File: list.c

package info (click to toggle)
libconvert-binary-c-perl 0.85-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 13,260 kB
  • sloc: ansic: 47,820; perl: 4,980; yacc: 2,143; makefile: 61
file content (854 lines) | stat: -rw-r--r-- 20,404 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
/*******************************************************************************
*
* MODULE: list
*
********************************************************************************
*
* DESCRIPTION: Generic routines for a doubly linked ring list
*
********************************************************************************
*
* Copyright (c) 2002-2024 Marcus Holland-Moritz. All rights reserved.
* This program is free software; you can redistribute it and/or modify
* it under the same terms as Perl itself.
*
*******************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include "ccattr.h"
#include "memalloc.h"
#include "list.h"

/*----------*/
/* Typedefs */
/*----------*/
typedef struct _link Link;

struct _link {
  void *pObj;
  Link *prev;
  Link *next;
};

struct _linkedList {
  Link  link;
  int   size;
#ifdef DEBUG_UTIL_LIST
  unsigned state;
#endif
};

#ifdef DEBUG_UTIL_LIST
#  define CHANGE_STATE(list)   (list)->state++
#else
#  define CHANGE_STATE(list)   (void) 0
#endif

/*------------------*/
/* Static Functions */
/*------------------*/
static inline Link *GetLink( LinkedList list, int item );
static inline void *Extract( LinkedList list, Link *pLink );
static inline Link *Insert( LinkedList list, Link *pLink, void *pObj );
static void QuickSort( Link *l, Link *r, int size, LLCompareFunc cmp );


/************************************************************
*
*  S T A T I C   F U N C T I O N S
*
************************************************************/

/*
 *  GetLink
 *
 *  Get a link by item number.
 *
 *  0 <= item < list->size
 *    returns a pointer to the (item)th link
 *
 *  -(list->size) <= item < 0
 *    returns a pointer to the (list->size+item)th link
 *
 *  otherwise
 *    return NULL
 */

static inline Link *GetLink( LinkedList list, int item )
{
  Link *pLink = &list->link;

  if( item < 0 ) {
    if( -item > list->size )  /* -1 is last item */
      return NULL;

    while( item++ < 0 )
      pLink = pLink->prev;
  }
  else { /* item > 0 */
    if( item >= list->size )  /* 0 is first item */
      return NULL;

    while( item-- >= 0 )
      pLink = pLink->next;
  }

  return pLink;
}

/*
 *  Extract
 *
 *  Extracts a link from its list, frees its
 *  resources and returns a pointer to the
 *  associated object.
 */

static inline void *Extract( LinkedList list, Link *pLink )
{
  void *pObj = pLink->pObj;

  pLink->prev->next = pLink->next;
  pLink->next->prev = pLink->prev;

  list->size--;

  Free( pLink );

  return pObj;
}

/*
 *  Insert
 *
 *  Inserts a new link associated with pObj _before_
 *  the link pointed to by pLink and returns a pointer
 *  to the inserted link.
 */

static inline Link *Insert( LinkedList list, Link *pLink, void *pObj )
{
  Link *pLinkNew;

  AllocF( Link *, pLinkNew, sizeof( Link ) );

  pLinkNew->pObj = pObj;

  pLinkNew->prev = pLink->prev;
  pLinkNew->next = pLink;

  pLink->prev->next = pLinkNew;
  pLink->prev       = pLinkNew;

  list->size++;

  return pLinkNew;
}

/*
 *  QuickSort
 *
 *  Adapted quick sort algorithm.
 */

static void QuickSort( Link *l, Link *r, int size, LLCompareFunc cmp )
{
  Link *i, *j;
  void *p, *t;
  int lp, rp;

  /* determine pivot */
  lp = size / 2;
  for( i=l; --lp > 0; i=i->next );
  p = i->pObj;

  /* initialize vars */
  i = l; j = r;
  lp = 0; rp = size-1;

  /* sort */
  for(;;) {
    while( cmp( i->pObj, p ) < 0 )
      i = i->next, lp++;
    if( lp > rp ) break;

    while( cmp( j->pObj, p ) > 0 )
      j = j->prev, rp--;
    if( lp > rp ) break;

    /* swap elements */
    t = i->pObj;
    i->pObj = j->pObj;
    j->pObj = t;

    i = i->next; lp++;
    j = j->prev; rp--;
  }

  if( rp+1 > 1 )
    QuickSort( l, j, rp+1, cmp );

  if( size-lp > 1 )
    QuickSort( i, r, size-lp, cmp );
}

/************************************************************
*
*  G L O B A L   F U N C T I O N S
*
************************************************************/

/**
 *  Constructor
 *
 *  Using the LL_new() function you create an empty linked
 *  list. If the term linked list scares you, just think of
 *  it as a flexible array, because the Linked List Library
 *  won't let you deal with links at all.
 *
 *  \return A handle to the newly created linked list.
 *
 *  \see LL_delete() and LL_destroy()
 */

LinkedList LL_new( void )
{
  LinkedList list;

  AllocF( LinkedList, list, sizeof( struct _linkedList ) );

  list->link.prev = list->link.next = &list->link;
  list->link.pObj = NULL;
  list->size      = 0;

#ifdef DEBUG_UTIL_LIST
  list->state     = 0;
#endif

  return list;
}

/**
 *  Destructor
 *
 *  LL_delete() will free the resources occupied by a
 *  linked list. The function will fail silently if the
 *  associated list is not empty.
 *  You can also delete a list that is not empty by
 *  using the LL_destroy() function.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \see LL_new() and LL_destroy()
 */

void LL_delete( LinkedList list )
{
  if( list == NULL || list->size )
    return;

  CHANGE_STATE(list);

  Free( list );
}

/**
 *  Remove all elements from a list
 *
 *  LL_flush() will remove all elements from a linked list,
 *  optionally calling a destructor function. It will not
 *  free the resources occupied by the list itself.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param destroy      Pointer to the destructor function
 *                      of the objects contained in the list.
 *                      You can pass NULL if you don't want
 *                      LL_flush() to call object destructors.
 *
 *  \see LL_destroy()
 */

void LL_flush( LinkedList list, LLDestroyFunc destroy )
{
  void *pObj;

  if( list == NULL )
    return;

  CHANGE_STATE(list);

  while( (pObj = LL_shift( list )) != NULL )
    if( destroy ) destroy( pObj );
}

/**
 *  Extended Destructor
 *
 *  LL_destroy() will, like LL_delete(), free the resources
 *  occupied by a linked list. However, it will empty the
 *  the list prior to deleting it, like LL_flush().
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param destroy      Pointer to the destructor function
 *                      of the objects contained in the list.
 *                      You can pass NULL if you don't want
 *                      LL_destroy() to call object destructors.
 *
 *  \see LL_new(), LL_delete() and LL_flush()
 */

void LL_destroy( LinkedList list, LLDestroyFunc destroy )
{
  if( list == NULL )
    return;

  CHANGE_STATE(list);

  LL_flush( list, destroy );
  LL_delete( list );
}

/**
 *  Cloning a linked list
 *
 *  Using the LL_clone() function to create an exact copy
 *  of a linked list. If the objects stored in the list
 *  need to be cloned as well, you can pass a pointer to
 *  a function that clones each element.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param func         Pointer to the cloning function of
 *                      the objects contained in the list.
 *                      If you pass NULL, the original
 *                      object is stored in the cloned list
 *                      instead of a cloned object.
 *
 *  \return A handle to the cloned linked list.
 *
 *  \see LL_new()
 */

LinkedList LL_clone( ConstLinkedList list, LLCloneFunc func )
{
  ListIterator li;
  LinkedList clone;
  void *pObj;

  if( list == NULL )
    return NULL;

  clone = LL_new();

  LL_foreach(pObj, li, list)
    LL_push(clone, func ? func(pObj) : pObj);

  return clone;
}

/**
 *  Current size of a list
 *
 *  LL_count() will return the the number of objects that
 *  a linked list contains.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \return The size of the list or -1 if an invalid handle
 *          was passed.
 */

int LL_count( ConstLinkedList list )
{
  if( list == NULL )
    return -1;

  AssertValidPtr( list );

  return list->size;
}

/**
 *  Add element to the end of a list.
 *
 *  LL_push() will add a new element to the end of a list.
 *  If you think of the list as a stack, the function pushes
 *  a new element on top of the stack.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param pObj         Pointer to an object associated with
 *                      the new list element. The function
 *                      will not add a new element if this
 *                      is NULL.
 *
 *  \see LL_pop()
 */

void LL_push( LinkedList list, void *pObj )
{
  if( list == NULL || pObj == NULL )
    return;

  AssertValidPtr( list );

  CHANGE_STATE(list);

  (void) Insert( list, &list->link, pObj );
}

/**
 *  Remove element from the end of a list.
 *
 *  LL_pop() will remove the last element from a list.
 *  If you think of the list as a stack, the function pops
 *  an element of the stack.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \return Pointer to the object that was associated with
 *          the element removed from the list. If the list
 *          is empty, NULL will be returned.
 *
 *  \see LL_push()
 */

void *LL_pop( LinkedList list )
{
  if( list == NULL || list->size == 0 )
    return NULL;

  AssertValidPtr( list );

  CHANGE_STATE(list);

  return Extract( list, list->link.prev );
}

/**
 *  Add element to the start of a list.
 *
 *  LL_unshift() will add a new element to the beginning of a
 *  list, right before the first element. For an empty list
 *  this is equivalent to calling LL_push().
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param pObj         Pointer to an object associated with
 *                      the new list element. The function
 *                      will not add a new element if this
 *                      is NULL.
 *
 *  \see LL_shift()
 */

void LL_unshift( LinkedList list, void *pObj )
{
  if( list == NULL || pObj == NULL )
    return;

  AssertValidPtr( list );

  CHANGE_STATE(list);

  (void) Insert( list, list->link.next, pObj );
}

/**
 *  Remove element from the start of a list.
 *
 *  LL_shift() will remove the first element from a list.
 *  If the list contains only a single element, this is
 *  equivalent to calling LL_pop().
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \return Pointer to the object that was associated with
 *          the element removed from the list. If the list
 *          is empty, NULL will be returned.
 *
 *  \see LL_unshift()
 */

void *LL_shift( LinkedList list )
{
  if( list == NULL || list->size == 0 )
    return NULL;

  AssertValidPtr( list );

  CHANGE_STATE(list);

  return Extract( list, list->link.next );
}

/**
 *  Insert a new element into a list.
 *
 *  Using LL_insert(), you can insert a new element at an
 *  arbitrary position in the list.
 *  If \a item is out of the valid range, the element will
 *  not be added.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param item         Position where the new element should
 *                      be inserted.\n
 *                      A value of 0 will insert
 *                      the new element at the start of the
 *                      list, like LL_unshift() would do. A
 *                      value of LL_count() would insert the
 *                      element at the end of the list, like
 *                      LL_push() would do. A negative value
 *                      will count backwards from the end of
 *                      the list. So a value of -1 would also
 *                      add the new element to the end of the
 *                      list.
 *
 *  \param pObj         Pointer to an object associated with
 *                      the new list element. The function
 *                      will not add a new element if this
 *                      is NULL.
 *
 *  \see LL_extract()
 */

void LL_insert( LinkedList list, int item, void *pObj )
{
  Link *pLink;

  if( list == NULL || pObj == NULL )
    return;

  AssertValidPtr( list );

  CHANGE_STATE(list);

  /*
   * We have to do some faking here because adding to the end
   * of the list is a more natural result for item == -1 than
   * adding to the position _before_ the last element would be
   */
  if( item < 0 )
    pLink = item == -1 ? &list->link : GetLink( list, item+1 );
  else
    pLink = item == list->size ? &list->link : GetLink( list, item );

  if( pLink == NULL )
    return;

  (void) Insert( list, pLink, pObj );
}

/**
 *  Extract an element from a list.
 *
 *  LL_extract() will remove an arbitrary element from the
 *  list and return a pointer to the associated object.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param item         Position of the element that should
 *                      be extracted.\n
 *                      A value of 0 will extract the first
 *                      element, like LL_shift(). A negative
 *                      value will count backwards from the
 *                      end of the list. So a value of -1
 *                      will extract the last element, which
 *                      will be equivalent to LL_pop().
 *
 *  \return Pointer to the object that was associated with
 *          the element removed from the list. If the list
 *          is empty or \a item is out of range, NULL will
 *          be returned.
 *
 *  \see LL_insert()
 */

void *LL_extract( LinkedList list, int item )
{
  Link *pLink;

  if( list == NULL || list->size == 0 )
    return NULL;

  AssertValidPtr( list );

  CHANGE_STATE(list);

  pLink = GetLink( list, item );

  if( pLink == NULL )
    return NULL;

  return Extract( list, pLink );
}

/**
 *  Get the element of a list.
 *
 *  LL_get() will simply return a pointer to the object
 *  associated with a certain list element.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param item         Position of the element. Negative
 *                      positions count backwards from the
 *                      end of the list, so -1 would refer
 *                      to the last element.
 *
 *  \return Pointer to the object that is associated with
 *          the element. If the list is empty or \a item
 *          is out of range, NULL will be returned.
 */

void *LL_get( ConstLinkedList list, int item )
{
  Link *pLink;

  if( list == NULL || list->size == 0 )
    return NULL;

  AssertValidPtr( list );

  pLink = GetLink( (LinkedList) list, item );

  return pLink ? pLink->pObj : NULL;
}

/**
 *  Perform different list transformations.
 *
 *  LL_splice() can be used for a variety of list transformations
 *  and is similar to Perl's splice builtin. In brief,
 *  LL_splice() will extract \a length elements starting at
 *  \a offset from \a list, replace them by the elements in
 *  \a rlist and return a new list holding the extracted elements.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param offset       Offset of the first element to extract.
 *                      If negative, counts backwards from the
 *                      end.
 *
 *  \param length       Length of the list to extract. If negative,
 *                      all remaining elements will be extracted.
 *                      If \a length is larger than the number of
 *                      remaining elements, only the remaining
 *                      elements will be extracted. If this is 0,
 *                      no elements will be extracted. However,
 *                      an empty list will still be returned.
 *
 *  \param rlist        List that will replace the extracted
 *                      elements. If no elements were extracted,
 *                      the elements of \a rlist will just be
 *                      inserted at \a offset. If \a rlist is
 *                      NULL, no replacement elements will be
 *                      inserted. The list will be automatically
 *                      destroyed after the elements have been
 *                      inserted into \a list.
 *
 *  \return Handle to a new list holding the extracted elements,
 *          if any. NULL if LL_splice() fails for some reason.
 */

LinkedList LL_splice( LinkedList list, int offset, int length, LinkedList rlist )
{
  LinkedList nlist;
  Link *pLink, *pLast;

  if( list == NULL )
    return NULL;

  AssertValidPtr( list );

  CHANGE_STATE(list);

  pLink = offset == list->size ? &list->link : GetLink( list, offset );

  if( pLink == NULL )
    return NULL;

  nlist = LL_new();

  if( nlist == NULL )
    return NULL;

  if( length < 0 )
    length = offset < 0 ? -offset : list->size - offset;

  if( length > 0 ) {
    pLast = pLink;

    while( ++nlist->size < length && pLast->next->pObj )
      pLast = pLast->next;

    pLink->prev->next = pLast->next;
    pLast->next->prev = pLink->prev;

    nlist->link.next = pLink;
    nlist->link.prev = pLast;

    pLink->prev = &nlist->link;
    pLink       = pLast->next;
    pLast->next = &nlist->link;

    list->size -= nlist->size;
  }

  if( rlist ) {
    pLast = pLink;
    pLink = pLink->prev;

    rlist->link.next->prev = pLink;
    rlist->link.prev->next = pLast;

    pLink->next = rlist->link.next;
    pLast->prev = rlist->link.prev;

    list->size += rlist->size;

    Free( rlist );
  }

  return nlist;
}

/**
 *  Initialize list iterator.
 *
 *  LI_init() will initialize a list iterator object.
 *  Keep in mind that modifying the list invalidates all
 *  list iterators.
 *
 *  \param it           Pointer to a list iterator object.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \see LI_next(), LI_prev() and LI_curr()
 */

void LI_init(ListIterator *it, ConstLinkedList list)
{
  it->list = list;

  if (list)
  {
    AssertValidPtr(list);
    it->cur = &list->link;
#ifdef DEBUG_UTIL_LIST
    it->orig_state = list->state;
#endif
  }
}

/**
 *  Move iterator to next list element.
 *
 *  LI_next() will advance to the next element in the list.
 *
 *  \param it           Pointer to a list iterator object.
 *
 *  \return Nonzero as long as the next element is valid,
 *          zero at the end of the list.
 *
 *  \see LI_init(), LI_prev() and LI_curr()
 */

int LI_next(ListIterator *it)
{
  if (it == NULL || it->list == NULL)
    return 0;

  AssertValidPtr(it->list);

#ifdef DEBUG_UTIL_LIST
  assert(it->orig_state == it->list->state);
#endif

  it->cur = it->cur->next;

  return it->cur != &it->list->link;
}

/**
 *  Move iterator to previous list element.
 *
 *  LI_prev() will advance to the previous element in the list.
 *
 *  \param it           Pointer to a list iterator object.
 *
 *  \return Nonzero as long as the previous element is valid,
 *          zero at the beginning of the list.
 *
 *  \see LI_init(), LI_next() and LI_curr()
 */

int LI_prev(ListIterator *it)
{
  if (it == NULL || it->list == NULL)
    return 0;

  AssertValidPtr(it->list);

  it->cur = it->cur->prev;

  return it->cur != &it->list->link;
}

/**
 *  Return the object associated with the current list element.
 *
 *  LI_curr() will return a pointer to the current object.
 *
 *  \param it           Pointer to a list iterator object.
 *
 *  \return Pointer to the current object in the list.
 *
 *  \see LI_init(), LI_next() and LI_prev()
 */

void *LI_curr(const ListIterator *it)
{
  if (it == NULL || it->list == NULL)
    return NULL;

  AssertValidPtr(it->list);

  return it->cur->pObj;
}

/**
 *  Sort list elements.
 *
 *  LL_sort() will sort a list using a quicksort algorithm.
 *  The sorted list will be in ascending order.
 *
 *  \param list         Handle to an existing linked list.
 *
 *  \param cmp          Pointer to a comparison function.
 *                      This function is called with a pair
 *                      of pointers to objects in the list
 *                      and must return
 *                      - a negative value if the first
 *                        argument is less than the second
 *                      - a positive value if the first
 *                        argument is greater than the second
 *                      - zero if the first both arguments
 *                        are considered to be equal
 */

void LL_sort( LinkedList list, LLCompareFunc cmp )
{
  if( list == NULL || list->size <= 1 )
    return;

  AssertValidPtr( list );

  QuickSort( list->link.next, list->link.prev, list->size, cmp );
}