1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<!--NewPage-->
<HTML>
<HEAD>
<!-- Generated by javadoc (build 1.4.2_05) on Thu Sep 09 20:36:06 PDT 2004 -->
<TITLE>
cern.colt.matrix (Colt 1.2.0 - API Specification)
</TITLE>
<META NAME="keywords" CONTENT="cern.colt.matrix package">
<LINK REL ="stylesheet" TYPE="text/css" HREF="../../../stylesheet.css" TITLE="Style">
<SCRIPT type="text/javascript">
function windowTitle()
{
parent.document.title="cern.colt.matrix (Colt 1.2.0 - API Specification)";
}
</SCRIPT>
</HEAD>
<BODY BGCOLOR="white" onload="windowTitle();">
<!-- ========= START OF TOP NAVBAR ======= -->
<A NAME="navbar_top"><!-- --></A>
<A HREF="#skip-navbar_top" title="Skip navigation links"></A>
<TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0" SUMMARY="">
<TR>
<TD COLSPAN=3 BGCOLOR="#EEEEFF" CLASS="NavBarCell1">
<A NAME="navbar_top_firstrow"><!-- --></A>
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3" SUMMARY="">
<TR ALIGN="center" VALIGN="top">
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A> </TD>
<TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> <FONT CLASS="NavBarFont1Rev"><B>Package</B></FONT> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <FONT CLASS="NavBarFont1">Class</FONT> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="package-use.html"><FONT CLASS="NavBarFont1"><B>Use</B></FONT></A> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="../../../index-files/index-1.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A> </TD>
</TR>
</TABLE>
</TD>
<TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM>
<b>Colt 1.2.0</b></EM>
</TD>
</TR>
<TR>
<TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">
<A HREF="../../../cern/colt/map/package-summary.html"><B>PREV PACKAGE</B></A>
<A HREF="../../../cern/colt/matrix/bench/package-summary.html"><B>NEXT PACKAGE</B></A></FONT></TD>
<TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">
<A HREF="../../../index.html" target="_top"><B>FRAMES</B></A>
<A HREF="package-summary.html" target="_top"><B>NO FRAMES</B></A>
<SCRIPT type="text/javascript">
<!--
if(window==top) {
document.writeln('<A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A>');
}
//-->
</SCRIPT>
<NOSCRIPT>
<A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A>
</NOSCRIPT>
</FONT></TD>
</TR>
</TABLE>
<A NAME="skip-navbar_top"></A>
<!-- ========= END OF TOP NAVBAR ========= -->
<HR>
<H2>
Package cern.colt.matrix
</H2>
Matrix <i>interfaces and factories</i>; efficient and flexible dense and sparse
1, 2, 3 and d-dimensional matrices holding objects or primitive data types such
as <tt>int</tt>, <tt>double</tt>, etc; Templated, fixed sized (not dynamically
resizable); Also known as <i>multi-dimensional arrays</i> or<i> Data Cubes</i>.
<P>
<B>See:</B>
<BR>
<A HREF="#package_description"><B>Description</B></A>
<P>
<TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY="">
<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">
<TD COLSPAN=2><FONT SIZE="+2">
<B>Interface Summary</B></FONT></TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleMatrix1DProcedure.html" title="interface in cern.colt.matrix">DoubleMatrix1DProcedure</A></B></TD>
<TD>Interface that represents a condition or procedure object: takes
a single argument and returns a boolean value.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleMatrix2DProcedure.html" title="interface in cern.colt.matrix">DoubleMatrix2DProcedure</A></B></TD>
<TD>Interface that represents a condition or procedure object: takes
a single argument and returns a boolean value.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleMatrix3DProcedure.html" title="interface in cern.colt.matrix">DoubleMatrix3DProcedure</A></B></TD>
<TD>Interface that represents a condition or procedure object: takes
a single argument and returns a boolean value.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectMatrix1DProcedure.html" title="interface in cern.colt.matrix">ObjectMatrix1DProcedure</A></B></TD>
<TD>Interface that represents a condition or procedure object: takes
a single argument and returns a boolean value.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectMatrix2DProcedure.html" title="interface in cern.colt.matrix">ObjectMatrix2DProcedure</A></B></TD>
<TD>Interface that represents a condition or procedure object: takes
a single argument and returns a boolean value.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectMatrix3DProcedure.html" title="interface in cern.colt.matrix">ObjectMatrix3DProcedure</A></B></TD>
<TD>Interface that represents a condition or procedure object: takes
a single argument and returns a boolean value.</TD>
</TR>
</TABLE>
<P>
<TABLE BORDER="1" WIDTH="100%" CELLPADDING="3" CELLSPACING="0" SUMMARY="">
<TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor">
<TD COLSPAN=2><FONT SIZE="+2">
<B>Class Summary</B></FONT></TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleFactory1D.html" title="class in cern.colt.matrix">DoubleFactory1D</A></B></TD>
<TD>Factory for convenient construction of 1-d matrices holding <tt>double</tt> cells.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleFactory2D.html" title="class in cern.colt.matrix">DoubleFactory2D</A></B></TD>
<TD>Factory for convenient construction of 2-d matrices holding <tt>double</tt>
cells.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleFactory3D.html" title="class in cern.colt.matrix">DoubleFactory3D</A></B></TD>
<TD>Factory for convenient construction of 3-d matrices holding <tt>double</tt> cells.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleMatrix1D.html" title="class in cern.colt.matrix">DoubleMatrix1D</A></B></TD>
<TD>Abstract base class for 1-d matrices (aka <i>vectors</i>) holding <tt>double</tt> elements.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleMatrix2D.html" title="class in cern.colt.matrix">DoubleMatrix2D</A></B></TD>
<TD>Abstract base class for 2-d matrices holding <tt>double</tt> elements.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/DoubleMatrix3D.html" title="class in cern.colt.matrix">DoubleMatrix3D</A></B></TD>
<TD>Abstract base class for 3-d matrices holding <tt>double</tt> elements.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectFactory1D.html" title="class in cern.colt.matrix">ObjectFactory1D</A></B></TD>
<TD>Factory for convenient construction of 1-d matrices holding <tt>Object</tt> cells.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectFactory2D.html" title="class in cern.colt.matrix">ObjectFactory2D</A></B></TD>
<TD>Factory for convenient construction of 2-d matrices holding <tt>Object</tt>
cells.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectFactory3D.html" title="class in cern.colt.matrix">ObjectFactory3D</A></B></TD>
<TD>Factory for convenient construction of 3-d matrices holding <tt>Object</tt> cells.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectMatrix1D.html" title="class in cern.colt.matrix">ObjectMatrix1D</A></B></TD>
<TD>Abstract base class for 1-d matrices (aka <i>vectors</i>) holding <tt>Object</tt> elements.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectMatrix2D.html" title="class in cern.colt.matrix">ObjectMatrix2D</A></B></TD>
<TD>Abstract base class for 2-d matrices holding <tt>Object</tt> elements.</TD>
</TR>
<TR BGCOLOR="white" CLASS="TableRowColor">
<TD WIDTH="15%"><B><A HREF="../../../cern/colt/matrix/ObjectMatrix3D.html" title="class in cern.colt.matrix">ObjectMatrix3D</A></B></TD>
<TD>Abstract base class for 3-d matrices holding <tt>Object</tt> elements.</TD>
</TR>
</TABLE>
<P>
<A NAME="package_description"><!-- --></A><H2>
Package cern.colt.matrix Description
</H2>
<P>
Matrix <i>interfaces and factories</i>; efficient and flexible dense and sparse
1, 2, 3 and d-dimensional matrices holding objects or primitive data types such
as <tt>int</tt>, <tt>double</tt>, etc; Templated, fixed sized (not dynamically
resizable); Also known as <i>multi-dimensional arrays</i> or<i> Data Cubes</i>.
Note that d-dimensional and <tt>int</tt> based matrices are not yet provided.
<p></p>
<h1><a name="Overview"></a>Getting Started</h1>
<ol>
<li><a href="#Overview">Overview</a></li>
<li><a href="#Introduction">Introduction</a> </li>
<li><a href="#SemanticsOfViews">Semantics of Views</a></li>
<li><a href="#FunctionObjects">Functional Programming with Objects</a></li>
<li><a href="#Algorithms">Algorithms</a></li>
<li><a href="#LinearAlgebra">Linear Algebra</a></li>
<li><a href="#Orthogonality">Orthogonality and Polymorphism</a></li>
<li><a href="#PackageOrganization">Package Organization, Naming Conventions,
Policies</a></li>
<li><a href="#Performance">Performance</a></li>
<li><a href="#Notes">Notes</a> </li>
</ol>
<h2></h2>
<h2>1. Overview</h2>
<p>The matrix package offers flexible object oriented abstractions modelling multi-dimensional
arrays, resembling the way they can be manipulated in Fortran. It is designed
to be scalable, not only in terms of performance and memory requirements, but
also in terms of the number of operations that make sense on such data structures.
Features include</p>
<table width="75%" border="0" bgcolor="#EEEEEE">
<tr valign="top" align="left">
<td>
<table border="0" cellpadding="0" cellspacing="0" width="358">
<tr>
<td colspan="2" bgcolor="#770000">
<p align="CENTER"><font color="#FFFFFF"><b>Multi-dimensional Array
Types</b></font>
</td>
</tr>
<tr valign="top">
<td align="LEFT" width="180">
<ul>
<li>dense
<li>sparse hashed
<li>sparse row compressed
</ul>
</td>
<td align="LEFT" width="180">
<ul>
<li>1-d, 2-d, 3-d
</ul>
</td>
</tr>
</table>
</td>
<td>
<table border="0" cellpadding="0" cellspacing="0" width="358">
<tr>
<td colspan="2" bgcolor="#770000">
<p align="CENTER"><font color="#FFFFFF"><b>Matrix Operations</b></font>
</td>
</tr>
<tr valign="top">
<td align="LEFT" width="180">
<ul>
<li>matrix-matrix multiply
<li>matrix-vector multiply
<li>inner, outer products
<li>tranposition
</ul>
</td>
<td align="LEFT" width="180">
<ul>
<li>equation solving
<li>permutation (pivoting)
<li>integer powers
<li>norms
<li>trace
</ul>
</td>
</tr>
</table>
</td>
</tr>
<tr valign="top" align="left">
<td>
<table border="0" cellpadding="0" cellspacing="0" width="358">
<tr>
<td colspan="2" bgcolor="#770000">
<p align="CENTER"><font color="#FFFFFF"><b>Array Views (by Reference)</b></font>
</td>
</tr>
<tr valign="top">
<td align="LEFT" width="180">
<ul>
<li>sub-range
<li>slice
<li>dice
<li>flip
<li>stride
</ul>
</td>
<td align="LEFT" width="180">
<ul>
<li>selection
<li>sort
</ul>
<ul>
<li>assigment
<li>copying
</ul>
</td>
</tr>
</table>
</td>
<td>
<table border="0" cellpadding="0" cellspacing="0" width="358">
<tr>
<td valign="MIDDLE" colspan="2" bgcolor="#770000">
<p align="CENTER"><font color="#FFFFFF"><b>Matrix Factorizations and
Decompositions</b></font>
</td>
</tr>
<tr valign="top">
<td width="180" align="LEFT">
<ul>
<li>LU
<li>QR
<li>Cholesky
<li>eigenvectors and eigenvalues
<li>singular value (SVD)
</ul>
</td>
<td align="LEFT" width="180">
<ul>
<li> inverse
<li>pseudoinverse
<li>condition
<li>determinant
<li>rank
</ul>
</td>
</tr>
</table>
</td>
</tr>
<tr valign="top" align="left">
<td>
<table border="0" cellpadding="0" cellspacing="0" width="358">
<tr>
<td colspan="2" bgcolor="#770000">
<p align="CENTER"><font color="#FFFFFF"><b>Elementwise Array Operations</b></font>
</td>
</tr>
<tr valign="top">
<td align="LEFT" width="180">
<ul>
<li>addition
<li>subtraction
<li>multiplication
<li>division
<li>power
<li>square root
<li>logarithm
<li>exponential
<li>absolute value
<li>trigonometric functions
</ul>
</td>
<td align="LEFT" width="180">
<ul>
<li> assignment
<li>functional programming via user-defined functions (for transformations,
aggregations, selections, sorting)
<li>comparison
</ul>
</td>
</tr>
</table>
<p> </p>
</td>
<td>
<table border="0" cellpadding="0" cellspacing="0" width="358" height="55">
<tr>
<td valign="MIDDLE" colspan="2" bgcolor="#770000">
<p align="CENTER"><font color="#FFFFFF"><b>Columnwise Data Analysis</b></font>
</td>
</tr>
<tr valign="top">
<td width="180" align="LEFT">
<ul>
<li>covariance, correlation matrix
<li>maximum
<li>minimum
<li>mean
<li>variance, standard deviation
<li>median
<li>exact and approximate quantiles
</ul>
</td>
<td align="LEFT" width="180">
<ul>
<li>(cumulative) sum
<li>(cumulative) product
<li>harmonic, geometric mean
<li>skew, kurtosis
<li>moments
<li>frequencies
<li>sorting
</ul>
</td>
</tr>
</table>
</td>
</tr>
<tr valign="top" align="left">
<td>
<table border="0" cellpadding="0" cellspacing="0" width="358">
<tr>
<td colspan="2" bgcolor="#770000">
<p align="CENTER"><font color="#FFFFFF"><b>Array and Matrix Utilities</b></font>
</td>
</tr>
<tr valign="top">
<td align="LEFT" width="180">
<ul>
<li> dense and sparse creation
<li>string formatting
<li>up-down or left-right concatenation
<li>create, extract block matrix
</ul>
</td>
<td align="LEFT" width="180">
<ul>
<li>create, extract diagonals
<li>extract upper, lower triangular parts
<li>random matrix, array
</ul>
</td>
</tr>
</table>
</td>
<td>
<p> </p>
</td>
</tr>
</table>
<p>File-based I/O can be achieved through the standard Java-built-in serialization
mechanism. All classes implement the <A HREF="http://java.sun.com/j2se/1.4/docs/api/java/io/Serializable.html" title="class or interface in java.io"><CODE>Serializable</CODE></A> interface.
However, the toolkit is entirely decoupled from advanced I/O and visualisation
techniques. It provides data structures and algorithms only. </p>
<p> This toolkit borrows many fundamental concepts and terminology from the IBM
<a href="http://math.nist.gov/javanumerics/array/"> Array</a> package written
by Jose Moreira, Marc Snir and Sam Midkiff. They introduced well designed multi-dimensional
arrays to the Java world.
<p><a href="#Overview">Back</a> to Overview
<h2><a name="Introduction"></a>2. Introduction</h2>
<p>Multi-dimensional arrays are arguably <i>the</i> most frequently used abstraction
in scientific and technical codes. They support a broad variety of applications
in the domain of Physics, Linear Algebra, Computational Fluid Dynamics, Relational
Algebra, Statistics, Graphics Rendering and others. For example many physics
problems can be mapped to matrix problems: Linear and nonlinear systems of equations,
linear differential equations, quantum mechanical eigenvalue problems, Tensors,
etc. Physics<i> NTuples</i> are essentially 2-d arrays. In the area of Online
Analytic Processing <i>(OLAP</i>) multi-dimensional arrays are called <i>Data
Cubes</i>. In this toolkit they are called <i>Matrices</i>, simply because the
term <i>Array</i> is already heavily overloaded and <i>Data Cube</i> is somewhat
fuzzy to many people.</p>
<h2></h2>
<p>Matrices are basically rectangular grids with each cell in the grid containing
a single value. Cells are accessed via zero-based integer indexes. Matrices
can be characterized by</p>
<ul>
<li> <i>Rank</i>: The number of dimensions (axes). Most frequently used are one and
two dimensions.</li>
<li> <i>Shape:</i> Each dimension has a certain number of slots. All slots together
make up the shape. For example, a 2-dimensional 10 x 50 matrix has 10 slots
along its first dimension, and 50 slots along its second dimension, yielding
500 cells.</li>
<li><i>Value type</i>: The type of value to be stored in each cell. Can be integer,
floating point or an arbitrary object.</li>
</ul>
<p>Here is an example of a <tt>8x8x8</tt> matrix and other matrices.
<p><img src="doc-files/slice.gif" width="644" height="401">
<p>As broad as the spectrum of applications using multi-dimensional matrices is
the number of operations meaningful on them. Only a smallish subset of those
operations are provided in this library. We hope that this will change over
time. However, core multi-purpose functionality such as <i>subrange</i>, <i>slice</i>,
<i>dice</i>, <i>flip</i>, <i>stride</i>, <i>selection</i> and<i> sort</i> views
as well as <i>copying</i> and <i>numerical transformations</i> (*,/,+,-,...)
are efficiently provided. The primary motivation for views is ease-of-use. Views
allow to express otherwise complex aggregate operations in simple terms. They
seek to present a matrix in different ways to a user and/or functions operating
on a matrix. Subranging, slicing, dicing, flipping, striding, selecting and
sorting are virtual transformations: they merely alter the way we see the <i>same
data</i>. They produce <i>views</i>, which are objects that know only about
certain regions of the entire matrix. Views all point to the same data, so changes
in the view are reflected in the original matrix, all other possibly nested
views of the original matrix, and vice-versa. Pete and Jane can look at a flower
in many different ways although it remains one single flower. If Pete steps
on top of the flower, Jane will certainly note. Which is not the case when copying
is applied, since it is a materializing transformation. It means, the connection
between the original and the copy is lost. If Pete is stepping on top of a rose
and Jane is admiring another one, it won't have any impact on her. Views can
arbitrarily be nested. They eliminate the need for explicit region operations.
Any operation on a matrix can be used as a region restricted operation by operating
on a matrix view instead of the whole matrix. Here are some examples:
<p>
<table border="0">
<tr>
<td>Lets construct a dense 3 x 4 matrix</td>
<td nowrap> </td>
</tr>
<tr>
<td>
<p><tt>DoubleMatrix2D matrix;<br>
matrix </tt><tt>= new DenseDoubleMatrix2D(3,4);<br>
</tt><tt>//matrix </tt><tt>= new SparseDoubleMatrix2D(3,4);</tt><tt> </tt><tt>//
has same interface<br>
</tt><tt>//matrix </tt><tt>= new RCDoubleMatrix2D(3,4);</tt><tt> </tt><tt>
// has same interface<br>
</tt><tt></tt><tt>System.out.println(matrix); </tt></p>
</td>
<td nowrap><tt>3 x 4 matrix: <br>
0 0 0 0 <br>
0 0 0 0 <br>
0 0 0 0 </tt></td>
</tr>
<tr>
<td> We can get rid of the typed distinction between sparse and dense matrices.
Use a factory, as follows</td>
<td nowrap> </td>
</tr>
<tr>
<td>
<p><tt>DoubleFactory2D factory;<br>
if (wantDense) factory = DoubleFactory2D.dense;<br>
else if (wantSparseHashed) factory = DoubleFactory2D.sparse;<br>
else factory = DoubleFactory2D.rowCompressed;<br>
<br>
// From now on all instantiations will go via the factory -<br>
// No explicit constructor calls anymore</tt><tt><br>
DoubleMatrix2D matrix = factory.make(3,4);<br>
System.out.println(matrix);</tt> </p>
</td>
<td nowrap><tt>3 x 4 matrix: <br>
0 0 0 0 <br>
0 0 0 0 <br>
0 0 0 0 </tt></td>
</tr>
<tr>
<td>The shape can be retrieved with <br>
<tt>int rows = matrix.rows(); <br>
int columns = matrix.columns();</tt> </td>
<td nowrap> </td>
</tr>
<tr>
<td>We set and get a cell value:</td>
<td nowrap> </td>
</tr>
<tr>
<td>
<p><tt>int row = 2, column = 0;<br>
</tt><tt>matrix.set(row,column, 7);<br>
System.out.println(matrix.get(row,column));<br>
// --> 7</tt></p>
</td>
<td nowrap><tt>3 x 4 matrix <br>
0 0 0 0 <br>
0 0 0 0 <br>
7 0 0 0 </tt></td>
</tr>
<tr>
<td>Looping is done as expected:</td>
<td nowrap> </td>
</tr>
<tr>
<td> <tt>
<pre>
double sum = 0;
for (int row=rows; --row >= 0; ) {
for (int column=columns; --column >= 0; ) {
sum += matrix.get(row,column); // bounds check
//sum += matrix.getQuick(row,column); // no bounds check
}
}
System.out.println(sum);
</pre>
</tt> </td>
<td nowrap> </td>
</tr>
<tr>
<td>The following idiom uses a subranging view to set all cells of the box
<br>
starting at <tt>[1,0]</tt> with width and height of 2 to the value <tt>1</tt>:
</td>
<td nowrap> </td>
</tr>
<tr>
<td><tt>matrix.viewPart(1,0,2,2).assign(1);<br>
System.out.println(matrix); <br>
</tt></td>
<td nowrap><tt>3 x 4 matrix <br>
0 0 0 0 <br>
1 1 0 0 <br>
1 1 0 0 </tt></td>
</tr>
<tr>
<td>
<p>A dicing view can be used to print the matrix in a different format (4
x 3). This is equivalent to a zero-copy transposition:</p>
</td>
<td nowrap> </td>
</tr>
<tr>
<td><tt>System.out.println(matrix.viewDice())</tt></td>
<td nowrap><tt>4 x 3 matrix <br>
0 1 1 <br>
0 1 1 <br>
0 0 0 <br>
0 0 0 </tt></td>
</tr>
<tr>
<td>
<p>Next, a flipping view mirrors the matrix. </p>
</td>
<td nowrap> </td>
</tr>
<tr>
<td><tt>System.out.println(matrix.viewColumnFlip());</tt></td>
<td nowrap><tt>3 x 4 matrix <br>
0 0 0 0 <br>
0 0 1 1 <br>
0 0 1 1 </tt></td>
</tr>
<tr>
<td>
<p>A slicing view shows the second row, a 1-dimensional matrix:</p>
</td>
<td nowrap> </td>
</tr>
<tr>
<td><tt>System.out.println(matrix.viewRow(1)); </tt></td>
<td nowrap><tt>4 matrix <br>
1 1 0 0 </tt></td>
</tr>
<tr>
<td>
<p>Note that the result of a slicing operation is not a 2-d matrix with
one row, but a true 1-d <b>type</b> with all capabilities of the type,
namely <A HREF="../../../cern/colt/matrix/DoubleMatrix1D.html" title="class in cern.colt.matrix"><CODE>DoubleMatrix1D</CODE></A>, generated in constant
time.</p>
<p>The slicing view is now fed into some external algorithm expecting a
1-dimensional matrix:<br>
<tt>someAlgorithm(matrix.viewRow(1));</tt> </p>
</td>
<td nowrap> </td>
</tr>
<tr>
<td>If the algorithm is designed such that it modifies data of the row, <br>
but we want to avoid any side-effects, we can feed it a copy of the row:
<tt><br>
someAlgorithm(matrix.viewRow(1).copy());</tt> </td>
<td nowrap> </td>
</tr>
<tr>
<td>A stride view shows every row and every second column. It is useful for
scatter/gather operations.</td>
<td nowrap> </td>
</tr>
<tr>
<td><tt>System.out.println(matrix.viewStrides(1,2)); </tt></td>
<td nowrap><tt>3 x 2 matrix <br>
0 0<br>
1 0<br>
1 0</tt></td>
</tr>
<tr>
<td>A selection view shows explicitly specified rows and columns. Imagine
a 2-d matrix. Columns are attributes <i>energy</i>, <i>tracks</i>, <i>momentum</i>,
the rows hold <tt>N</tt> such measurements, as recorded by some device.
We want to operate on some subset of the columns and exclude some measurements
not of interest for our analysis.</td>
<td nowrap> </td>
</tr>
<tr>
<td><tt>int[] rowIndexes = {0,2};<br>
int[] columnIndexes = {2,3,1,1};<br>
System.out.println(matrix.viewSelection(rowIndexes,columnIndexes)); </tt></td>
<td nowrap><tt>2 x 4 matrix <br>
0 0 0 0 <br>
0 0 1 1 </tt></td>
</tr>
<tr>
<td>A sort view with row flipping shows rows sorted descending by column 1:</td>
<td nowrap> </td>
</tr>
<tr>
<td><tt>System.out.println(matrix.viewSorted(1).viewRowFlip()); </tt></td>
<td nowrap><tt>3 x 4 matrix <br>
1 1 0 0 <br>
1 1 0 0 <br>
0 0 0 0 </tt></td>
</tr>
<tr>
<td>Last, lets combine some of the methods to stimulate imagination:</td>
<td nowrap> </td>
</tr>
<tr>
<td><tt>matrix.viewPart(0,1,2,2).viewRowFlip().viewColumn(0).assign(2);<br>
System.out.println(matrix); <br>
</tt></td>
<td nowrap><tt>3 x 4 matrix <br>
0 2 0 0 <br>
1 2 0 0 <br>
1 1 0 0 </tt></td>
</tr>
</table>
<p><a href="#Overview">Back</a> to Overview
<h2></h2>
<h2><a name="SemanticsOfViews"></a>3. Semantics of Views </h2>
<p>Find out more about the <a href="doc-files/semanticsOfViews.html">precise semantics</a>
of views and basic operations.</p>
<p><a href="#Overview">Back</a> to Overview
<h2></h2>
<h2><a name="Orthogonality"></a>4. Orthogonality and Polymorphism</h2>
<p>If this section sounds trivial and obvious, you can safely skip it.<br>
The desire for orthogonality is a desire for "plug and play". Orthogonality
demands that everything can be plugged together with everything, or, in other
words, that different things can be handled in the same way. Of course only
things that syntactically and semantically share a common set of interfaces
can be handled in the same way, or work together in the same way. Polymorphism
is an implementation mechanism supporting orthogonality. It is about being able
to exchange things without noticing any difference. Again, as long as the things
adhere to some common interface.</p>
<p>The common interface for matrices is defined in abstract base classes (e.g.
<A HREF="../../../cern/colt/matrix/DoubleMatrix2D.html" title="class in cern.colt.matrix"><CODE>DoubleMatrix2D</CODE></A>). Note that looking at the documentation
of some concrete instantiable class (e.g. <A HREF="../../../cern/colt/matrix/impl/DenseDoubleMatrix2D.html" title="class in cern.colt.matrix.impl"><CODE>DenseDoubleMatrix2D</CODE></A>,
<A HREF="../../../cern/colt/matrix/impl/SparseDoubleMatrix2D.html" title="class in cern.colt.matrix.impl"><CODE>SparseDoubleMatrix2D</CODE></A>, <A HREF="../../../cern/colt/matrix/impl/RCDoubleMatrix2D.html" title="class in cern.colt.matrix.impl"><CODE>RCDoubleMatrix2D</CODE></A><img src="../doc-files/new.gif" width="32" height="22" align="top">)
will not reveal more information than can be obtained by looking at the abstract
base classes. The convention is that concrete classes <i>do no subsetting or
supersetting</i>. They override methods to implement behaviour dictated by abstract
classes, or to improve performance, but they do not introduce any new functionality.
</p>
<p>Although each matrix of a given rank and value type comes with dense and sparse
implementations and a multitude of views, there is from the user interface perspective
no difference between them. All implementations have exactly the same interface
with exactly the same semantics attached. In particular, everything that "can
be done" with a dense matrix can also be done with a sparse specie, and
vice-versa. The same principle applies to views. </p>
<p><i>This implies that any internal or external function expecting as argument
an abstract matrix (and any operation defined on an abstract matrix) can be
used with any kind of matrix of the given rank and value type, whether it be
dense, sparse, sub-ranged, selected, strided, sorted, flipped, transposed, or
any arbitrary combination thereof. For example, dense matrices can be multiplied/assigned/transformed/compared
with sparse matrices, dense stride views with dense flip views, dense sorted
flipped sub-range views with sparse selection views, in all conceivable permutations.
The result is a powerful and flexible tool.</i></p>
<h2></h2>
<p><a href="#Overview">Back</a> to Overview
<h2><a name="FunctionObjects"></a>5. Function Objects</h2>
<p>Function objects conveniently allow to express arbitrary functions in a generic
manner. Essentially, a function object is an object that can perform a function
on some arguments. It has a minimal interface: a method <tt>apply</tt> that
takes the arguments, computes something and returns some result value. Function
objects are comparable to function pointers in C used for call-backs. Here are
some examples demonstrating how function objects can be used to </p>
<ol>
<li> <a href="doc-files/function1.html">transform</a> a matrix A into another
matrix B which is a function of the original matrix A (and optionally yet
another matrix C)</li>
<li> <a href="doc-files/function2.html">aggregate</a> cell values or a function
of them</li>
<li> <a href="doc-files/function3.html">generate selection views</a> for cells
satisfying a given condition</li>
<li> <a href="doc-files/function4.html">sort</a> matrix rows or columns into
a user specified order</li>
<li>You will most likely use them to do many more powerful things </li>
</ol>
<p>Usually, assign operations are heavily optimized for frequently used function
objects like plus, minus, mult, div, plusMult, minusMult, etc. Concerning the
performance of unoptimized function objects, see <A HREF="../../../cern/jet/math/Functions.html" title="class in cern.jet.math"><CODE>Functions</CODE></A>.</p>
<p></p>
<p><a href="#Overview">Back</a> to Overview
<h2></h2>
<h2><a name="Algorithms"></a>6. Algorithms </h2>
<p>As already stated, the spectrum of applications using multi-dimensional matrices
is large and so is the number of operations meaningful on them. One single flat
interface cannot satisfy all needs and would soon get unmanageably fat. To avoid
interface bloat, it can be a good idea to separate algorithms from data structures.
Special purpose algorithms, wrappers, mediators etc. should therefore go into
external packages and classes. By using the common interfaces defined in abstract
classes, algorithms can be implemented such that they generically work both
on sparse and dense matrices and all their views. This will ensure scalability
over time, as more and more features are added. </p>
<p>Some algorithms for formatting, sorting, statistics and partitioning, are,
for example, provided in the package <A HREF="../../../cern/colt/matrix/doublealgo/package-summary.html"><CODE>cern.colt.matrix.doublealgo</CODE></A>. </p>
<p><a href="#Overview">Back</a> to Overview</p>
<h2></h2>
<h2><a name="LinearAlgebra"></a>7. Linear Algebra</h2>
<p>See the documentation of the linear algebra package <A HREF="../../../cern/colt/matrix/linalg/package-summary.html"><CODE>cern.colt.matrix.linalg</CODE></A>.</p>
<p><a href="#Overview">Back</a> to Overview </p>
<h2><a name="PackageOrganization"></a>8. Package Organization, Naming Conventions,
Policies</h2>
<h4>Class Naming / Inheritance</h4>
<p>Have a look at the javadoc <a href="package-tree.html">tree view</a> to get
the broad picture. The classes for matrices of a given rank are derived from
a common abstract base class named <tt><ValueType>Matrix<Rank>D</tt>,
which is in many ways equivalent to an "interface". <b>99% of the
time you will operate on these abstract classes only</b>. For example, all 2-dimensional
matrices operating on <tt>double</tt> values are derived from <A HREF="../../../cern/colt/matrix/DoubleMatrix2D.html" title="class in cern.colt.matrix"><CODE>DoubleMatrix2D</CODE></A>.
This is the interface to operate on.</p>
<p>Class naming for concrete instantiable classes follows the schema <tt><Property><ValueType>Matrix<Rank>D</tt>.
For example, we have a <A HREF="../../../cern/colt/matrix/impl/DenseDoubleMatrix2D.html" title="class in cern.colt.matrix.impl"><CODE>DenseDoubleMatrix2D</CODE></A>, a
<A HREF="../../../cern/colt/matrix/impl/SparseDoubleMatrix2D.html" title="class in cern.colt.matrix.impl"><CODE>SparseDoubleMatrix2D</CODE></A>, a <CODE>cern.colt.matrix.impl.DenseIntMatrix3D</CODE>,
and so on. All concrete instantiable classes are separated into an extra package,
<A HREF="../../../cern/colt/matrix/impl/package-summary.html"><CODE>cern.colt.matrix.impl</CODE></A>, to clearly distinguish between interfaces and
implementations.</p>
<p><A HREF="../../../cern/colt/matrix/DoubleMatrix2D.html" title="class in cern.colt.matrix"><CODE>DoubleMatrix2D</CODE></A> in turn is derived from an abstract
base class tying together all 2-dimensional matrices regardless of value type,
<A HREF="../../../cern/colt/matrix/impl/AbstractMatrix2D.html" title="class in cern.colt.matrix.impl"><CODE>AbstractMatrix2D</CODE></A>, which finally is rooted in grandmother
<A HREF="../../../cern/colt/matrix/impl/AbstractMatrix.html" title="class in cern.colt.matrix.impl"><CODE>AbstractMatrix</CODE></A>.</p>
<p>The abstract base classes provide skeleton implementations for all but few
methods. Experimental data layouts can easily be implemented and inherit a rich
set of functionality. For example, to implement a fully functional 2-d or 3-d
matrix, only 6 abstract methods need to be overridden: <tt>getQuick, setQuick,
like, like1D, viewSelectionLike</tt>.</p>
<h4>Method Naming</h4>
<p>In order to improve browsing and better keep an overview, the namespace of
logically related operations is localized: Methods getting and setting individual
cell values are named <tt>get</tt> and <tt>set</tt>. Methods constructing views
are named <tt>viewXXX</tt> (e.g. <tt>viewPart</tt>). Copying/assignment methods
are named <tt>copy</tt> and <tt>assignXXX</tt>. Mathematical operations are
named <tt>zXXX</tt> (e.g. <tt>zMult</tt>). Generic aggregation operations are
named <tt>aggregateXXX</tt>.</p>
<h4>Convenience Methods</h4>
<p>To keep interfaces lean and manageable, we tried to avoid littering them with
convenience methods obfuscating more fundamental concepts. Convenience operations
expressible in one to three lines of code are omitted. For example, all operations
modifying cell values modify the receiver (<tt>this</tt>) itself. There are
no methods to fill results into empty result matrices. Use idioms like <tt>result
= matrix.copy().mult(5)</tt> to achieve the same functionality. Some convenience
methods are provided in the factory classes as well as in external packages
like <A HREF="../../../cern/colt/matrix/doublealgo/package-summary.html"><CODE>cern.colt.matrix.doublealgo</CODE></A>.</p>
<p><a href="#Overview">Back</a> to Overview
<h2><a name="Performance"></a>9. Performance</h2>
<p>The following statements apply to all currently implemented features (i.e.
dense and sparse matrices including all view kinds), except where indicated.</p>
<p> Constant factors are kept as small as possible.Views are constructed in guaranteed
<tt>O(1)</tt>, i.e. constant time, except for selection views and sort views:
Selection views take time linear in the number of indexes, sort views take <tt>O(N*logN)</tt>
on average. Getting/setting a cell value takes <i>guaranteed </i>constant time
for <font color="#CC0000">dense</font> matrices (and all their views), while
it takes <i>expected</i> constant time for sparse hash matrices (and all their
views). More specifically, on <font color="#CC0000">sparse hash</font> matrices,
these operations can, although highly improbable, degenerate to time linear
in the number of non-zero cells. This is because of the nature of hashing: Average
case behaviour is extremely good, worst case behaviour is bad. </p>
<p><font color="#CE0000">Sparse row compressed</font> matrices have the following
characteristics: Getting a cell value takes time<tt> O(log nzr)</tt> where <tt>nzr</tt>
is the number of non-zeros of the touched row. This is usually quick, because
typically there are only few nonzeros per row. So, in practice, get has <i>expected</i>
constant time. Setting a cell value takes <i> </i>worst-case time <tt>O(nz)</tt>
where <tt>nzr</tt> is the total number of non-zeros in the matrix. This can
be extremely slow, but if you traverse coordinates properly, each write is done
much quicker. For how to do this and other tips, see the <a href="doc-files/performanceNotes.html">performance
notes</a>. <img src="../doc-files/new.gif" width="32" height="22" align="middle">
</p>
<p></p>
<p>Some preliminary benchmarks can be found in the <a href="doc-files/PerformanceLogFrame.html">performance
log</a>.</p>
<p>All matrices use strided 32-bit integer arithmetic for linear cell addressing,
similar to Fortran. The chosen cell addressing implementation is the key feature
enabling the easy implementation and good performance of advanced views.</p>
<p>All methods are bounds checking, except for trusting variants of <tt>get</tt>
and <tt>set</tt> called <tt>getQuick</tt> and <tt>setQuick</tt> which should
and are used in expensive (often cubic) loops where it is dramatically cheaper
to check bounds before entering the loop, not in the loop. Fundamentally time
critical methods of dense matrices override default implementations such that
iteration eliminates function calls, minimizes cell addressing overhead and
gets pipelined. Some operations use processor cache oriented optimization techniques
such as memory layout aware iteration, blocking of slow changing operands followed
by logical optimizations such as sparsity detection.</p>
<p>In order to eliminate expensive call chains, views directly point to the data
without indirection, no matter how deeply nested they are. In particular they
are not implemented with delegation. In fact they are not nested at all, even
if they logically appear like that. There is largely no distinction between
views and non-views. Note that this is not true for row-compressed matrices;
their views are wrappers and do use delegation (aka call chains). <img src="../doc-files/new.gif" width="32" height="22" align="top"></p>
<p>Although view objects occupy only a couple of bytes, generating temporary views
at very high frequency can lead to heavy garbage collection. </p>
<p>To keep the overhead minimal, copying operations are highly optimized. They
sometimes boil down to <tt>System.arraycopy</tt> (which is nothing else than
a byte-aligned C <tt>memmove</tt>). Also note that memory access patterns (cache
locality) of self-modifying matrix operations are better than for result matrix
modifying operations.</p>
<p><a href="#Overview">Back</a> to Overview
<h2></h2>
<h2><a name="Notes"></a>10. Notes </h2>
<h2></h2>
<p>Matrices are not dynamically resizable; it is impossible to physically insert
or remove cells. Some logical cell removal and insertion can be achieved by
means of views. To achieve physical cell removal or insertion, a new matrix
with the needed shape must be constructed and cells copied. Note, however, that
there are convenience methods to do many kind of resizing operations.</p>
<p>Another current limitation is the inability to address more than 2<sup>31</sup>
cells. This can be a problem for very large sparse matrices. 64-bit addressing
is possible, but unlikely to be implemented unless there is serious demand.</p>
<p><a href="#Overview">Back</a> to Overview</p>
<P>
<P>
<HR>
<!-- ======= START OF BOTTOM NAVBAR ====== -->
<A NAME="navbar_bottom"><!-- --></A>
<A HREF="#skip-navbar_bottom" title="Skip navigation links"></A>
<TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0" SUMMARY="">
<TR>
<TD COLSPAN=3 BGCOLOR="#EEEEFF" CLASS="NavBarCell1">
<A NAME="navbar_bottom_firstrow"><!-- --></A>
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3" SUMMARY="">
<TR ALIGN="center" VALIGN="top">
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A> </TD>
<TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> <FONT CLASS="NavBarFont1Rev"><B>Package</B></FONT> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <FONT CLASS="NavBarFont1">Class</FONT> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="package-use.html"><FONT CLASS="NavBarFont1"><B>Use</B></FONT></A> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="../../../index-files/index-1.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A> </TD>
<TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1"> <A HREF="../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A> </TD>
</TR>
</TABLE>
</TD>
<TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM>
<b>Colt 1.2.0</b></EM>
</TD>
</TR>
<TR>
<TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">
<A HREF="../../../cern/colt/map/package-summary.html"><B>PREV PACKAGE</B></A>
<A HREF="../../../cern/colt/matrix/bench/package-summary.html"><B>NEXT PACKAGE</B></A></FONT></TD>
<TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">
<A HREF="../../../index.html" target="_top"><B>FRAMES</B></A>
<A HREF="package-summary.html" target="_top"><B>NO FRAMES</B></A>
<SCRIPT type="text/javascript">
<!--
if(window==top) {
document.writeln('<A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A>');
}
//-->
</SCRIPT>
<NOSCRIPT>
<A HREF="../../../allclasses-noframe.html"><B>All Classes</B></A>
</NOSCRIPT>
</FONT></TD>
</TR>
</TABLE>
<A NAME="skip-navbar_bottom"></A>
<!-- ======== END OF BOTTOM NAVBAR ======= -->
<HR>
<font size=-1 >Jump to the <a target=_top href=http://dsd.lbl.gov/~hoschek/colt >Colt Homepage</a>
</BODY>
</HTML>
|