File: SingularValueDecomposition.java

package info (click to toggle)
libcolt-free-java 1.2.0%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 20,832 kB
  • sloc: java: 30,337; xml: 893; makefile: 26; sh: 3
file content (569 lines) | stat: -rw-r--r-- 14,607 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/*
Copyright (c) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
*/
package cern.colt.matrix.linalg;

import cern.colt.matrix.DoubleFactory2D;
import cern.colt.matrix.DoubleMatrix2D;
/** 
For an <tt>m x n</tt> matrix <tt>A</tt> with <tt>m >= n</tt>, the singular value decomposition is
an <tt>m x n</tt> orthogonal matrix <tt>U</tt>, an <tt>n x n</tt> diagonal matrix <tt>S</tt>, and
an <tt>n x n</tt> orthogonal matrix <tt>V</tt> so that <tt>A = U*S*V'</tt>.
<P>
The singular values, <tt>sigma[k] = S[k][k]</tt>, are ordered so that
<tt>sigma[0] >= sigma[1] >= ... >= sigma[n-1]</tt>.
<P>
The singular value decomposition always exists, so the constructor will
never fail.  The matrix condition number and the effective numerical
rank can be computed from this decomposition.
*/
public class SingularValueDecomposition implements java.io.Serializable {
	static final long serialVersionUID = 1020;
	/** Arrays for internal storage of U and V.
	@serial internal storage of U.
	@serial internal storage of V.
	*/
	private double[][] U, V;
	
	/** Array for internal storage of singular values.
	@serial internal storage of singular values.
	*/
	private double[] s;
	
	/** Row and column dimensions.
	@serial row dimension.
	@serial column dimension.
	*/
	private int m, n;
/** 
Constructs and returns a new singular value decomposition object; 
The decomposed matrices can be retrieved via instance methods of the returned decomposition object.
@param A    A rectangular matrix.
@return     A decomposition object to access <tt>U</tt>, <tt>S</tt> and <tt>V</tt>.
@throws IllegalArgumentException if <tt>A.rows() < A.columns()</tt>.
*/
public SingularValueDecomposition(DoubleMatrix2D Arg) {
	Property.DEFAULT.checkRectangular(Arg);

	  // Derived from LINPACK code.
	  // Initialize.
	  double[][] A = Arg.toArray();
	  m = Arg.rows();
	  n = Arg.columns();
	  int nu = Math.min(m,n);
	  s = new double [Math.min(m+1,n)];
	  U = new double [m][nu];
	  V = new double [n][n];
	  double[] e = new double [n];
	  double[] work = new double [m];
	  boolean wantu = true;
	  boolean wantv = true;

	  // Reduce A to bidiagonal form, storing the diagonal elements
	  // in s and the super-diagonal elements in e.

	  int nct = Math.min(m-1,n);
	  int nrt = Math.max(0,Math.min(n-2,m));
	  for (int k = 0; k < Math.max(nct,nrt); k++) {
		 if (k < nct) {

			// Compute the transformation for the k-th column and
			// place the k-th diagonal in s[k].
			// Compute 2-norm of k-th column without under/overflow.
			s[k] = 0;
			for (int i = k; i < m; i++) {
			   s[k] = Algebra.hypot(s[k],A[i][k]);
			}
			if (s[k] != 0.0) {
			   if (A[k][k] < 0.0) {
				  s[k] = -s[k];
			   }
			   for (int i = k; i < m; i++) {
				  A[i][k] /= s[k];
			   }
			   A[k][k] += 1.0;
			}
			s[k] = -s[k];
		 }
		 for (int j = k+1; j < n; j++) {
			if ((k < nct) & (s[k] != 0.0))  {

			// Apply the transformation.

			   double t = 0;
			   for (int i = k; i < m; i++) {
				  t += A[i][k]*A[i][j];
			   }
			   t = -t/A[k][k];
			   for (int i = k; i < m; i++) {
				  A[i][j] += t*A[i][k];
			   }
			}

			// Place the k-th row of A into e for the
			// subsequent calculation of the row transformation.

			e[j] = A[k][j];
		 }
		 if (wantu & (k < nct)) {

			// Place the transformation in U for subsequent back
			// multiplication.

			for (int i = k; i < m; i++) {
			   U[i][k] = A[i][k];
			}
		 }
		 if (k < nrt) {

			// Compute the k-th row transformation and place the
			// k-th super-diagonal in e[k].
			// Compute 2-norm without under/overflow.
			e[k] = 0;
			for (int i = k+1; i < n; i++) {
			   e[k] = Algebra.hypot(e[k],e[i]);
			}
			if (e[k] != 0.0) {
			   if (e[k+1] < 0.0) {
				  e[k] = -e[k];
			   }
			   for (int i = k+1; i < n; i++) {
				  e[i] /= e[k];
			   }
			   e[k+1] += 1.0;
			}
			e[k] = -e[k];
			if ((k+1 < m) & (e[k] != 0.0)) {

			// Apply the transformation.

			   for (int i = k+1; i < m; i++) {
				  work[i] = 0.0;
			   }
			   for (int j = k+1; j < n; j++) {
				  for (int i = k+1; i < m; i++) {
					 work[i] += e[j]*A[i][j];
				  }
			   }
			   for (int j = k+1; j < n; j++) {
				  double t = -e[j]/e[k+1];
				  for (int i = k+1; i < m; i++) {
					 A[i][j] += t*work[i];
				  }
			   }
			}
			if (wantv) {

			// Place the transformation in V for subsequent
			// back multiplication.

			   for (int i = k+1; i < n; i++) {
				  V[i][k] = e[i];
			   }
			}
		 }
	  }

	  // Set up the final bidiagonal matrix or order p.

	  int p = Math.min(n,m+1);
	  if (nct < n) {
		 s[nct] = A[nct][nct];
	  }
	  if (m < p) {
		 s[p-1] = 0.0;
	  }
	  if (nrt+1 < p) {
		 e[nrt] = A[nrt][p-1];
	  }
	  e[p-1] = 0.0;

	  // If required, generate U.

	  if (wantu) {
		 for (int j = nct; j < nu; j++) {
			for (int i = 0; i < m; i++) {
			   U[i][j] = 0.0;
			}
			U[j][j] = 1.0;
		 }
		 for (int k = nct-1; k >= 0; k--) {
			if (s[k] != 0.0) {
			   for (int j = k+1; j < nu; j++) {
				  double t = 0;
				  for (int i = k; i < m; i++) {
					 t += U[i][k]*U[i][j];
				  }
				  t = -t/U[k][k];
				  for (int i = k; i < m; i++) {
					 U[i][j] += t*U[i][k];
				  }
			   }
			   for (int i = k; i < m; i++ ) {
				  U[i][k] = -U[i][k];
			   }
			   U[k][k] = 1.0 + U[k][k];
			   for (int i = 0; i < k-1; i++) {
				  U[i][k] = 0.0;
			   }
			} else {
			   for (int i = 0; i < m; i++) {
				  U[i][k] = 0.0;
			   }
			   U[k][k] = 1.0;
			}
		 }
	  }

	  // If required, generate V.

	  if (wantv) {
		 for (int k = n-1; k >= 0; k--) {
			if ((k < nrt) & (e[k] != 0.0)) {
			   for (int j = k+1; j < nu; j++) {
				  double t = 0;
				  for (int i = k+1; i < n; i++) {
					 t += V[i][k]*V[i][j];
				  }
				  t = -t/V[k+1][k];
				  for (int i = k+1; i < n; i++) {
					 V[i][j] += t*V[i][k];
				  }
			   }
			}
			for (int i = 0; i < n; i++) {
			   V[i][k] = 0.0;
			}
			V[k][k] = 1.0;
		 }
	  }

	  // Main iteration loop for the singular values.

	  int pp = p-1;
	  int iter = 0;
	  double eps = Math.pow(2.0,-52.0);
	  while (p > 0) {
		 int k,kase;

		 // Here is where a test for too many iterations would go.

		 // This section of the program inspects for
		 // negligible elements in the s and e arrays.  On
		 // completion the variables kase and k are set as follows.

		 // kase = 1     if s(p) and e[k-1] are negligible and k<p
		 // kase = 2     if s(k) is negligible and k<p
		 // kase = 3     if e[k-1] is negligible, k<p, and
		 //              s(k), ..., s(p) are not negligible (qr step).
		 // kase = 4     if e(p-1) is negligible (convergence).

		 for (k = p-2; k >= -1; k--) {
			if (k == -1) {
			   break;
			}
			if (Math.abs(e[k]) <= eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {
			   e[k] = 0.0;
			   break;
			}
		 }
		 if (k == p-2) {
			kase = 4;
		 } else {
			int ks;
			for (ks = p-1; ks >= k; ks--) {
			   if (ks == k) {
				  break;
			   }
			   double t = (ks != p ? Math.abs(e[ks]) : 0.) + 
						  (ks != k+1 ? Math.abs(e[ks-1]) : 0.);
			   if (Math.abs(s[ks]) <= eps*t)  {
				  s[ks] = 0.0;
				  break;
			   }
			}
			if (ks == k) {
			   kase = 3;
			} else if (ks == p-1) {
			   kase = 1;
			} else {
			   kase = 2;
			   k = ks;
			}
		 }
		 k++;

		 // Perform the task indicated by kase.

		 switch (kase) {

			// Deflate negligible s(p).

			case 1: {
			   double f = e[p-2];
			   e[p-2] = 0.0;
			   for (int j = p-2; j >= k; j--) {
				  double t = Algebra.hypot(s[j],f);
				  double cs = s[j]/t;
				  double sn = f/t;
				  s[j] = t;
				  if (j != k) {
					 f = -sn*e[j-1];
					 e[j-1] = cs*e[j-1];
				  }
				  if (wantv) {
					 for (int i = 0; i < n; i++) {
						t = cs*V[i][j] + sn*V[i][p-1];
						V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
						V[i][j] = t;
					 }
				  }
			   }
			}
			break;

			// Split at negligible s(k).

			case 2: {
			   double f = e[k-1];
			   e[k-1] = 0.0;
			   for (int j = k; j < p; j++) {
				  double t = Algebra.hypot(s[j],f);
				  double cs = s[j]/t;
				  double sn = f/t;
				  s[j] = t;
				  f = -sn*e[j];
				  e[j] = cs*e[j];
				  if (wantu) {
					 for (int i = 0; i < m; i++) {
						t = cs*U[i][j] + sn*U[i][k-1];
						U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
						U[i][j] = t;
					 }
				  }
			   }
			}
			break;

			// Perform one qr step.

			case 3: {

			   // Calculate the shift.
   
			   double scale = Math.max(Math.max(Math.max(Math.max(
					   Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), 
					   Math.abs(s[k])),Math.abs(e[k]));
			   double sp = s[p-1]/scale;
			   double spm1 = s[p-2]/scale;
			   double epm1 = e[p-2]/scale;
			   double sk = s[k]/scale;
			   double ek = e[k]/scale;
			   double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
			   double c = (sp*epm1)*(sp*epm1);
			   double shift = 0.0;
			   if ((b != 0.0) | (c != 0.0)) {
				  shift = Math.sqrt(b*b + c);
				  if (b < 0.0) {
					 shift = -shift;
				  }
				  shift = c/(b + shift);
			   }
			   double f = (sk + sp)*(sk - sp) + shift;
			   double g = sk*ek;
   
			   // Chase zeros.
   
			   for (int j = k; j < p-1; j++) {
				  double t = Algebra.hypot(f,g);
				  double cs = f/t;
				  double sn = g/t;
				  if (j != k) {
					 e[j-1] = t;
				  }
				  f = cs*s[j] + sn*e[j];
				  e[j] = cs*e[j] - sn*s[j];
				  g = sn*s[j+1];
				  s[j+1] = cs*s[j+1];
				  if (wantv) {
					 for (int i = 0; i < n; i++) {
						t = cs*V[i][j] + sn*V[i][j+1];
						V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
						V[i][j] = t;
					 }
				  }
				  t = Algebra.hypot(f,g);
				  cs = f/t;
				  sn = g/t;
				  s[j] = t;
				  f = cs*e[j] + sn*s[j+1];
				  s[j+1] = -sn*e[j] + cs*s[j+1];
				  g = sn*e[j+1];
				  e[j+1] = cs*e[j+1];
				  if (wantu && (j < m-1)) {
					 for (int i = 0; i < m; i++) {
						t = cs*U[i][j] + sn*U[i][j+1];
						U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
						U[i][j] = t;
					 }
				  }
			   }
			   e[p-2] = f;
			   iter = iter + 1;
			}
			break;

			// Convergence.

			case 4: {

			   // Make the singular values positive.
   
			   if (s[k] <= 0.0) {
				  s[k] = (s[k] < 0.0 ? -s[k] : 0.0);
				  if (wantv) {
					 for (int i = 0; i <= pp; i++) {
						V[i][k] = -V[i][k];
					 }
				  }
			   }
   
			   // Order the singular values.
   
			   while (k < pp) {
				  if (s[k] >= s[k+1]) {
					 break;
				  }
				  double t = s[k];
				  s[k] = s[k+1];
				  s[k+1] = t;
				  if (wantv && (k < n-1)) {
					 for (int i = 0; i < n; i++) {
						t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
					 }
				  }
				  if (wantu && (k < m-1)) {
					 for (int i = 0; i < m; i++) {
						t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
					 }
				  }
				  k++;
			   }
			   iter = 0;
			   p--;
			}
			break;
		 }
	  }
   }   
/** 
Returns the two norm condition number, which is <tt>max(S) / min(S)</tt>.
*/
public double cond() {
	return s[0]/s[Math.min(m,n)-1];
}
/** 
Returns the diagonal matrix of singular values.
@return     S
*/
public DoubleMatrix2D getS() {
	double[][] S = new double[n][n];
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			S[i][j] = 0.0;
		}
		S[i][i] = this.s[i];
	}
	return DoubleFactory2D.dense.make(S);
}
/** 
Returns the diagonal of <tt>S</tt>, which is a one-dimensional array of singular values
@return     diagonal of <tt>S</tt>.
*/
public double[] getSingularValues() {
	return s;
}
/** 
Returns the left singular vectors <tt>U</tt>.
@return     <tt>U</tt>
*/
public DoubleMatrix2D getU() {
	//return new DoubleMatrix2D(U,m,Math.min(m+1,n));
	return DoubleFactory2D.dense.make(U).viewPart(0,0,m,Math.min(m+1,n));
}
/** 
Returns the right singular vectors <tt>V</tt>.
@return     <tt>V</tt>
*/
public DoubleMatrix2D getV() {
	return DoubleFactory2D.dense.make(V);
}
/** 
Returns the two norm, which is <tt>max(S)</tt>.
*/
public double norm2() {
	return s[0];
}
/** 
Returns the effective numerical matrix rank, which is the number of nonnegligible singular values.
*/
public int rank() {
	double eps = Math.pow(2.0,-52.0);
	double tol = Math.max(m,n)*s[0]*eps;
	int r = 0;
	for (int i = 0; i < s.length; i++) {
		if (s[i] > tol) {
			r++;
		}
	}
	return r;
}
/**
Returns a String with (propertyName, propertyValue) pairs.
Useful for debugging or to quickly get the rough picture.
For example,
<pre>
rank          : 3
trace         : 0
</pre>
*/
public String toString() {
	StringBuffer buf = new StringBuffer();
	String unknown = "Illegal operation or error: ";

	buf.append("---------------------------------------------------------------------\n");
	buf.append("SingularValueDecomposition(A) --> cond(A), rank(A), norm2(A), U, S, V\n");
	buf.append("---------------------------------------------------------------------\n");

	buf.append("cond = ");
	try { buf.append(String.valueOf(this.cond()));} 
	catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); }
		
	buf.append("\nrank = ");
	try { buf.append(String.valueOf(this.rank()));} 
	catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); }
		
	buf.append("\nnorm2 = ");
	try { buf.append(String.valueOf(this.norm2()));} 
	catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); }
		
	buf.append("\n\nU = ");
	try { buf.append(String.valueOf(this.getU()));} 
	catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); }
	
	buf.append("\n\nS = ");
	try { buf.append(String.valueOf(this.getS()));} 
	catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); }
	
	buf.append("\n\nV = ");
	try { buf.append(String.valueOf(this.getV()));} 
	catch (IllegalArgumentException exc) { buf.append(unknown+exc.getMessage()); }
	
	return buf.toString();
}
}