.DEFAULT.checkSquare(A);
	if (p<0) {
		A = inverse(A);
		p = -p;
	}
	if (p==0) return DoubleFactory2D.dense.identity(A.rows());
	DoubleMatrix2D T = A.like(); // temporary
	if (p==1) return T.assign(A);  // safes one auxiliary matrix allocation
	if (p==2) {
		blas.dgemm(false,false,1,A,A,0,T); // mult(A,A); // safes one auxiliary matrix allocation
		return T;
	}

	int k = cern.colt.bitvector.QuickBitVector.mostSignificantBit(p); // index of highest bit in state "true"
	
	/*
	this is the naive version:
	DoubleMatrix2D B = A.copy();
	for (int i=0; i<p-1; i++) {
		B = mult(B,A);
	}
	return B;
	*/

	// here comes the optimized version:
	//cern.colt.Timer timer = new cern.colt.Timer().start();

	int i=0;
	while (i<=k && (p & (1<<i)) == 0) { // while (bit i of p == false)
		// A = mult(A,A); would allocate a lot of temporary memory
		blas.dgemm(false,false,1,A,A,0,T); // A.zMult(A,T);
		DoubleMatrix2D swap = A; A = T; T = swap; // swap A with T
		i++;
	}

	DoubleMatrix2D B = A.copy();
	i++;
	for (; i<=k; i++) {
		// A = mult(A,A); would allocate a lot of temporary memory
		blas.dgemm(false,false,1,A,A,0,T); // A.zMult(A,T);	
		DoubleMatrix2D swap = A; A = T; T = swap; // swap A with T

		if ((p & (1<<i)) != 0) { // if (bit i of p == true)
			// B = mult(B,A); would allocate a lot of temporary memory
			blas.dgemm(false,false,1,B,A,0,T); // B.zMult(A,T);		
			swap = B; B = T; T = swap; // swap B with T
		}
	}
	//timer.stop().display();
	return B;
}
/**
 * Returns the property object attached to this Algebra, defining tolerance.
 * @return the Property object.
 * @see #setProperty(Property)
 */
public Property property() {
	return property;
}
/**
 * Constructs and returns the QR-decomposition of the given matrix.
 */
private QRDecomposition qr(DoubleMatrix2D matrix) {
	return new QRDecomposition(matrix);
}
/**
 * Returns the effective numerical rank of matrix <tt>A</tt>, obtained from Singular Value Decomposition.
 */
public int rank(DoubleMatrix2D A) {
	return svd(A).rank();
}
/**
 * Attaches the given property object to this Algebra, defining tolerance.
 * @param the Property object to be attached.
 * @throws	UnsupportedOperationException if <tt>this==DEFAULT && property!=this.property()</tt> - The DEFAULT Algebra object is immutable.
 * @throws	UnsupportedOperationException if <tt>this==ZERO && property!=this.property()</tt> - The ZERO Algebra object is immutable.
 * @see #property
 */
public void setProperty(Property property) { 
	if (this==DEFAULT && property!=this.property) throw new IllegalArgumentException("Attempted to modify immutable object.");
	if (this==ZERO && property!=this.property) throw new IllegalArgumentException("Attempted to modify immutable object.");
	this.property = property;
}
/**
 * Solves A*X = B.
 * @return X; a new independent matrix; solution if A is square, least squares solution otherwise.
 */
public DoubleMatrix2D solve(DoubleMatrix2D A, DoubleMatrix2D B) {
	return (A.rows() == A.columns() ? (lu(A).solve(B)) : (qr(A).solve(B)));
}
/**
 * Solves X*A = B, which is also A'*X' = B'.
 * @return X; a new independent matrix; solution if A is square, least squares solution otherwise.
 */
public DoubleMatrix2D solveTranspose(DoubleMatrix2D A, DoubleMatrix2D B) {
	return solve(transpose(A), transpose(B));
}
/**
 * Copies the columns of the indicated rows into a new sub matrix.
 * <tt>sub[0..rowIndexes.length-1,0..columnTo-columnFrom] = A[rowIndexes(:),columnFrom..columnTo]</tt>;
 * The returned matrix is <i>not backed</i> by this matrix, so changes in the returned matrix are <i>not reflected</i> in this matrix, and vice-versa.
 *
 * @param   A   the source matrix to copy from.
 * @param   rowIndexes the indexes of the rows to copy. May be unsorted.
 * @param   columnFrom the index of the first column to copy (inclusive).
 * @param   columnTo the index of the last column to copy (inclusive).
 * @return  a new sub matrix; with <tt>sub.rows()==rowIndexes.length; sub.columns()==columnTo-columnFrom+1</tt>.
 * @throws	IndexOutOfBoundsException if <tt>columnFrom<0 || columnTo-columnFrom+1<0 || columnTo+1>matrix.columns() || for any row=rowIndexes[i]: row < 0 || row >= matrix.rows()</tt>.
 */
private DoubleMatrix2D subMatrix(DoubleMatrix2D A, int[] rowIndexes, int columnFrom, int columnTo) {
	int width = columnTo-columnFrom+1;
	int rows = A.rows();
	A = A.viewPart(0,columnFrom,rows,width);
	DoubleMatrix2D sub = A.like(rowIndexes.length, width);
	
	for (int r = rowIndexes.length; --r >= 0; ) {
		int row = rowIndexes[r];
		if (row < 0 || row >= rows) 
			throw new IndexOutOfBoundsException("Illegal Index");
		sub.viewRow(r).assign(A.viewRow(row));
	}
	return sub;
}
/**
 * Copies the rows of the indicated columns into a new sub matrix.
 * <tt>sub[0..rowTo-rowFrom,0..columnIndexes.length-1] = A[rowFrom..rowTo,columnIndexes(:)]</tt>;
 * The returned matrix is <i>not backed</i> by this matrix, so changes in the returned matrix are <i>not reflected</i> in this matrix, and vice-versa.
 *
 * @param   A   the source matrix to copy from.
 * @param   rowFrom the index of the first row to copy (inclusive).
 * @param   rowTo the index of the last row to copy (inclusive).
 * @param   columnIndexes the indexes of the columns to copy. May be unsorted.
 * @return  a new sub matrix; with <tt>sub.rows()==rowTo-rowFrom+1; sub.columns()==columnIndexes.length</tt>.
 * @throws	IndexOutOfBoundsException if <tt>rowFrom<0 || rowTo-rowFrom+1<0 || rowTo+1>matrix.rows() || for any col=columnIndexes[i]: col < 0 || col >= matrix.columns()</tt>.
 */
private DoubleMatrix2D subMatrix(DoubleMatrix2D A, int rowFrom, int rowTo, int[] columnIndexes) {
	if (rowTo-rowFrom >= A.rows()) throw new IndexOutOfBoundsException("Too many rows");
	int height = rowTo-rowFrom+1;
	int columns = A.columns();
	A = A.viewPart(rowFrom,0,height,columns);
	DoubleMatrix2D sub = A.like(height, columnIndexes.length);
	
	for (int c = columnIndexes.length; --c >= 0; ) {
		int column = columnIndexes[c];
		if (column < 0 || column >= columns)
			throw new IndexOutOfBoundsException("Illegal Index");
		sub.viewColumn(c).assign(A.viewColumn(column));
	}
	return sub;
}
/**
Constructs and returns a new <i>sub-range view</i> which is the sub matrix <tt>A[fromRow..toRow,fromColumn..toColumn]</tt>.
The returned matrix is backed by this matrix, so changes in the returned matrix are reflected in this matrix, and vice-versa.
Use idioms like <tt>result = subMatrix(...).copy()</tt> to generate an independent sub matrix.

@param A the source matrix.
@param fromRow   The index of the first row (inclusive).
@param toRow   The index of the last row (inclusive).
@param fromColumn   The index of the first column (inclusive).
@param toColumn   The index of the last column (inclusive).
@return a new sub-range view.
@throws	IndexOutOfBoundsException if <tt>fromColumn<0 || toColumn-fromColumn+1<0 || toColumn>=A.columns() || fromRow<0 || toRow-fromRow+1<0 || toRow>=A.rows()</tt>
*/
public DoubleMatrix2D subMatrix(DoubleMatrix2D A, int fromRow, int toRow, int fromColumn, int toColumn) {
	return A.viewPart(fromRow, fromColumn, toRow-fromRow+1, toColumn-fromColumn+1);
}
/**
 * Constructs and returns the SingularValue-decomposition of the given matrix.
 */
private SingularValueDecomposition svd(DoubleMatrix2D matrix) {
	return new SingularValueDecomposition(matrix);
}
/**
Returns a String with (propertyName, propertyValue) pairs.
Useful for debugging or to quickly get the rough picture.
For example,
<pre>
cond          : 14.073264490042144
det           : Illegal operation or error: Matrix must be square.
norm1         : 0.9620244354009628
norm2         : 3.0
normF         : 1.304841791648992
normInfinity  : 1.5406551198102534
rank          : 3
trace         : 0
</pre>
*/
public String toString(DoubleMatrix2D matrix) {
	final cern.colt.list.ObjectArrayList names = new cern.colt.list.ObjectArrayList();
	final cern.colt.list.ObjectArrayList values = new cern.colt.list.ObjectArrayList();
	String unknown = "Illegal operation or error: ";

	// determine properties
	names.add("cond");
	try { values.add(String.valueOf(cond(matrix)));} 
	catch (IllegalArgumentException exc) { values.add(unknown+exc.getMessage()); }
	
	names.add("det");
	try { values.add(String.valueOf(det(matrix)));} 
	catch (IllegalArgumentException exc) { values.add(unknown+exc.getMessage()); }
	
	names.add("norm1");
	try { values.add(String.valueOf(norm1(matrix)));} 
	catch (IllegalArgumentException exc) { values.add(unknown+exc.getMessage()); }
	
	names.add("norm2");
	try { values.add(String.valueOf(norm2(matrix)));} 
	catch (IllegalArgumentException exc) { values.add(unknown+exc.getMessage()); }
	
	names.add("normF");
	try { values.add(String.valueOf(normF(matrix)));} 
	catch (IllegalArgumentException exc) { values.add(unknown+exc.getMessage()); }
	
	names.add("normInfinity");
	try { values.add(String.valueOf(normInfinity(matrix)));} 
	catch (IllegalArgumentException exc) { values.add(unknown+exc.getMessage()); }
	
	names.add("rank");
	try { values.add(String.valueOf(rank(matrix)));} 
	catch (IllegalArgumentException exc) { values.add(unknown+exc.getMessage()); }
	
	names.add("trace");
	try { values.add(String.valueOf(trace(matrix)));} 
	catch (IllegalArgumentException exc) { values.add(unknown+exc.getMessage()); }
	
	
	// sort ascending by property name
	cern.colt.function.IntComparator comp = new cern.colt.function.IntComparator() {
		public int compare(int a, int b) {
			return Property.get(names,a).compareTo(Property.get(names,b));
		}
	};
	cern.colt.Swapper swapper = new cern.colt.Swapper() {
		public void swap(int a, int b) {
			Object tmp;
			tmp = names.get(a); names.set(a,names.get(b)); names.set(b,tmp);
			tmp = values.get(a); values.set(a,values.get(b)); values.set(b,tmp);
		}
	};	
	cern.colt.GenericSorting.quickSort(0,names.size(),comp,swapper);
	
	// determine padding for nice formatting
	int maxLength = 0;
	for (int i = 0; i < names.size(); i++) {
		int length = ((String) names.get(i)).length();
		maxLength = Math.max(length, maxLength);
	}

	// finally, format properties
	StringBuffer buf = new StringBuffer();
	for (int i = 0; i < names.size(); i++) {
		String name = ((String) names.get(i));
		buf.append(name);
		buf.append(Property.blanks(maxLength - name.length()));
		buf.append(" : ");
		buf.append(values.get(i));
		if (i < names.size() - 1)
			buf.append('\n');
	}
	
	return buf.toString();
}
/**
Returns the results of <tt>toString(A)</tt> and additionally the results of all sorts of decompositions applied to the given matrix.
Useful for debugging or to quickly get the rough picture.
For example,
<pre>
A = 3 x 3 matrix
249  66  68
104 214 108
144 146 293

cond         : 3.931600417472078
det          : 9638870.0
norm1        : 497.0
norm2        : 473.34508217011404
normF        : 516.873292016525
normInfinity : 583.0
rank         : 3
trace        : 756.0

density                      : 1.0
isDiagonal                   : false
isDiagonallyDominantByColumn : true
isDiagonallyDominantByRow    : true
isIdentity                   : false
isLowerBidiagonal            : false
isLowerTriangular            : false
isNonNegative                : true
isOrthogonal                 : false
isPositive                   : true
isSingular                   : false
isSkewSymmetric              : false
isSquare                     : true
isStrictlyLowerTriangular    : false
isStrictlyTriangular         : false
isStrictlyUpperTriangular    : false
isSymmetric                  : false
isTriangular                 : false
isTridiagonal                : false
isUnitTriangular             : false
isUpperBidiagonal            : false
isUpperTriangular            : false
isZero                       : false
lowerBandwidth               : 2
semiBandwidth                : 3
upperBandwidth               : 2

-----------------------------------------------------------------------------
LUDecompositionQuick(A) --> isNonSingular(A), det(A), pivot, L, U, inverse(A)
-----------------------------------------------------------------------------
isNonSingular = true
det = 9638870.0
pivot = [0, 1, 2]

L = 3 x 3 matrix
1        0       0
0.417671 1       0
0.578313 0.57839 1

U = 3 x 3 matrix
249  66         68       
  0 186.433735  79.598394
  0   0        207.635819

inverse(A) = 3 x 3 matrix
 0.004869 -0.000976 -0.00077 
-0.001548  0.006553 -0.002056
-0.001622 -0.002786  0.004816

-----------------------------------------------------------------
QRDecomposition(A) --> hasFullRank(A), H, Q, R, pseudo inverse(A)
-----------------------------------------------------------------
hasFullRank = true

H = 3 x 3 matrix
1.814086 0        0
0.34002  1.903675 0
0.470797 0.428218 2

Q = 3 x 3 matrix
-0.814086  0.508871  0.279845
-0.34002  -0.808296  0.48067 
-0.470797 -0.296154 -0.831049

R = 3 x 3 matrix
-305.864349 -195.230337 -230.023539
   0        -182.628353  467.703164
   0           0        -309.13388 

pseudo inverse(A) = 3 x 3 matrix
 0.006601  0.001998 -0.005912
-0.005105  0.000444  0.008506
-0.000905 -0.001555  0.002688

--------------------------------------------------------------------------
CholeskyDecomposition(A) --> isSymmetricPositiveDefinite(A), L, inverse(A)
--------------------------------------------------------------------------
isSymmetricPositiveDefinite = false

L = 3 x 3 matrix
15.779734  0         0       
 6.590732 13.059948  0       
 9.125629  6.573948 12.903724

inverse(A) = Illegal operation or error: Matrix is not symmetric positive definite.

---------------------------------------------------------------------
EigenvalueDecomposition(A) --> D, V, realEigenvalues, imagEigenvalues
---------------------------------------------------------------------
realEigenvalues = 1 x 3 matrix
462.796507 172.382058 120.821435
imagEigenvalues = 1 x 3 matrix
0 0 0

D = 3 x 3 matrix
462.796507   0          0       
  0        172.382058   0       
  0          0        120.821435

V = 3 x 3 matrix
-0.398877 -0.778282  0.094294
-0.500327  0.217793 -0.806319
-0.768485  0.66553   0.604862

---------------------------------------------------------------------
SingularValueDecomposition(A) --> cond(A), rank(A), norm2(A), U, S, V
---------------------------------------------------------------------
cond = 3.931600417472078
rank = 3
norm2 = 473.34508217011404

U = 3 x 3 matrix
0.46657  -0.877519  0.110777
0.50486   0.161382 -0.847982
0.726243  0.45157   0.51832 

S = 3 x 3 matrix
473.345082   0          0       
  0        169.137441   0       
  0          0        120.395013

V = 3 x 3 matrix
0.577296 -0.808174  0.116546
0.517308  0.251562 -0.817991
0.631761  0.532513  0.563301
</pre>
*/
public String toVerboseString(DoubleMatrix2D matrix) {
/*
	StringBuffer buf = new StringBuffer();
	String unknown = "Illegal operation or error: ";
	String constructionException = "Illegal operation or error upon construction: ";

	buf.append("------------------------------------------------------------------\n");
	buf.append("LUDecomposition(A) --> isNonSingular, det, pivot, L, U, inverse(A)\n");
	buf.append("------------------------------------------------------------------\n");
*/

	String constructionException = "Illegal operation or error upon construction of ";
	StringBuffer buf = new StringBuffer();

	buf.append("A = ");
	buf.append(matrix);

	buf.append("\n\n" + toString(matrix));
	buf.append("\n\n" + Property.DEFAULT.toString(matrix));
	
	LUDecomposition lu = null;
	try { lu = new LUDecomposition(matrix); }
	catch (IllegalArgumentException exc) { 
		buf.append("\n\n"+constructionException+" LUDecomposition: "+exc.getMessage()); 
	}
	if (lu!=null) buf.append("\n\n"+lu.toString());

	QRDecomposition qr = null;
	try { qr = new QRDecomposition(matrix); }
	catch (IllegalArgumentException exc) { 
		buf.append("\n\n"+constructionException+" QRDecomposition: "+exc.getMessage()); 
	}
	if (qr!=null) buf.append("\n\n"+qr.toString());

	CholeskyDecomposition chol = null;
	try { chol = new CholeskyDecomposition(matrix); }
	catch (IllegalArgumentException exc) { 
		buf.append("\n\n"+constructionException+" CholeskyDecomposition: "+exc.getMessage()); 
	}
	if (chol!=null) buf.append("\n\n"+chol.toString());

	EigenvalueDecomposition eig = null;
	try { eig = new EigenvalueDecomposition(matrix); }
	catch (IllegalArgumentException exc) { 
		buf.append("\n\n"+constructionException+" EigenvalueDecomposition: "+exc.getMessage()); 
	}
	if (eig!=null) buf.append("\n\n"+eig.toString());

	SingularValueDecomposition svd = null;
	try { svd = new SingularValueDecomposition(matrix); }
	catch (IllegalArgumentException exc) { 
		buf.append("\n\n"+constructionException+" SingularValueDecomposition: "+exc.getMessage()); 
	}
	if (svd!=null) buf.append("\n\n"+svd.toString());

	return buf.toString();
}
/**
 * Returns the sum of the diagonal elements of matrix <tt>A</tt>; <tt>Sum(A[i,i])</tt>.
 */
public double trace(DoubleMatrix2D A) {
	double sum = 0;
	for (int i=Math.min(A.rows(),A.columns()); --i >= 0;) {
		sum += A.getQuick(i,i);
	}
	return sum;
}
/**
Constructs and returns a new view which is the transposition of the given matrix <tt>A</tt>.
Equivalent to {@link DoubleMatrix2D#viewDice A.viewDice()}.
This is a zero-copy transposition, taking O(1), i.e. constant time.
The returned view is backed by this matrix, so changes in the returned view are reflected in this matrix, and vice-versa. 
Use idioms like <tt>result = transpose(A).copy()</tt> to generate an independent matrix.
<p> 
<b>Example:</b> 
<table border="0">
  <tr nowrap> 
	<td valign="top">2 x 3 matrix: <br>
	  1, 2, 3<br>
	  4, 5, 6 </td>
	<td>transpose ==></td>
	<td valign="top">3 x 2 matrix:<br>
	  1, 4 <br>
	  2, 5 <br>
	  3, 6</td>
	<td>transpose ==></td>
	<td valign="top">2 x 3 matrix: <br>
	  1, 2, 3<br>
	  4, 5, 6 </td>
  </tr>
</table>
@return a new transposed view. 
*/
public DoubleMatrix2D transpose(DoubleMatrix2D A) {
	return A.viewDice();
}
/**
Modifies the matrix to be a lower trapezoidal matrix.
@return <tt>A</tt> (for convenience only).
@see #triangulateLower(DoubleMatrix2D)
*/
protected DoubleMatrix2D trapezoidalLower(DoubleMatrix2D A) {
	int rows = A.rows();
	int columns = A.columns();
	for (int r = rows; --r >= 0; ) {
		for (int c = columns; --c >= 0; ) {
			if (r < c) A.setQuick(r,c, 0);
		}
	}
	return A;
}
/**
 * Outer product of two vectors; Returns a matrix with <tt>A[i,j] = x[i] * y[j]</tt>.
 *
 * @param x the first source vector.
 * @param y the second source vector.
 * @return the outer product </tt>A</tt>.
 */
private DoubleMatrix2D xmultOuter(DoubleMatrix1D x, DoubleMatrix1D y) {
	DoubleMatrix2D A = x.like2D(x.size(),y.size());
	multOuter(x,y,A);
	return A;
}
/**
 * Linear algebraic matrix power; <tt>B = A<sup>k</sup> <==> B = A*A*...*A</tt>.
 * @param A the source matrix; must be square.
 * @param k the exponent, can be any number.
 * @return a new result matrix.
 * 
 * @throws IllegalArgumentException if <tt>!Testing.isSquare(A)</tt>.
 */
private DoubleMatrix2D xpowSlow(DoubleMatrix2D A, int k) {
	//cern.colt.Timer timer = new cern.colt.Timer().start();
	DoubleMatrix2D result = A.copy();
	for (int i=0; i<k-1; i++) {
		result = mult(result,A);
	}
	//timer.stop().display();
	return result;
}
}