1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
|
/*
* Integer arithmetic evaluation.
*
* (c) Thomas Pornin 2002
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. The name of the authors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <limits.h>
#include "arith.h"
#define ARITH_OCTAL(x) ((x) >= '0' && (x) <= '7')
#define ARITH_OVAL(x) ((x) - '0')
#define ARITH_DECIM(x) ((x) >= '0' && (x) <= '9')
#define ARITH_DVAL(x) ((x) - '0')
#define ARITH_HEXAD(x) (ARITH_DECIM(x) \
|| (x) == 'a' || (x) == 'A' \
|| (x) == 'b' || (x) == 'B' \
|| (x) == 'c' || (x) == 'C' \
|| (x) == 'd' || (x) == 'D' \
|| (x) == 'e' || (x) == 'E' \
|| (x) == 'f' || (x) == 'F')
#define ARITH_HVAL(x) (ARITH_DECIM(x) ? ARITH_DVAL(x) \
: (x) == 'a' || (x) == 'A' ? 10 \
: (x) == 'b' || (x) == 'B' ? 11 \
: (x) == 'c' || (x) == 'C' ? 12 \
: (x) == 'd' || (x) == 'D' ? 13 \
: (x) == 'e' || (x) == 'E' ? 14 : 15)
#ifdef NATIVE_SIGNED
/* ====================================================================== */
/* Arithmetics with native types */
/* ====================================================================== */
/*
* The following properties are imposed by the C standard:
*
* -- Arithmetics on the unsigned type should never overflow; every
* result is reduced modulo some power of 2. The macro NATIVE_UNSIGNED_BITS
* should have been defined to that specific exponent.
*
* -- The signed type should use either two's complement, one's complement
* or a sign bit and a magnitude. There should be an integer N such that
* the maximum signed value is (2^N)-1 and the minimum signed value is
* either -(2^N) or -((2^N)-1). -(2^N) is possible only for two's complement.
*
* -- The maximum signed value is at most equal to the maximum unsigned
* value.
*
* -- Trap representations can only be:
* ** In two's complement, 1 as sign bit and 0 for all value bits.
* This can happen only if the minimum signed value is -((2^N)-1).
* ** In one's complement, all bits set to 1.
* ** In mantissa + sign, sign bit to 1 and 0 for all value bits.
* Unsigned values have no trap representation achievable with numerical
* operators. Only signed values can have such representations, with
* operators &, |, ^, ~, << and >>. If trap representations are possible,
* such occurrences are reported as warnings.
*
* -- The operators +, -, * and << may overflow or underflow on signed
* quantities, which is potentially an error. A warning is emitted.
*
* -- The operator >> yields an implementation-defined result on
* signed negative quantities. Usually, the sign is extended, but this
* is not guaranteed. A warning is emitted.
*
* -- The operators / and % used with a second operand of 0 cannot work.
* An error is emitted when such a call is performed. Furthermore, in
* two's complemement representation, with NATIVE_SIGNED_MIN == -(2^N)
* for some N, the expression `NATIVE_SIGNED_MIN / (-1)' yields an
* unrepresentable result, which is also an error.
*
*
* For the value checks, we need to consider those different cases. So
* we calculate the following macros:
* -- TWOS_COMPLEMENT: is 1 if representation is two's complement, 0
* otherwise.
* -- ONES_COMPLEMENT: is 1 if representation is one's complement, 0
* otherwise.
* -- SIGNED_IS_BIGGER: 1 if the maximum signed value is equal to the
* maximum unsigned value, 0 otherwise. NATIVE_SIGNED_MAX cannot
* exceed the maximum unsigned value. If SIGNED_IS_BIGGER is 0, then
* the maximum unsigned value is strictly superior to twice the
* value of NATIVE_SIGNED_MAX (e.g. 65535 to 32767).
* -- TRAP_REPRESENTATION: 1 if a trap representation is possible, 0
* otherwise. The only way trap representations are guaranteed
* impossible is when TWOS_COMPLEMENT is set, and NATIVE_SIGNED_MIN
* is equal to -NATIVE_SIGNED_MAX - 1.
*
* Those macros are calculated by some preprocessor directives. This
* supposes that the implementation conforms to C99. Rules on preprocessing
* were quite looser in C90, and it could be that an old compiler, used
* for a cross-compiling task, does not get those right. Therefore, if
* ARCH_DEFINED is defined prior to the inclusion of this file, those
* four macros are supposed to be already defined. Otherwise they are
* (re)defined. The macro ARCH_TRAP_DEFINED has the same meaning, but
* is limited to the TRAP_REPRESENTATION macro (if ARCH_TRAP_DEFINED is
* defined, the macro TRAP_REPRESENTATION is supposed to be already
* defined; the three other macros are recalculated).
*
*
* To sum up:
* -- Whenever a division operator (/ or %) is invoked and would yield
* an unrepresentable result, ARITH_ERROR() is invoked.
* -- With ARITHMETIC_CHECKS undefined, ARITH_WARNING() is never invoked.
* -- With ARITHMETIC_CHECKS defined:
* ** If ARCH_DEFINED is defined, the including context must provide
* the macros TWOS_COMPLEMENT, ONES_COMPLEMENT, SIGNED_IS_BIGGER
* and TRAP_REPRESENTATION.
* ** Otherwise, if ARCH_TRAP_DEFINED is defined, the including context
* must provide the macro TRAP_REPRESENTATION.
* The code then detects all operator invokations that would yield an
* overflow, underflow, trap representation, or any implementation
* defined result or undefined behaviour. The macro ARITH_WARNING() is
* invoked for each detection.
* -- Trap representation detection code supposes that the operands are
* _not_ trap representation.
*/
#ifndef ARCH_DEFINED
#undef TWOS_COMPLEMENT
#undef ONES_COMPLEMENT
#undef SIGNED_IS_BIGGER
#ifndef ARCH_TRAP_DEFINED
#undef TRAP_REPRESENTATION
#endif
#if (-1) & 3 == 3
/*
* Two's complement.
*/
#define TWOS_COMPLEMENT 1
#define ONES_COMPLEMENT 0
#ifndef ARCH_TRAP_DEFINED
#if NATIVE_SIGNED_MIN < -NATIVE_SIGNED_MAX
#define TRAP_REPRESENTATION 0
#else
#define TRAP_REPRESENTATION 1
#endif
#endif
#elif (-1) & 3 == 2
/*
* One's complement.
*/
#define TWOS_COMPLEMENT 0
#define ONES_COMPLEMENT 1
#ifndef ARCH_TRAP_DEFINED
#define TRAP_REPRESENTATION 1
#endif
#else
/*
* Mantissa + sign.
*/
#define TWOS_COMPLEMENT 0
#define ONES_COMPLEMENT 0
#ifndef ARCH_TRAP_DEFINED
#define TRAP_REPRESENTATION 1
#endif
#endif
/*
* Maximum native unsigned value. The first macro is for #if directives,
* the second macro is for use as constant expression in C code.
*/
#define NATIVE_UNSIGNED_MAX ((((NATIVE_UNSIGNED_ONE << (NATIVE_UNSIGNED_BITS - 1)) \
- NATIVE_UNSIGNED_ONE) << 1) + NATIVE_UNSIGNED_ONE)
#define NATIVE_UNSIGNED_MAX_A (((((arith_u)1 << (NATIVE_UNSIGNED_BITS - 1)) \
- (arith_u)1) << 1) + (arith_u)1)
#if NATIVE_SIGNED_MAX == NATIVE_UNSIGNED_MAX
#define SIGNED_IS_BIGGER 1
#else
#define SIGNED_IS_BIGGER 0
#endif
#endif
#undef NEGATIVE_IS_BIGGER
#if NATIVE_SIGNED_MIN < -NATIVE_SIGNED_MAX
#define NEGATIVE_IS_BIGGER 1
#else
#define NEGATIVE_IS_BIGGER 0
#endif
/* sanity check: we cannot have a trap representation if we have
two's complement with NATIVE_SIGNED_MIN < -NATIVE_SIGNED_MAX */
#if TRAP_REPRESENTATION && NEGATIVE_IS_BIGGER
#error Impossible to get trap representations.
#endif
/* operations on the unsigned type */
ARITH_DECL_MONO_S_U(to_u) { useARI; return (arith_u)x; }
ARITH_DECL_MONO_I_U(fromint) { useARI; return (arith_u)x; }
ARITH_DECL_MONO_L_U(fromulong) { useARI; return (arith_u)x; }
ARITH_DECL_MONO_U_I(toint)
{
useARI;
#if NATIVE_UNSIGNED_MAX > INT_MAX
if (x > (arith_u)INT_MAX) return INT_MAX;
#endif
return (int)x;
}
ARITH_DECL_MONO_U_L(toulong)
{
useARI;
#if NATIVE_UNSIGNED_MAX > LONG_MAX
if (x > (arith_u)LONG_MAX) return LONG_MAX;
#endif
return (long)x;
}
ARITH_DECL_MONO_U_U(neg) { useARI; return -x; }
ARITH_DECL_MONO_U_U(not) { useARI; return ~x; }
ARITH_DECL_MONO_U_I(lnot) { useARI; return !x; }
ARITH_DECL_MONO_U_I(lval) { useARI; return x != 0; }
ARITH_DECL_BI_UU_U(plus) { useARI; return x + y; }
ARITH_DECL_BI_UU_U(minus) { useARI; return x - y; }
ARITH_DECL_BI_UU_I(lt) { useARI; return x < y; }
ARITH_DECL_BI_UU_I(leq) { useARI; return x <= y; }
ARITH_DECL_BI_UU_I(gt) { useARI; return x > y; }
ARITH_DECL_BI_UU_I(geq) { useARI; return x >= y; }
ARITH_DECL_BI_UU_I(same) { useARI; return x == y; }
ARITH_DECL_BI_UU_I(neq) { useARI; return x != y; }
ARITH_DECL_BI_UU_U(and) { useARI; return x & y; }
ARITH_DECL_BI_UU_U(xor) { useARI; return x ^ y; }
ARITH_DECL_BI_UU_U(or) { useARI; return x | y; }
ARITH_DECL_BI_UU_U(star) { useARI; return x * y; }
ARITH_DECL_BI_UI_U(lsh)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (y >= NATIVE_UNSIGNED_BITS)
ARITH_WARNING(ARITH_EXCEP_LSH_W);
else if (y < 0)
ARITH_WARNING(ARITH_EXCEP_LSH_C);
#endif
return x << y;
}
ARITH_DECL_BI_UI_U(rsh)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (y >= NATIVE_UNSIGNED_BITS)
ARITH_WARNING(ARITH_EXCEP_RSH_W);
else if (y < 0)
ARITH_WARNING(ARITH_EXCEP_RSH_C);
#endif
return x >> y;
}
ARITH_DECL_BI_UU_U(slash)
{
useARI;
if (y == 0) ARITH_ERROR(ARITH_EXCEP_SLASH_D);
return x / y;
}
ARITH_DECL_BI_UU_U(pct)
{
useARI;
if (y == 0) ARITH_ERROR(ARITH_EXCEP_PCT_D);
return x % y;
}
/* operations on the signed type */
ARITH_DECL_MONO_U_S(to_s)
{
useARI;
#ifdef ARITHMETIC_CHECKS
#if !SIGNED_IS_BIGGER
if (x > (arith_u)NATIVE_SIGNED_MAX)
ARITH_WARNING(ARITH_EXCEP_CONV_O);
#endif
#endif
return (arith_s)x;
}
ARITH_DECL_MONO_I_S(fromint) { useARI; return (arith_s)x; }
ARITH_DECL_MONO_L_S(fromlong) { useARI; return (arith_s)x; }
ARITH_DECL_MONO_S_I(toint)
{
useARI;
#if NATIVE_SIGNED_MIN < INT_MIN
if (x < (arith_s)INT_MIN) return INT_MIN;
#endif
#if NATIVE_SIGNED_MAX > INT_MAX
if (x > (arith_s)INT_MAX) return INT_MAX;
#endif
return (int)x;
}
ARITH_DECL_MONO_S_L(tolong)
{
useARI;
#if NATIVE_SIGNED_MIN < LONG_MIN
if (x < (arith_s)LONG_MIN) return LONG_MIN;
#endif
#if NATIVE_SIGNED_MAX > LONG_MAX
if (x > (arith_s)LONG_MAX) return LONG_MAX;
#endif
return (long)x;
}
ARITH_DECL_MONO_S_S(neg)
{
useARI;
#ifdef ARITHMETIC_CHECKS
#if NEGATIVE_IS_BIGGER
if (x == NATIVE_SIGNED_MIN)
ARITH_WARNING(ARITH_EXCEP_NEG_O);
#endif
#endif
return -x;
}
ARITH_DECL_MONO_S_S(not)
{
useARI;
#ifdef ARITHMETIC_CHECKS
#if TRAP_REPRESENTATION
if (
#if TWOS_COMPLEMENT
(x == NATIVE_SIGNED_MAX)
#elif ONES_COMPLEMENT
(x == 0)
#else
(x == NATIVE_SIGNED_MAX)
#endif
) ARITH_WARNING(ARITH_EXCEP_NOT_T);
#endif
#endif
return ~x;
}
ARITH_DECL_MONO_S_I(lnot) { useARI; return !x; }
ARITH_DECL_MONO_S_I(lval) { useARI; return x != 0; }
/*
* Addition of signed values:
* -- overflows occur only when both operands are strictly positive
* -- underflows occur only when both operands are strictly negative
* -- overflow check (both operands > 0):
* ** if SIGNED_IS_BIGGER == 1, overflows are kept as such in the
* unsigned world (if the signed addition overflows, so does the
* unsigned, and vice versa)
* ** if SIGNED_IS_BIGGER == 0, no overflow can happen in the unsigned
* world
* -- underflow check (both operands < 0):
* ** if NEGATIVE_IS_BIGGER == 1 (must be two's complement)
* ++ we have a guaranteed underflow if one of the operand is equal
* to NATIVE_SIGNED_MIN; otherwise, -x and -y are valid integers,
* and we cast them into the unsigned world
* ++ if SIGNED_IS_BIGGER == 1, underflows become unsigned overflows
* with a non-zero result
* ++ if SIGNED_IS_BIGGER == 0, no overflow happens in the unsigned
* world; we use the fact that -NATIVE_SIGNED_MIN is then
* exaxctly 1 more than NATIVE_SIGNED_MAX
* ** if NEGATIVE_IS_BIGGER == 0, underflow check is identical to
* overflow check on (signed) -x and -y.
*/
ARITH_DECL_BI_SS_S(plus)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (x > 0 && y > 0 && (
#if SIGNED_IS_BIGGER
((arith_u)((arith_u)x + (arith_u)y) < (arith_u)x)
#else
(((arith_u)x + (arith_u)y) > (arith_u)NATIVE_SIGNED_MAX)
#endif
)) ARITH_WARNING(ARITH_EXCEP_PLUS_O);
else if (x < 0 && y < 0 && (
#if NEGATIVE_IS_BIGGER
(x == NATIVE_SIGNED_MIN || y == NATIVE_SIGNED_MIN) ||
#if SIGNED_IS_BIGGER
(((arith_u)(-x) + (arith_u)(-y) != 0)
&& (arith_u)((arith_u)(-x) + (arith_u)(-y))
< (arith_u)(-x))
#else
(((arith_u)(-x) + (arith_u)(-y))
> ((arith_u)1 + (arith_u)NATIVE_SIGNED_MAX))
#endif
#else
#if SIGNED_IS_BIGGER
((arith_u)((arith_u)(-x) + (arith_u)(-y)) < (arith_u)(-x))
#else
(((arith_u)(-x) + (arith_u)(-y))
> (arith_u)NATIVE_SIGNED_MAX)
#endif
#endif
)) ARITH_WARNING(ARITH_EXCEP_PLUS_U);
#endif
return x + y;
}
/*
* Subtraction of signed values:
* -- overflow: only if x > 0 and y < 0
* ** if NEGATIVE_IS_BIGGER == 1 (must be two's complement) and
* y == NATIVE_SIGNED_MIN then overflow
* ** otherwise, cast x and -y to unsigned, then add and check
* for overflows
* -- underflow: only if x < 0 and y > 0
* ** if NEGATIVE_IS_BIGGER == 1 (must be two's complement):
* ++ if x == NATIVE_SIGNED_MIN then underflow
* ++ cast -x and y to unsigned, then add. If SIGNED_IS_BIGGER == 0,
* just check. Otherwise, check for overflow with non-zero result.
* ** if NEGATIVE_IS_BIGGER == 0: cast -x and y to unsigned, then
* add. Overflow check as in addition.
*/
ARITH_DECL_BI_SS_S(minus)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (x > 0 && y < 0 && (
#if NEGATIVE_IS_BIGGER
(y == NATIVE_SIGNED_MIN) ||
#endif
#if SIGNED_IS_BIGGER
((arith_u)((arith_u)x + (arith_u)(-y)) < (arith_u)x)
#else
(((arith_u)x + (arith_u)(-y)) > (arith_u)NATIVE_SIGNED_MAX)
#endif
)) ARITH_WARNING(ARITH_EXCEP_MINUS_O);
else if (x < 0 && y > 0 && (
#if NEGATIVE_IS_BIGGER
(x == NATIVE_SIGNED_MIN) ||
#if SIGNED_IS_BIGGER
((((arith_u)(-x) + (arith_u)y) != 0) &&
((arith_u)((arith_u)(-x) + (arith_u)y) < (arith_u)(-x)))
#else
(((arith_u)(-x) + (arith_u)y) >
((arith_u)1 + (arith_u)NATIVE_SIGNED_MAX))
#endif
#else
#if SIGNED_IS_BIGGER
((arith_u)((arith_u)(-x) + (arith_u)y) < (arith_u)(-x))
#else
(((arith_u)(-x) + (arith_u)y) > (arith_u)NATIVE_SIGNED_MAX)
#endif
#endif
)) ARITH_WARNING(ARITH_EXCEP_MINUS_U);
#endif
return x - y;
}
ARITH_DECL_BI_SS_I(lt) { useARI; return x < y; }
ARITH_DECL_BI_SS_I(leq) { useARI; return x <= y; }
ARITH_DECL_BI_SS_I(gt) { useARI; return x > y; }
ARITH_DECL_BI_SS_I(geq) { useARI; return x >= y; }
ARITH_DECL_BI_SS_I(same) { useARI; return x == y; }
ARITH_DECL_BI_SS_I(neq) { useARI; return x != y; }
/*
* Provided neither x nor y is a trap representation:
* -- one's complement: impossible to get a trap representation
* -- two's complement and sign + mantissa: trap representation if and
* only if x and y are strictly negative and (-x) & (-y) == 0
* (in two's complement, -x is safe because overflow would occur only
* if x was already a trap representation).
*/
ARITH_DECL_BI_SS_S(and)
{
useARI;
#ifdef ARITHMETIC_CHECKS
#if TRAP_REPRESENTATION && !ONES_COMPLEMENT
if (x < 0 && y < 0 && ((-x) & (-y)) == 0)
ARITH_WARNING(ARITH_EXCEP_AND_T);
#endif
#endif
return x & y;
}
/*
* Provided neither x nor y is a trap representation:
* -- two's complement: trap if and only if x != NATIVE_SIGNED_MAX && ~x == y
* -- one's complement: trap if and only if x != 0 && ~x == y
* -- mantissa + sign: trap if and only if x != 0 && -x == y
*/
ARITH_DECL_BI_SS_S(xor)
{
useARI;
#ifdef ARITHMETIC_CHECKS
#if TRAP_REPRESENTATION
if (
#if TWOS_COMPLEMENT
(x != NATIVE_SIGNED_MAX && ~x == y)
#elif ONES_COMPLEMENT
(x != 0 && ~x == y)
#else
(x != 0 && -x == y)
#endif
) ARITH_WARNING(ARITH_EXCEP_XOR_T);
#endif
#endif
return x ^ y;
}
/*
* Provided neither x nor y is a trap representation:
* -- two's complement: impossible to trap
* -- one's complement: trap if and only if x != 0 && y != 0 && (~x & ~y) == 0
* -- mantissa + sign: impossible to trap
*/
ARITH_DECL_BI_SS_S(or)
{
useARI;
#ifdef ARITHMETIC_CHECKS
#if TRAP_REPRESENTATION
#if ONES_COMPLEMENT
if (x != 0 && y != 0 && (~x & ~y) == 0)
ARITH_WARNING(ARITH_EXCEP_OR_T);
#endif
#endif
#endif
return x | y;
}
/*
* Left-shifting by a negative or greater than type width count is
* forbidden. Left-shifting a negative value is forbidden (underflow).
* Left-shifting a positive value can trigger an overflow. We check it
* by casting into the unsigned world and simulating a truncation.
*
* If SIGNED_IS_BIGGER is set, then the signed type width is 1 more
* than the unsigned type width (the sign bit is included in the width);
* otherwise, if W is the signed type width, 1U << (W-1) is equal to
* NATIVE_SIGNED_MAX + 1.
*/
ARITH_DECL_BI_SI_S(lsh)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (y < 0) ARITH_WARNING(ARITH_EXCEP_LSH_C);
else if (
#if SIGNED_IS_BIGGER
y > NATIVE_UNSIGNED_BITS
#else
y >= NATIVE_UNSIGNED_BITS
|| (y > 0 && (((arith_u)1 << (y - 1))
> (arith_u)NATIVE_SIGNED_MAX))
#endif
) ARITH_WARNING(ARITH_EXCEP_LSH_W);
else if (x < 0) ARITH_WARNING(ARITH_EXCEP_LSH_U);
else if (x > 0 && ((((arith_u)x << y) & NATIVE_SIGNED_MAX) >> y)
!= (arith_u)x) ARITH_WARNING(ARITH_EXCEP_LSH_O);
#endif
return x << y;
}
/*
* Right-shifting is handled as left-shifting, except that the problem
* is somehow simpler: there is no possible overflow or underflow. Only
* right-shifting a negative value yields an implementation defined
* result (_not_ an undefined behaviour).
*/
ARITH_DECL_BI_SI_S(rsh)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (y < 0) ARITH_WARNING(ARITH_EXCEP_RSH_C);
else if (
#if SIGNED_IS_BIGGER
y > NATIVE_UNSIGNED_BITS
#else
y >= NATIVE_UNSIGNED_BITS
|| (y > 0 && (((arith_u)1 << (y - 1))
> (arith_u)NATIVE_SIGNED_MAX))
#endif
) ARITH_WARNING(ARITH_EXCEP_RSH_W);
else if (x < 0) ARITH_WARNING(ARITH_EXCEP_RSH_N);
#endif
return x >> y;
}
/*
* Overflow can happen only if both operands have the same sign.
* Underflow can happen only if both operands have opposite signs.
*
* Overflow checking: this is done quite inefficiently by performing
* a division on the result and check if it matches the initial operand.
*/
ARITH_DECL_BI_SS_S(star)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (x == 0 || y == 0) return 0;
if (x > 0 && y > 0) {
if ((((arith_u)x * (arith_u)y) & (arith_u)NATIVE_SIGNED_MAX)
/ (arith_u)y != (arith_u)x)
ARITH_WARNING(ARITH_EXCEP_STAR_O);
} else if (x < 0 && y < 0) {
if (
#if NEGATIVE_IS_BIGGER
(x == NATIVE_SIGNED_MIN || y == NATIVE_SIGNED_MIN) ||
#endif
(((arith_u)(-x) * (arith_u)(-y))
& (arith_u)NATIVE_SIGNED_MAX) / (arith_u)(-y)
!= (arith_u)(-x))
ARITH_WARNING(ARITH_EXCEP_STAR_O);
} else if (x > 0 && y < 0) {
if ((arith_u)x > (arith_u)1 && (
#if NEGATIVE_IS_BIGGER
y == NATIVE_SIGNED_MIN ||
#endif
(((arith_u)x * (arith_u)(-y)) & (arith_u)NATIVE_SIGNED_MAX)
/ (arith_u)(-y) != (arith_u)x))
ARITH_WARNING(ARITH_EXCEP_STAR_U);
} else {
if ((arith_u)y > (arith_u)1 && (
#if NEGATIVE_IS_BIGGER
x == NATIVE_SIGNED_MIN ||
#endif
(((arith_u)y * (arith_u)(-x)) & (arith_u)NATIVE_SIGNED_MAX)
/ (arith_u)(-x) != (arith_u)y))
ARITH_WARNING(ARITH_EXCEP_STAR_U);
}
#endif
return x * y;
}
/*
* Division by 0 is an error. The only other possible problem is an
* overflow of the result. Such an overflow can only happen in two's
* complement representation, when NEGATIVE_IS_BIGGER is set, and
* one attempts to divide NATIVE_SIGNED_MIN by -1: the result is then
* -NATIVE_SIGNED_MIN, which is not representable by the type. This is
* considered as an error, not a warning, because it actually triggers
* an exception on modern Pentium-based PC.
*/
ARITH_DECL_BI_SS_S(slash)
{
if (y == 0) ARITH_ERROR(ARITH_EXCEP_SLASH_D);
#if NEGATIVE_IS_BIGGER
else if (x == NATIVE_SIGNED_MIN && y == (arith_s)(-1))
ARITH_ERROR(ARITH_EXCEP_SLASH_O);
#endif
return x / y;
}
/*
* Only division by 0 needs to be checked.
*/
ARITH_DECL_BI_SS_S(pct)
{
if (y == 0) ARITH_ERROR(ARITH_EXCEP_PCT_D);
return x % y;
}
ARITH_DECL_MONO_ST_US(octconst)
{
arith_u z = 0;
for (; ARITH_OCTAL(*c); c ++) {
arith_u w = ARITH_OVAL(*c);
if (z > (NATIVE_UNSIGNED_MAX_A / 8))
ARITH_ERROR(ARITH_EXCEP_CONST_O);
z *= 8;
#if 0
/* obsolete */
/* NATIVE_UNSIGNED_MAX_A is 2^N - 1, 0 <= w <= 7 and 8 divides z */
if (z > (NATIVE_UNSIGNED_MAX_A - w))
ARITH_ERROR(ARITH_EXCEP_CONST_O);
#endif
z += w;
}
*ru = z;
#if SIGNED_IS_BIGGER
*rs = z;
*sp = 1;
#else
if (z > NATIVE_SIGNED_MAX) {
*sp = 0;
} else {
*rs = z;
*sp = 1;
}
#endif
return c;
}
ARITH_DECL_MONO_ST_US(decconst)
{
arith_u z = 0;
for (; ARITH_DECIM(*c); c ++) {
arith_u w = ARITH_DVAL(*c);
if (z > (NATIVE_UNSIGNED_MAX_A / 10))
ARITH_ERROR(ARITH_EXCEP_CONST_O);
z *= 10;
if (z > (NATIVE_UNSIGNED_MAX_A - w))
ARITH_ERROR(ARITH_EXCEP_CONST_O);
z += w;
}
*ru = z;
#if SIGNED_IS_BIGGER
*rs = z;
*sp = 1;
#else
if (z > NATIVE_SIGNED_MAX) {
*sp = 0;
} else {
*rs = z;
*sp = 1;
}
#endif
return c;
}
ARITH_DECL_MONO_ST_US(hexconst)
{
arith_u z = 0;
for (; ARITH_HEXAD(*c); c ++) {
arith_u w = ARITH_HVAL(*c);
if (z > (NATIVE_UNSIGNED_MAX_A / 16))
ARITH_ERROR(ARITH_EXCEP_CONST_O);
z *= 16;
#if 0
/* obsolete */
/* NATIVE_UNSIGNED_MAX_A is 2^N - 1, 0 <= w <= 15 and 16 divides z */
if (z > (NATIVE_UNSIGNED_MAX_A - w))
ARITH_ERROR(ARITH_EXCEP_CONST_O);
#endif
z += w;
}
*ru = z;
#if SIGNED_IS_BIGGER
*rs = z;
*sp = 1;
#else
if (z > NATIVE_SIGNED_MAX) {
*sp = 0;
} else {
*rs = z;
*sp = 1;
}
#endif
return c;
}
#else
/* ====================================================================== */
/* Arithmetics with a simple simulated type */
/* ====================================================================== */
/*
* We simulate a type with the following characteristics:
* -- the signed type width is equal to the unsigned type width (which
* means that there is one less value bit in the signed type);
* -- the signed type uses two's complement representation;
* -- there is no trap representation;
* -- overflows and underflows are truncated (but a warning is emitted
* if ARITHMETIC_CHECKS is defined);
* -- overflow on integer division is still an error;
* -- right-shifting of a negative value extends the sign;
* -- the shift count value is first cast to unsigned, then reduced modulo
* the type size.
*
* These characteristics follow what is usually found on modern
* architectures.
*
* The maximum emulated type size is twice the size of the unsigned native
* type which is used to emulate the type.
*/
#undef SIMUL_ONE_TMP
#undef SIMUL_MSW_TMP1
#undef SIMUL_MSW_MASK
#undef SIMUL_LSW_TMP1
#undef SIMUL_LSW_MASK
#define SIMUL_ONE_TMP ((SIMUL_ARITH_SUBTYPE)1)
#define SIMUL_MSW_TMP1 (SIMUL_ONE_TMP << (SIMUL_MSW_WIDTH - 1))
#define SIMUL_MSW_MASK (SIMUL_MSW_TMP1 | (SIMUL_MSW_TMP1 - SIMUL_ONE_TMP))
#define SIMUL_LSW_TMP1 (SIMUL_ONE_TMP << (SIMUL_LSW_WIDTH - 1))
#define SIMUL_LSW_MASK (SIMUL_LSW_TMP1 | (SIMUL_LSW_TMP1 - SIMUL_ONE_TMP))
#undef TMSW
#undef TLSW
#define TMSW(x) ((x) & SIMUL_MSW_MASK)
#define TLSW(x) ((x) & SIMUL_LSW_MASK)
#undef SIMUL_ZERO
#undef SIMUL_ONE
#define SIMUL_ZERO arith_strc(ARITH_TYPENAME, _zero)
#define SIMUL_ONE arith_strc(ARITH_TYPENAME, _one)
static arith_u SIMUL_ZERO = { 0, 0 };
static arith_u SIMUL_ONE = { 0, 1 };
/*
* We use the fact that both the signed and unsigned type are the same
* structure. The difference between the signed and the unsigned type
* is a type information, and, as such, is considered compile-time and
* not maintained in the value structure itself. This is a job for
* the programmer / compiler.
*/
ARITH_DECL_MONO_S_U(to_u) { useARI; return x; }
ARITH_DECL_MONO_I_U(fromint)
{
arith_u z;
if (x < 0) return arith_op_u(neg)(aARI_ arith_op_u(fromint)(aARI_ -x));
/*
* This code works because types smaller than int are promoted
* by the C compiler before evaluating the >> operator.
*/
z.msw = TMSW(((SIMUL_ARITH_SUBTYPE)x >> (SIMUL_LSW_WIDTH - 1)) >> 1);
z.lsw = TLSW((SIMUL_ARITH_SUBTYPE)x);
return z;
}
ARITH_DECL_MONO_L_U(fromulong)
{
arith_u z;
useARI;
#if (ULONG_MAX >> (SIMUL_LSW_WIDTH - 1)) >> 1 == 0
z.msw = 0;
z.lsw = x;
#else
z.msw = TMSW(x >> SIMUL_LSW_WIDTH);
z.lsw = TLSW((SIMUL_ARITH_SUBTYPE)x);
#endif
return z;
}
ARITH_DECL_MONO_U_I(toint)
{
useARI;
#if ((INT_MAX >> (SIMUL_LSW_WIDTH - 1)) >> 1) == 0
if (x.msw != 0 || x.lsw > (SIMUL_ARITH_SUBTYPE)INT_MAX)
return INT_MAX;
return (int)x.lsw;
#else
#if (INT_MAX >> (SIMUL_SUBTYPE_BITS - 1)) == 0
if (x.msw > (SIMUL_ARITH_SUBTYPE)(INT_MAX >> SIMUL_LSW_WIDTH))
return INT_MAX;
#endif
return ((int)x.msw << SIMUL_LSW_WIDTH) | (int)x.lsw;
#endif
}
ARITH_DECL_MONO_U_L(toulong)
{
useARI;
#if ((ULONG_MAX >> (SIMUL_LSW_WIDTH - 1)) >> 1) == 0
if (x.msw != 0 || x.lsw > (SIMUL_ARITH_SUBTYPE)ULONG_MAX)
return ULONG_MAX;
return (unsigned long)x.lsw;
#else
#if (ULONG_MAX >> (SIMUL_SUBTYPE_BITS - 1)) == 0
if (x.msw > (SIMUL_ARITH_SUBTYPE)(ULONG_MAX >> SIMUL_LSW_WIDTH))
return ULONG_MAX;
#endif
return ((unsigned long)x.msw << SIMUL_LSW_WIDTH) | (unsigned long)x.lsw;
#endif
}
ARITH_DECL_MONO_U_U(neg)
{
x = arith_op_u(not)(aARI_ x);
return arith_op_u(plus)(aARI_ x, SIMUL_ONE);
}
ARITH_DECL_MONO_U_U(not)
{
useARI;
x.msw = TMSW(~x.msw);
x.lsw = TLSW(~x.lsw);
return x;
}
ARITH_DECL_MONO_U_I(lnot)
{
useARI;
return x.msw == 0 && x.lsw == 0;
}
ARITH_DECL_MONO_U_I(lval)
{
useARI;
return x.msw != 0 || x.lsw != 0;
}
ARITH_DECL_BI_UU_U(plus)
{
useARI;
x.lsw = TLSW(x.lsw + y.lsw);
x.msw = TMSW(x.msw + y.msw);
if (x.lsw < y.lsw) x.msw = TMSW(x.msw + 1);
return x;
}
ARITH_DECL_BI_UU_U(minus)
{
return arith_op_u(plus)(aARI_ x, arith_op_u(neg)(aARI_ y));
}
ARITH_DECL_BI_UI_U(lsh)
{
useARI;
if (y == 0) return x;
#ifdef ARITHMETIC_CHECKS
if (y < 0) ARITH_WARNING(ARITH_EXCEP_LSH_C);
else if (y >= SIMUL_NUMBITS) ARITH_WARNING(ARITH_EXCEP_LSH_W);
#endif
y = (unsigned)y % SIMUL_NUMBITS;
if (y >= SIMUL_LSW_WIDTH) {
/*
* We use here the fact that the LSW size is always
* equal to or greater than the MSW size.
*/
x.msw = TMSW(x.lsw << (y - SIMUL_LSW_WIDTH));
x.lsw = 0;
return x;
}
x.msw = TMSW((x.msw << y) | (x.lsw >> (SIMUL_LSW_WIDTH - y)));
x.lsw = TLSW(x.lsw << y);
return x;
}
ARITH_DECL_BI_UI_U(rsh)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (y < 0) ARITH_WARNING(ARITH_EXCEP_RSH_C);
else if (y >= SIMUL_NUMBITS) ARITH_WARNING(ARITH_EXCEP_RSH_W);
#endif
y = (unsigned)y % SIMUL_NUMBITS;
if (y >= SIMUL_LSW_WIDTH) {
x.lsw = x.msw >> (y - SIMUL_LSW_WIDTH);
x.msw = 0;
return x;
}
x.lsw = TLSW((x.lsw >> y) | (x.msw << (SIMUL_LSW_WIDTH - y)));
x.msw >>= y;
return x;
}
ARITH_DECL_BI_UU_I(lt)
{
useARI;
return x.msw < y.msw || (x.msw == y.msw && x.lsw < y.lsw);
}
ARITH_DECL_BI_UU_I(leq)
{
useARI;
return x.msw < y.msw || (x.msw == y.msw && x.lsw <= y.lsw);
}
ARITH_DECL_BI_UU_I(gt)
{
return arith_op_u(lt)(aARI_ y, x);
}
ARITH_DECL_BI_UU_I(geq)
{
return arith_op_u(leq)(aARI_ y, x);
}
ARITH_DECL_BI_UU_I(same)
{
useARI;
return x.msw == y.msw && x.lsw == y.lsw;
}
ARITH_DECL_BI_UU_I(neq)
{
return !arith_op_u(same)(aARI_ x, y);
}
ARITH_DECL_BI_UU_U(and)
{
useARI;
x.msw &= y.msw;
x.lsw &= y.lsw;
return x;
}
ARITH_DECL_BI_UU_U(xor)
{
useARI;
x.msw ^= y.msw;
x.lsw ^= y.lsw;
return x;
}
ARITH_DECL_BI_UU_U(or)
{
useARI;
x.msw |= y.msw;
x.lsw |= y.lsw;
return x;
}
#undef SIMUL_LSW_ODDLEN
#undef SIMUL_LSW_HALFLEN
#undef SIMUL_LSW_HALFMASK
#define SIMUL_LSW_ODDLEN (SIMUL_LSW_WIDTH & 1)
#define SIMUL_LSW_HALFLEN (SIMUL_LSW_WIDTH / 2)
#define SIMUL_LSW_HALFMASK (~(~(SIMUL_ARITH_SUBTYPE)0 << SIMUL_LSW_HALFLEN))
ARITH_DECL_BI_UU_U(star)
{
arith_u z;
SIMUL_ARITH_SUBTYPE a = x.lsw, b = y.lsw, t00, t01, t10, t11, c = 0, t;
#if SIMUL_LSW_ODDLEN
SIMUL_ARITH_SUBTYPE bms = b & (SIMUL_ONE_TMP << (SIMUL_LSW_WIDTH - 1));
b &= ~(SIMUL_ONE_TMP << (SIMUL_LSW_WIDTH - 1));
#endif
useARI;
t00 = (a & SIMUL_LSW_HALFMASK) * (b & SIMUL_LSW_HALFMASK);
t01 = (a & SIMUL_LSW_HALFMASK) * (b >> SIMUL_LSW_HALFLEN);
t10 = (a >> SIMUL_LSW_HALFLEN) * (b & SIMUL_LSW_HALFMASK);
t11 = (a >> SIMUL_LSW_HALFLEN) * (b >> SIMUL_LSW_HALFLEN);
t = z.lsw = t00;
z.lsw = TLSW(z.lsw + (t01 << SIMUL_LSW_HALFLEN));
if (t > z.lsw) c ++;
t = z.lsw;
z.lsw = TLSW(z.lsw + (t10 << SIMUL_LSW_HALFLEN));
if (t > z.lsw) c ++;
#if SIMUL_LSW_ODDLEN
t = z.lsw;
z.lsw = TLSW(z.lsw + (t11 << (2 * SIMUL_LSW_HALFLEN)));
if (t > z.lsw) c ++;
if (bms && (a & SIMUL_ONE_TMP)) {
t = z.lsw;
z.lsw = TLSW(z.lsw + b);
if (t > z.lsw) c ++;
}
#endif
z.msw = TMSW(x.lsw * y.msw + x.msw * y.lsw + c
+ (t01 >> (SIMUL_LSW_WIDTH - SIMUL_LSW_HALFLEN))
+ (t10 >> (SIMUL_LSW_WIDTH - SIMUL_LSW_HALFLEN))
+ (t11 >> (SIMUL_LSW_WIDTH - (2 * SIMUL_LSW_HALFLEN))));
return z;
}
/*
* This function calculates the unsigned integer division, yielding
* both quotient and remainder. The divider (y) MUST be non-zero.
*/
static void arith_op_u(udiv)(pARI_ arith_u x, arith_u y, arith_u *q, arith_u *r)
{
int i, j;
arith_u a;
*q = SIMUL_ZERO;
for (i = SIMUL_NUMBITS - 1; i >= 0; i --) {
if (i >= (int)SIMUL_LSW_WIDTH
&& (y.msw & (SIMUL_ONE_TMP << (i - SIMUL_LSW_WIDTH))))
break;
if (i < (int)SIMUL_LSW_WIDTH && (y.lsw & (SIMUL_ONE_TMP << i)))
break;
}
a = arith_op_u(lsh)(aARI_ y, SIMUL_NUMBITS - 1 - i);
for (j = SIMUL_NUMBITS - 1 - i; j >= SIMUL_LSW_WIDTH; j --) {
if (arith_op_u(leq)(aARI_ a, x)) {
x = arith_op_u(minus)(aARI_ x, a);
q->msw |= SIMUL_ONE_TMP << (j - SIMUL_LSW_WIDTH);
}
a = arith_op_u(rsh)(aARI_ a, 1);
}
for (; j >= 0; j --) {
if (arith_op_u(leq)(aARI_ a, x)) {
x = arith_op_u(minus)(aARI_ x, a);
q->lsw |= SIMUL_ONE_TMP << j;
}
a = arith_op_u(rsh)(aARI_ a, 1);
}
*r = x;
}
ARITH_DECL_BI_UU_U(slash)
{
arith_u q, r;
if (arith_op_u(same)(aARI_ y, SIMUL_ZERO))
ARITH_ERROR(ARITH_EXCEP_SLASH_D);
arith_op_u(udiv)(aARI_ x, y, &q, &r);
return q;
}
ARITH_DECL_BI_UU_U(pct)
{
arith_u q, r;
if (arith_op_u(same)(aARI_ y, SIMUL_ZERO))
ARITH_ERROR(ARITH_EXCEP_PCT_D);
arith_op_u(udiv)(aARI_ x, y, &q, &r);
return r;
}
#undef SIMUL_TRAP
#undef SIMUL_TRAPL
#define SIMUL_TRAP (SIMUL_ONE_TMP << (SIMUL_MSW_WIDTH - 1))
#define SIMUL_TRAPL (SIMUL_ONE_TMP << (SIMUL_LSW_WIDTH - 1))
ARITH_DECL_MONO_U_S(to_s)
{
useARI;
#ifdef ARITHMETIC_CHECKS
if (x.msw & SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_CONV_O);
#endif
return x;
}
ARITH_DECL_MONO_I_S(fromint) { return arith_op_u(fromint)(aARI_ x); }
ARITH_DECL_MONO_L_S(fromlong)
{
if (x < 0) return arith_op_u(neg)(aARI_
arith_op_u(fromulong)(aARI_ (unsigned long)(-x)));
return arith_op_u(fromulong)(aARI_ (unsigned long)x);
}
ARITH_DECL_MONO_S_I(toint)
{
if (x.msw & SIMUL_TRAP) return -arith_op_u(toint)(aARI_ arith_op_u(neg)(aARI_ x));
return arith_op_u(toint)(aARI_ x);
}
ARITH_DECL_MONO_S_L(tolong)
{
if (x.msw & SIMUL_TRAP)
return -(long)arith_op_u(toulong)(aARI_ arith_op_u(neg)(aARI_ x));
return (long)arith_op_u(toulong)(aARI_ x);
}
ARITH_DECL_MONO_S_S(neg)
{
#ifdef ARITHMETIC_CHECKS
if (x.lsw == 0 && x.msw == SIMUL_TRAP)
ARITH_WARNING(ARITH_EXCEP_NEG_O);
#endif
return arith_op_u(neg)(aARI_ x);
}
ARITH_DECL_MONO_S_S(not) { return arith_op_u(not)(aARI_ x); }
ARITH_DECL_MONO_S_I(lnot) { return arith_op_u(lnot)(aARI_ x); }
ARITH_DECL_MONO_S_I(lval) { return arith_op_u(lval)(aARI_ x); }
ARITH_DECL_BI_SS_S(plus)
{
arith_u z = arith_op_u(plus)(aARI_ x, y);
#ifdef ARITHMETIC_CHECKS
if (x.msw & y.msw & ~z.msw & SIMUL_TRAP)
ARITH_WARNING(ARITH_EXCEP_PLUS_U);
else if (~x.msw & ~y.msw & z.msw & SIMUL_TRAP)
ARITH_WARNING(ARITH_EXCEP_PLUS_O);
#endif
return z;
}
ARITH_DECL_BI_SS_S(minus)
{
arith_s z = arith_op_u(minus)(aARI_ x, y);
#ifdef ARITHMETIC_CHECKS
if (x.msw & ~y.msw & ~z.msw & SIMUL_TRAP)
ARITH_WARNING(ARITH_EXCEP_MINUS_U);
else if (~x.msw & y.msw & z.msw & SIMUL_TRAP)
ARITH_WARNING(ARITH_EXCEP_MINUS_O);
#endif
return z;
}
/*
* Since signed and unsigned widths are equal for the simulated type,
* we can use the unsigned left shift function, which performs the
* the checks on the type width.
*/
ARITH_DECL_BI_SI_S(lsh)
{
arith_s z = arith_op_u(lsh)(aARI_ x, y);
#ifdef ARITHMETIC_CHECKS
if (x.msw & SIMUL_TRAP) ARITH_WARNING(ARITH_EXCEP_LSH_U);
else {
/*
* To check for possible overflow, we right shift the
* result. We need to make the shift count proper so that
* we do not emit a double-warning. Besides, the left shift
* could have been untruncated but yet affet the sign bit,
* so we must test this explicitly.
*/
arith_s w = arith_op_u(rsh)(aARI_ z, (unsigned)y % SIMUL_NUMBITS);
if ((z.msw & SIMUL_TRAP) || w.msw != x.msw || w.lsw != x.lsw)
ARITH_WARNING(ARITH_EXCEP_LSH_O);
}
#endif
return z;
}
/*
* We define that right shifting a negative value, besides being worth a
* warning, duplicates the sign bit. This is the most useful and most
* usually encountered behaviour, and the standard allows it.
*/
ARITH_DECL_BI_SI_S(rsh)
{
int xn = (x.msw & SIMUL_TRAP) != 0;
arith_s z = arith_op_u(rsh)(aARI_ x, y);
int gy = (unsigned)y % SIMUL_NUMBITS;
#ifdef ARITHMETIC_CHECKS
if (xn) ARITH_WARNING(ARITH_EXCEP_RSH_N);
#endif
if (xn && gy > 0) {
if (gy <= SIMUL_MSW_WIDTH) {
z.msw |= TMSW(~(SIMUL_MSW_MASK >> gy));
} else {
z.msw = SIMUL_MSW_MASK;
z.lsw |= TLSW(~(SIMUL_LSW_MASK
>> (gy - SIMUL_MSW_WIDTH)));
}
}
return z;
}
ARITH_DECL_BI_SS_I(lt)
{
int xn = (x.msw & SIMUL_TRAP) != 0;
int yn = (y.msw & SIMUL_TRAP) != 0;
useARI;
if (xn == yn) {
return x.msw < y.msw || (x.msw == y.msw && x.lsw < y.lsw);
} else {
return xn;
}
}
ARITH_DECL_BI_SS_I(leq)
{
int xn = (x.msw & SIMUL_TRAP) != 0;
int yn = (y.msw & SIMUL_TRAP) != 0;
useARI;
if (xn == yn) {
return x.msw < y.msw || (x.msw == y.msw && x.lsw <= y.lsw);
} else {
return xn;
}
}
ARITH_DECL_BI_SS_I(gt)
{
return arith_op_s(lt)(aARI_ y, x);
}
ARITH_DECL_BI_SS_I(geq)
{
return arith_op_s(leq)(aARI_ y, x);
}
ARITH_DECL_BI_SS_I(same)
{
useARI;
return x.msw == y.msw && x.lsw == y.lsw;
}
ARITH_DECL_BI_SS_I(neq)
{
return !arith_op_s(same)(aARI_ x, y);
}
ARITH_DECL_BI_SS_S(and)
{
return arith_op_u(and)(aARI_ x, y);
}
ARITH_DECL_BI_SS_S(xor)
{
return arith_op_u(xor)(aARI_ x, y);
}
ARITH_DECL_BI_SS_S(or)
{
return arith_op_u(or)(aARI_ x, y);
}
/*
* This function calculates the signed integer division, yielding
* both quotient and remainder. The divider (y) MUST be non-zero.
*/
static void arith_op_s(sdiv)(pARI_ arith_s x, arith_s y, arith_s *q, arith_s *r)
{
arith_u a = x, b = y, c, d;
int xn = 0, yn = 0;
if (x.msw & SIMUL_TRAP) { a = arith_op_u(neg)(aARI_ x); xn = 1; }
if (y.msw & SIMUL_TRAP) { b = arith_op_u(neg)(aARI_ y); yn = 1; }
arith_op_u(udiv)(aARI_ a, b, &c, &d);
if (xn != yn) *q = arith_op_u(neg)(aARI_ c); else *q = c;
if (xn != yn) *r = arith_op_u(neg)(aARI_ d); else *r = d;
}
/*
* Overflow/underflow check is done the following way: obvious cases
* are checked (both upper words non-null, both upper words null...)
* and border-line occurrences are verified with an unsigned division
* (which is quite computationaly expensive).
*/
ARITH_DECL_BI_SS_S(star)
{
#ifdef ARITHMETIC_CHECKS
arith_s z = arith_op_u(star)(aARI_ x, y);
int warn = 0;
if (x.msw > 0) {
if (y.msw > 0
#if SIMUL_LSW_ODDLEN
|| (y.lsw & SIMUL_TRAPL)
#endif
) warn = 1;
}
#if SIMUL_LSW_ODDLEN
else if (y.msw > 0 && (x.lsw & SIMUL_TRAPL)) warn = 1;
#endif
if (!warn && (x.msw > 0 || y.msw > 0
#if SIMUL_LSW_ODDLEN
|| ((x.lsw | y.lsw) & SIMUL_TRAPL)
#endif
)) {
if (x.msw == SIMUL_MSW_MASK && x.lsw == SIMUL_LSW_MASK) {
if (y.msw == SIMUL_TRAP && y.lsw == 0) warn = 1;
} else if (!(x.msw == 0 && x.lsw == 0)
&& !arith_op_s(same)(aARI_ arith_op_s(slash)(aARI_ z, x), y)) {
} warn = 1;
}
if (warn) ARITH_WARNING(((x.msw ^ y.msw) & SIMUL_TRAP)
? ARITH_EXCEP_STAR_U : ARITH_EXCEP_STAR_O);
return z;
#else
return arith_op_u(star)(aARI_ x, y);
#endif
}
ARITH_DECL_BI_SS_S(slash)
{
arith_s q, r;
if (arith_op_s(same)(aARI_ y, SIMUL_ZERO))
ARITH_ERROR(ARITH_EXCEP_SLASH_D);
else if (x.msw == SIMUL_TRAP && x.lsw == 0
&& y.msw == SIMUL_MSW_MASK && y.lsw == SIMUL_LSW_MASK)
ARITH_ERROR(ARITH_EXCEP_SLASH_O);
arith_op_s(sdiv)(aARI_ x, y, &q, &r);
return q;
}
ARITH_DECL_BI_SS_S(pct)
{
arith_s q, r;
if (arith_op_s(same)(aARI_ y, SIMUL_ZERO))
ARITH_ERROR(ARITH_EXCEP_PCT_D);
arith_op_s(sdiv)(aARI_ x, y, &q, &r);
return r;
}
ARITH_DECL_MONO_ST_US(octconst)
{
arith_u z = { 0, 0 };
for (; ARITH_OCTAL(*c); c ++) {
unsigned w = ARITH_OVAL(*c);
if (z.msw > (SIMUL_MSW_MASK / 8))
ARITH_ERROR(ARITH_EXCEP_CONST_O);
z = arith_op_u(lsh)(aARI_ z, 3);
z.lsw |= w;
}
*ru = z;
if (z.msw & SIMUL_TRAP) {
*sp = 0;
} else {
*rs = z;
*sp = 1;
}
return c;
}
ARITH_DECL_MONO_ST_US(decconst)
{
#define ARITH_ALPHA_TRAP (1U << (SIMUL_MSW_WIDTH - 1))
#define ARITH_ALPHA_MASK (ARITH_ALPHA_TRAP | (ARITH_ALPHA_TRAP - 1))
#define ARITH_ALPHA ((ARITH_ALPHA_MASK - 10 * (ARITH_ALPHA_TRAP / 5)) + 1)
#define ARITH_ALPHA_A ((SIMUL_MSW_MASK - 10 * (SIMUL_TRAP / 5)) + 1)
arith_u z = { 0, 0 };
for (; ARITH_DECIM(*c); c ++) {
unsigned w = ARITH_DVAL(*c);
SIMUL_ARITH_SUBTYPE t;
if (z.msw > (SIMUL_MSW_MASK / 10)
|| (z.msw == (SIMUL_MSW_MASK / 10) &&
/* ARITH_ALPHA is between 1 and 9, inclusive. */
#if ARITH_ALPHA == 5
z.lsw >= SIMUL_TRAPL
#else
z.lsw > ((SIMUL_TRAPL / 5) * ARITH_ALPHA_A
+ ((SIMUL_TRAPL % 5) * ARITH_ALPHA_A) / 5)
#endif
)) ARITH_ERROR(ARITH_EXCEP_CONST_O);
z = arith_op_u(plus)(aARI_ arith_op_u(lsh)(aARI_ z, 3),
arith_op_u(lsh)(aARI_ z, 1));
t = TLSW(z.lsw + w);
if (t < z.lsw) {
if (TMSW(z.msw + 1) == 0)
ARITH_ERROR(ARITH_EXCEP_CONST_O);
z.msw ++;
}
z.lsw = t;
}
*ru = z;
if (z.msw & SIMUL_TRAP) {
*sp = 0;
} else {
*rs = z;
*sp = 1;
}
return c;
#undef ARITH_ALPHA_A
#undef ARITH_ALPHA
#undef ARITH_ALPHA_TRAP
#undef ARITH_ALPHA_MASK
}
ARITH_DECL_MONO_ST_US(hexconst)
{
arith_u z = { 0, 0 };
for (; ARITH_HEXAD(*c); c ++) {
unsigned w = ARITH_HVAL(*c);
if (z.msw > (SIMUL_MSW_MASK / 16))
ARITH_ERROR(ARITH_EXCEP_CONST_O);
z = arith_op_u(lsh)(aARI_ z, 4);
z.lsw |= w;
}
*ru = z;
if (z.msw & SIMUL_TRAP) {
*sp = 0;
} else {
*rs = z;
*sp = 1;
}
return c;
}
#endif
#undef ARITH_HVAL
#undef ARITH_HEXAD
#undef ARITH_DVAL
#undef ARITH_DECIM
#undef ARITH_OVAL
#undef ARITH_OCTAL
|