File: base.py

package info (click to toggle)
libconfig-model-dpkg-perl 3.014
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,200 kB
  • sloc: perl: 8,255; python: 242; makefile: 77; javascript: 16; sh: 1
file content (684 lines) | stat: -rw-r--r-- 23,334 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
"""
Base classes for all estimators.

Used for VotingClassifier
"""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause

import copy
import warnings
from collections import defaultdict
import platform
import inspect
import re

import numpy as np

from . import __version__
from .utils import _IS_32BIT

_DEFAULT_TAGS = {
    'non_deterministic': False,
    'requires_positive_X': False,
    'requires_positive_y': False,
    'X_types': ['2darray'],
    'poor_score': False,
    'no_validation': False,
    'multioutput': False,
    "allow_nan": False,
    'stateless': False,
    'multilabel': False,
    '_skip_test': False,
    'multioutput_only': False,
    'binary_only': False,
    'requires_fit': True}


def clone(estimator, safe=True):
    """Constructs a new estimator with the same parameters.

    Clone does a deep copy of the model in an estimator
    without actually copying attached data. It yields a new estimator
    with the same parameters that has not been fit on any data.

    Parameters
    ----------
    estimator : estimator object, or list, tuple or set of objects
        The estimator or group of estimators to be cloned

    safe : boolean, optional
        If safe is false, clone will fall back to a deep copy on objects
        that are not estimators.

    """
    estimator_type = type(estimator)
    # XXX: not handling dictionaries
    if estimator_type in (list, tuple, set, frozenset):
        return estimator_type([clone(e, safe=safe) for e in estimator])
    elif not hasattr(estimator, 'get_params') or isinstance(estimator, type):
        if not safe:
            return copy.deepcopy(estimator)
        else:
            raise TypeError("Cannot clone object '%s' (type %s): "
                            "it does not seem to be a scikit-learn estimator "
                            "as it does not implement a 'get_params' methods."
                            % (repr(estimator), type(estimator)))
    klass = estimator.__class__
    new_object_params = estimator.get_params(deep=False)
    for name, param in new_object_params.items():
        new_object_params[name] = clone(param, safe=False)
    new_object = klass(**new_object_params)
    params_set = new_object.get_params(deep=False)

    # quick sanity check of the parameters of the clone
    for name in new_object_params:
        param1 = new_object_params[name]
        param2 = params_set[name]
        if param1 is not param2:
            raise RuntimeError('Cannot clone object %s, as the constructor '
                               'either does not set or modifies parameter %s' %
                               (estimator, name))
    return new_object


def _pprint(params, offset=0, printer=repr):
    """Pretty print the dictionary 'params'

    Parameters
    ----------
    params : dict
        The dictionary to pretty print

    offset : int
        The offset in characters to add at the begin of each line.

    printer : callable
        The function to convert entries to strings, typically
        the builtin str or repr

    """
    # Do a multi-line justified repr:
    options = np.get_printoptions()
    np.set_printoptions(precision=5, threshold=64, edgeitems=2)
    params_list = list()
    this_line_length = offset
    line_sep = ',\n' + (1 + offset // 2) * ' '
    for i, (k, v) in enumerate(sorted(params.items())):
        if type(v) is float:
            # use str for representing floating point numbers
            # this way we get consistent representation across
            # architectures and versions.
            this_repr = '%s=%s' % (k, str(v))
        else:
            # use repr of the rest
            this_repr = '%s=%s' % (k, printer(v))
        if len(this_repr) > 500:
            this_repr = this_repr[:300] + '...' + this_repr[-100:]
        if i > 0:
            if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr):
                params_list.append(line_sep)
                this_line_length = len(line_sep)
            else:
                params_list.append(', ')
                this_line_length += 2
        params_list.append(this_repr)
        this_line_length += len(this_repr)

    np.set_printoptions(**options)
    lines = ''.join(params_list)
    # Strip trailing space to avoid nightmare in doctests
    lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n'))
    return lines


class BaseEstimator:
    """Base class for all estimators in scikit-learn

    Notes
    -----
    All estimators should specify all the parameters that can be set
    at the class level in their ``__init__`` as explicit keyword
    arguments (no ``*args`` or ``**kwargs``).
    """

    @classmethod
    def _get_param_names(cls):
        """Get parameter names for the estimator"""
        # fetch the constructor or the original constructor before
        # deprecation wrapping if any
        init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
        if init is object.__init__:
            # No explicit constructor to introspect
            return []

        # introspect the constructor arguments to find the model parameters
        # to represent
        init_signature = inspect.signature(init)
        # Consider the constructor parameters excluding 'self'
        parameters = [p for p in init_signature.parameters.values()
                      if p.name != 'self' and p.kind != p.VAR_KEYWORD]
        for p in parameters:
            if p.kind == p.VAR_POSITIONAL:
                raise RuntimeError("scikit-learn estimators should always "
                                   "specify their parameters in the signature"
                                   " of their __init__ (no varargs)."
                                   " %s with constructor %s doesn't "
                                   " follow this convention."
                                   % (cls, init_signature))
        # Extract and sort argument names excluding 'self'
        return sorted([p.name for p in parameters])

    def get_params(self, deep=True):
        """
        Get parameters for this estimator.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        out = dict()
        for key in self._get_param_names():
            try:
                value = getattr(self, key)
            except AttributeError:
                warnings.warn('From version 0.24, get_params will raise an '
                              'AttributeError if a parameter cannot be '
                              'retrieved as an instance attribute. Previously '
                              'it would return None.',
                              FutureWarning)
                value = None
            if deep and hasattr(value, 'get_params'):
                deep_items = value.get_params().items()
                out.update((key + '__' + k, val) for k, val in deep_items)
            out[key] = value
        return out

    def set_params(self, **params):
        """
        Set the parameters of this estimator.

        The method works on simple estimators as well as on nested objects
        (such as pipelines). The latter have parameters of the form
        ``<component>__<parameter>`` so that it's possible to update each
        component of a nested object.

        Parameters
        ----------
        **params : dict
            Estimator parameters.

        Returns
        -------
        self : object
            Estimator instance.
        """
        if not params:
            # Simple optimization to gain speed (inspect is slow)
            return self
        valid_params = self.get_params(deep=True)

        nested_params = defaultdict(dict)  # grouped by prefix
        for key, value in params.items():
            key, delim, sub_key = key.partition('__')
            if key not in valid_params:
                raise ValueError('Invalid parameter %s for estimator %s. '
                                 'Check the list of available parameters '
                                 'with `estimator.get_params().keys()`.' %
                                 (key, self))

            if delim:
                nested_params[key][sub_key] = value
            else:
                setattr(self, key, value)
                valid_params[key] = value

        for key, sub_params in nested_params.items():
            valid_params[key].set_params(**sub_params)

        return self

    def __repr__(self, N_CHAR_MAX=700):
        # N_CHAR_MAX is the (approximate) maximum number of non-blank
        # characters to render. We pass it as an optional parameter to ease
        # the tests.

        from .utils._pprint import _EstimatorPrettyPrinter

        N_MAX_ELEMENTS_TO_SHOW = 30  # number of elements to show in sequences

        # use ellipsis for sequences with a lot of elements
        pp = _EstimatorPrettyPrinter(
            compact=True, indent=1, indent_at_name=True,
            n_max_elements_to_show=N_MAX_ELEMENTS_TO_SHOW)

        repr_ = pp.pformat(self)

        # Use bruteforce ellipsis when there are a lot of non-blank characters
        n_nonblank = len(''.join(repr_.split()))
        if n_nonblank > N_CHAR_MAX:
            lim = N_CHAR_MAX // 2  # apprx number of chars to keep on both ends
            regex = r'^(\s*\S){%d}' % lim
            # The regex '^(\s*\S){%d}' % n
            # matches from the start of the string until the nth non-blank
            # character:
            # - ^ matches the start of string
            # - (pattern){n} matches n repetitions of pattern
            # - \s*\S matches a non-blank char following zero or more blanks
            left_lim = re.match(regex, repr_).end()
            right_lim = re.match(regex, repr_[::-1]).end()

            if '\n' in repr_[left_lim:-right_lim]:
                # The left side and right side aren't on the same line.
                # To avoid weird cuts, e.g.:
                # categoric...ore',
                # we need to start the right side with an appropriate newline
                # character so that it renders properly as:
                # categoric...
                # handle_unknown='ignore',
                # so we add [^\n]*\n which matches until the next \n
                regex += r'[^\n]*\n'
                right_lim = re.match(regex, repr_[::-1]).end()

            ellipsis = '...'
            if left_lim + len(ellipsis) < len(repr_) - right_lim:
                # Only add ellipsis if it results in a shorter repr
                repr_ = repr_[:left_lim] + '...' + repr_[-right_lim:]

        return repr_

    def __getstate__(self):
        try:
            state = super().__getstate__()
        except AttributeError:
            state = self.__dict__.copy()

        if type(self).__module__.startswith('sklearn.'):
            return dict(state.items(), _sklearn_version=__version__)
        else:
            return state

    def __setstate__(self, state):
        if type(self).__module__.startswith('sklearn.'):
            pickle_version = state.pop("_sklearn_version", "pre-0.18")
            if pickle_version != __version__:
                warnings.warn(
                    "Trying to unpickle estimator {0} from version {1} when "
                    "using version {2}. This might lead to breaking code or "
                    "invalid results. Use at your own risk.".format(
                        self.__class__.__name__, pickle_version, __version__),
                    UserWarning)
        try:
            super().__setstate__(state)
        except AttributeError:
            self.__dict__.update(state)

    def _more_tags(self):
        return _DEFAULT_TAGS

    def _get_tags(self):
        collected_tags = {}
        for base_class in reversed(inspect.getmro(self.__class__)):
            if hasattr(base_class, '_more_tags'):
                # need the if because mixins might not have _more_tags
                # but might do redundant work in estimators
                # (i.e. calling more tags on BaseEstimator multiple times)
                more_tags = base_class._more_tags(self)
                collected_tags.update(more_tags)
        return collected_tags


class ClassifierMixin:
    """Mixin class for all classifiers in scikit-learn."""

    _estimator_type = "classifier"

    def score(self, X, y, sample_weight=None):
        """
        Return the mean accuracy on the given test data and labels.

        In multi-label classification, this is the subset accuracy
        which is a harsh metric since you require for each sample that
        each label set be correctly predicted.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True labels for X.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            Mean accuracy of self.predict(X) wrt. y.
        """
        from .metrics import accuracy_score
        return accuracy_score(y, self.predict(X), sample_weight=sample_weight)


class RegressorMixin:
    """Mixin class for all regression estimators in scikit-learn."""
    _estimator_type = "regressor"

    def score(self, X, y, sample_weight=None):
        """Return the coefficient of determination R^2 of the prediction.

        The coefficient R^2 is defined as (1 - u/v), where u is the residual
        sum of squares ((y_true - y_pred) ** 2).sum() and v is the total
        sum of squares ((y_true - y_true.mean()) ** 2).sum().
        The best possible score is 1.0 and it can be negative (because the
        model can be arbitrarily worse). A constant model that always
        predicts the expected value of y, disregarding the input features,
        would get a R^2 score of 0.0.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples. For some estimators this may be a
            precomputed kernel matrix or a list of generic objects instead,
            shape = (n_samples, n_samples_fitted),
            where n_samples_fitted is the number of
            samples used in the fitting for the estimator.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True values for X.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            R^2 of self.predict(X) wrt. y.

        Notes
        -----
        The R2 score used when calling ``score`` on a regressor will use
        ``multioutput='uniform_average'`` from version 0.23 to keep consistent
        with :func:`~sklearn.metrics.r2_score`. This will influence the
        ``score`` method of all the multioutput regressors (except for
        :class:`~sklearn.multioutput.MultiOutputRegressor`). To specify the
        default value manually and avoid the warning, please either call
        :func:`~sklearn.metrics.r2_score` directly or make a custom scorer with
        :func:`~sklearn.metrics.make_scorer` (the built-in scorer ``'r2'`` uses
        ``multioutput='uniform_average'``).
        """

        from .metrics import r2_score
        from .metrics._regression import _check_reg_targets
        y_pred = self.predict(X)
        # XXX: Remove the check in 0.23
        y_type, _, _, _ = _check_reg_targets(y, y_pred, None)
        if y_type == 'continuous-multioutput':
            warnings.warn("The default value of multioutput (not exposed in "
                          "score method) will change from 'variance_weighted' "
                          "to 'uniform_average' in 0.23 to keep consistent "
                          "with 'metrics.r2_score'. To specify the default "
                          "value manually and avoid the warning, please "
                          "either call 'metrics.r2_score' directly or make a "
                          "custom scorer with 'metrics.make_scorer' (the "
                          "built-in scorer 'r2' uses "
                          "multioutput='uniform_average').", FutureWarning)
        return r2_score(y, y_pred, sample_weight=sample_weight,
                        multioutput='variance_weighted')


class ClusterMixin:
    """Mixin class for all cluster estimators in scikit-learn."""
    _estimator_type = "clusterer"

    def fit_predict(self, X, y=None):
        """
        Perform clustering on X and returns cluster labels.

        Parameters
        ----------
        X : ndarray, shape (n_samples, n_features)
            Input data.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        labels : ndarray, shape (n_samples,)
            Cluster labels.
        """
        # non-optimized default implementation; override when a better
        # method is possible for a given clustering algorithm
        self.fit(X)
        return self.labels_


class BiclusterMixin:
    """Mixin class for all bicluster estimators in scikit-learn"""

    @property
    def biclusters_(self):
        """Convenient way to get row and column indicators together.

        Returns the ``rows_`` and ``columns_`` members.
        """
        return self.rows_, self.columns_

    def get_indices(self, i):
        """Row and column indices of the i'th bicluster.

        Only works if ``rows_`` and ``columns_`` attributes exist.

        Parameters
        ----------
        i : int
            The index of the cluster.

        Returns
        -------
        row_ind : np.array, dtype=np.intp
            Indices of rows in the dataset that belong to the bicluster.
        col_ind : np.array, dtype=np.intp
            Indices of columns in the dataset that belong to the bicluster.

        """
        rows = self.rows_[i]
        columns = self.columns_[i]
        return np.nonzero(rows)[0], np.nonzero(columns)[0]

    def get_shape(self, i):
        """Shape of the i'th bicluster.

        Parameters
        ----------
        i : int
            The index of the cluster.

        Returns
        -------
        shape : (int, int)
            Number of rows and columns (resp.) in the bicluster.
        """
        indices = self.get_indices(i)
        return tuple(len(i) for i in indices)

    def get_submatrix(self, i, data):
        """Return the submatrix corresponding to bicluster `i`.

        Parameters
        ----------
        i : int
            The index of the cluster.
        data : array
            The data.

        Returns
        -------
        submatrix : array
            The submatrix corresponding to bicluster i.

        Notes
        -----
        Works with sparse matrices. Only works if ``rows_`` and
        ``columns_`` attributes exist.
        """
        from .utils.validation import check_array
        data = check_array(data, accept_sparse='csr')
        row_ind, col_ind = self.get_indices(i)
        return data[row_ind[:, np.newaxis], col_ind]


class TransformerMixin:
    """Mixin class for all transformers in scikit-learn."""

    def fit_transform(self, X, y=None, **fit_params):
        """
        Fit to data, then transform it.

        Fits transformer to X and y with optional parameters fit_params
        and returns a transformed version of X.

        Parameters
        ----------
        X : numpy array of shape [n_samples, n_features]
            Training set.

        y : numpy array of shape [n_samples]
            Target values.

        **fit_params : dict
            Additional fit parameters.

        Returns
        -------
        X_new : numpy array of shape [n_samples, n_features_new]
            Transformed array.
        """
        # non-optimized default implementation; override when a better
        # method is possible for a given clustering algorithm
        if y is None:
            # fit method of arity 1 (unsupervised transformation)
            return self.fit(X, **fit_params).transform(X)
        else:
            # fit method of arity 2 (supervised transformation)
            return self.fit(X, y, **fit_params).transform(X)


class DensityMixin:
    """Mixin class for all density estimators in scikit-learn."""
    _estimator_type = "DensityEstimator"

    def score(self, X, y=None):
        """Return the score of the model on the data X

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)

        Returns
        -------
        score : float
        """
        pass


class OutlierMixin:
    """Mixin class for all outlier detection estimators in scikit-learn."""
    _estimator_type = "outlier_detector"

    def fit_predict(self, X, y=None):
        """Perform fit on X and returns labels for X.

        Returns -1 for outliers and 1 for inliers.

        Parameters
        ----------
        X : ndarray, shape (n_samples, n_features)
            Input data.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            1 for inliers, -1 for outliers.
        """
        # override for transductive outlier detectors like LocalOulierFactor
        return self.fit(X).predict(X)


class MetaEstimatorMixin:
    _required_parameters = ["estimator"]
    """Mixin class for all meta estimators in scikit-learn."""


class MultiOutputMixin:
    """Mixin to mark estimators that support multioutput."""
    def _more_tags(self):
        return {'multioutput': True}


class _UnstableArchMixin:
    """Mark estimators that are non-determinstic on 32bit or PowerPC"""
    def _more_tags(self):
        return {'non_deterministic': (
            _IS_32BIT or platform.machine().startswith(('ppc', 'powerpc')))}


def is_classifier(estimator):
    """Return True if the given estimator is (probably) a classifier.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a classifier and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "classifier"


def is_regressor(estimator):
    """Return True if the given estimator is (probably) a regressor.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a regressor and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "regressor"


def is_outlier_detector(estimator):
    """Return True if the given estimator is (probably) an outlier detector.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is an outlier detector and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "outlier_detector"