1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
/* _PDCLIB_mktime_tzname( struct state *, struct tm *, bool )
This file is part of the Public Domain C Library (PDCLib).
Permission is granted to use, modify, and / or redistribute at will.
*/
#ifndef REGTEST
#include "pdclib/_PDCLIB_tzcode.h"
/* Adapted from code provided by Robert Elz, who writes:
The "best" way to do mktime I think is based on an idea of Bob
Kridle's (so its said...) from a long time ago.
It does a binary search of the time_t space. Since time_t's are
just 32 bits, its a max of 32 iterations (even at 64 bits it
would still be very reasonable).
*/
#ifndef WRONG
#define WRONG (-1)
#endif
/* Normalize logic courtesy Paul Eggert. */
static bool increment_overflow32( int_fast32_t * lp, int m )
{
int_fast32_t const l = *lp;
if ( ( l >= 0 ) ? ( m > _PDCLIB_INT_FAST32_MAX - l ) : ( m < _PDCLIB_INT_FAST32_MIN - l ) )
{
return true;
}
*lp += m;
return false;
}
static bool normalize_overflow( int * tensptr, int * unitsptr, int base )
{
int tensdelta;
tensdelta = ( *unitsptr >= 0 ) ?
( *unitsptr / base ) :
( -1 - ( -1 - *unitsptr ) / base );
*unitsptr -= tensdelta * base;
return _PDCLIB_increment_overflow( tensptr, tensdelta );
}
static bool normalize_overflow32( int_fast32_t * tensptr, int * unitsptr, int base )
{
int tensdelta;
tensdelta = ( *unitsptr >= 0 ) ?
( *unitsptr / base ) :
( -1 - ( -1 - *unitsptr ) / base );
*unitsptr -= tensdelta * base;
return increment_overflow32( tensptr, tensdelta );
}
static int tmcomp( const struct tm * atmp, const struct tm * btmp )
{
int result;
if ( atmp->tm_year != btmp->tm_year )
{
return atmp->tm_year < btmp->tm_year ? -1 : 1;
}
if ( ( result = ( atmp->tm_mon - btmp->tm_mon ) ) == 0 &&
( result = ( atmp->tm_mday - btmp->tm_mday ) ) == 0 &&
( result = ( atmp->tm_hour - btmp->tm_hour ) ) == 0 &&
( result = ( atmp->tm_min - btmp->tm_min ) ) == 0 )
{
result = atmp->tm_sec - btmp->tm_sec;
}
return result;
}
static time_t time2sub( struct tm * tmp, struct tm *(*funcp)( struct state const *, time_t const *, int_fast32_t, struct tm * ), struct state const * sp, const int_fast32_t offset, bool * okayp, bool do_norm_secs )
{
int dir;
int i, j;
int saved_seconds;
int_fast32_t li;
time_t lo;
time_t hi;
int_fast32_t y;
time_t newt;
time_t t;
struct tm yourtm, mytm;
*okayp = false;
yourtm = *tmp;
if ( do_norm_secs )
{
if ( normalize_overflow( &yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN ) )
{
return WRONG;
}
}
if ( normalize_overflow( &yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR ) )
{
return WRONG;
}
if ( normalize_overflow( &yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY ) )
{
return WRONG;
}
y = yourtm.tm_year;
if ( normalize_overflow32( &y, &yourtm.tm_mon, MONSPERYEAR ) )
{
return WRONG;
}
/* Turn y into an actual year number for now.
It is converted back to an offset from TM_YEAR_BASE later.
*/
if ( increment_overflow32( &y, TM_YEAR_BASE ) )
{
return WRONG;
}
while ( yourtm.tm_mday <= 0 )
{
if ( increment_overflow32( &y, -1 ) )
{
return WRONG;
}
li = y + ( 1 < yourtm.tm_mon );
yourtm.tm_mday += year_lengths[ _PDCLIB_is_leap( li ) ];
}
while ( yourtm.tm_mday > DAYSPERLYEAR )
{
li = y + ( 1 < yourtm.tm_mon );
yourtm.tm_mday -= year_lengths[ _PDCLIB_is_leap( li ) ];
if ( increment_overflow32( &y, 1 ) )
{
return WRONG;
}
}
for ( ; ; )
{
i = mon_lengths[ _PDCLIB_is_leap( y ) ][ yourtm.tm_mon ];
if ( yourtm.tm_mday <= i )
{
break;
}
yourtm.tm_mday -= i;
if ( ++yourtm.tm_mon >= MONSPERYEAR )
{
yourtm.tm_mon = 0;
if ( increment_overflow32( &y, 1 ) )
{
return WRONG;
}
}
}
if ( increment_overflow32( &y, -TM_YEAR_BASE ) )
{
return WRONG;
}
if ( ! ( _PDCLIB_INT_MIN <= y && y <= _PDCLIB_INT_MAX ) )
{
return WRONG;
}
yourtm.tm_year = y;
if ( yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN )
{
saved_seconds = 0;
}
else if ( y + TM_YEAR_BASE < EPOCH_YEAR )
{
/* We can't set tm_sec to 0, because that might push the
time below the minimum representable time.
Set tm_sec to 59 instead.
This assumes that the minimum representable time is
not in the same minute that a leap second was deleted from,
which is a safer assumption than using 58 would be.
*/
if ( _PDCLIB_increment_overflow( &yourtm.tm_sec, 1 - SECSPERMIN ) )
{
return WRONG;
}
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = SECSPERMIN - 1;
}
else
{
saved_seconds = yourtm.tm_sec;
yourtm.tm_sec = 0;
}
/* Do a binary search (this works whatever time_t's type is). */
lo = _PDCLIB_TIME_MIN;
hi = _PDCLIB_TIME_MAX;
for ( ; ; )
{
t = lo / 2 + hi / 2;
if ( t < lo )
{
t = lo;
}
else if ( t > hi )
{
t = hi;
}
if ( ! funcp( sp, &t, offset, &mytm ) )
{
/* Assume that t is too extreme to be represented in
a struct tm; arrange things so that it is less
extreme on the next pass.
*/
dir = ( t > 0 ) ? 1 : -1;
}
else
{
dir = tmcomp( &mytm, &yourtm );
}
if ( dir != 0 )
{
if ( t == lo )
{
if ( t == _PDCLIB_TIME_MAX )
{
return WRONG;
}
++t;
++lo;
}
else if ( t == hi )
{
if ( t == _PDCLIB_TIME_MIN )
{
return WRONG;
}
--t;
--hi;
}
if ( lo > hi )
{
return WRONG;
}
if ( dir > 0 )
{
hi = t;
}
else
{
lo = t;
}
continue;
}
#if defined TM_GMTOFF && ! UNINIT_TRAP
if ( mytm.TM_GMTOFF != yourtm.TM_GMTOFF
&& ( yourtm.TM_GMTOFF < 0
? ( -SECSPERDAY <= yourtm.TM_GMTOFF
&& ( mytm.TM_GMTOFF <=
( SMALLEST ( _PDCLIB_INT_FAST32_MAX, _PDCLIB_LONG_MAX )
+ yourtm.TM_GMTOFF ) ) )
: ( yourtm.TM_GMTOFF <= SECSPERDAY
&& ( ( BIGGEST ( _PDCLIB_INT_FAST32_MIN, _PDCLIB_LONG_MIN )
+ yourtm.TM_GMTOFF )
<= mytm.TM_GMTOFF ) ) ) )
{
/* MYTM matches YOURTM except with the wrong UT offset.
YOURTM.TM_GMTOFF is plausible, so try it instead.
It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
since the guess gets checked.
*/
time_t altt = t;
int_fast32_t diff = mytm.TM_GMTOFF - yourtm.TM_GMTOFF;
if ( ! increment_overflow_time( &altt, diff ) )
{
struct tm alttm;
if ( funcp( sp, &altt, offset, &alttm )
&& alttm.tm_isdst == mytm.tm_isdst
&& alttm.TM_GMTOFF == yourtm.TM_GMTOFF
&& tmcomp( &alttm, &yourtm ) == 0 )
{
t = altt;
mytm = alttm;
}
}
}
#endif
if ( yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst )
{
break;
}
/* Right time, wrong type.
Hunt for right time, right type.
It's okay to guess wrong since the guess
gets checked.
*/
if ( sp == NULL )
{
return WRONG;
}
for ( i = sp->typecnt - 1; i >= 0; --i )
{
if ( sp->ttis[ i ].isdst != yourtm.tm_isdst )
{
continue;
}
for ( j = sp->typecnt - 1; j >= 0; --j )
{
if ( sp->ttis[ j ].isdst == yourtm.tm_isdst )
{
continue;
}
newt = ( t + sp->ttis[ j ].utoff - sp->ttis[ i ].utoff );
if ( ! funcp( sp, &newt, offset, &mytm ) )
{
continue;
}
if ( tmcomp( &mytm, &yourtm ) != 0 )
{
continue;
}
if ( mytm.tm_isdst != yourtm.tm_isdst )
{
continue;
}
/* We have a match. */
t = newt;
goto label;
}
}
return WRONG;
}
label:
newt = t + saved_seconds;
if ( ( newt < t ) != ( saved_seconds < 0 ) )
{
return WRONG;
}
t = newt;
if ( funcp( sp, &t, offset, tmp ) )
{
*okayp = true;
}
return t;
}
static time_t time2( struct tm * tmp, struct tm *(*funcp)( struct state const *, time_t const *, int_fast32_t, struct tm * ), struct state const * sp, const int_fast32_t offset, bool * okayp )
{
time_t t;
/* First try without normalization of seconds
(in case tm_sec contains a value associated with a leap second).
If that fails, try with normalization of seconds.
*/
t = time2sub( tmp, funcp, sp, offset, okayp, false );
return *okayp ? t : time2sub( tmp, funcp, sp, offset, okayp, true );
}
static time_t time1( struct tm * tmp, struct tm *(*funcp)( struct state const *, time_t const *, int_fast32_t, struct tm * ), struct state const * sp, const int_fast32_t offset )
{
time_t t;
int samei, otheri;
int sameind, otherind;
int i;
int nseen;
char seen[TZ_MAX_TYPES];
unsigned char types[TZ_MAX_TYPES];
bool okay;
if ( tmp == NULL )
{
*_PDCLIB_errno_func() = _PDCLIB_EINVAL;
return WRONG;
}
if ( tmp->tm_isdst > 1 )
{
tmp->tm_isdst = 1;
}
t = time2( tmp, funcp, sp, offset, &okay );
if ( okay )
{
return t;
}
if ( tmp->tm_isdst < 0 )
{
#ifdef PCTS
/* POSIX Conformance Test Suite code courtesy Grant Sullivan. */
tmp->tm_isdst = 0; /* reset to std and try again */
#else
return t;
#endif
}
/* We're supposed to assume that somebody took a time of one type
and did some math on it that yielded a "struct tm" that's bad.
We try to divine the type they started from and adjust to the
type they need.
*/
if ( sp == NULL )
{
return WRONG;
}
for ( i = 0; i < sp->typecnt; ++i )
{
seen[ i ] = false;
}
nseen = 0;
for ( i = sp->timecnt - 1; i >= 0; --i )
{
if ( ! seen[ sp->types[ i ] ] )
{
seen[ sp->types[ i ] ] = true;
types[ nseen++ ] = sp->types[ i ];
}
}
for ( sameind = 0; sameind < nseen; ++sameind )
{
samei = types[ sameind ];
if ( sp->ttis[ samei ].isdst != tmp->tm_isdst )
{
continue;
}
for ( otherind = 0; otherind < nseen; ++otherind )
{
otheri = types[ otherind ];
if ( sp->ttis[ otheri ].isdst == tmp->tm_isdst )
{
continue;
}
tmp->tm_sec += ( sp->ttis[ otheri ].utoff - sp->ttis[ samei ].utoff );
tmp->tm_isdst = ! tmp->tm_isdst;
t = time2( tmp, funcp, sp, offset, &okay );
if ( okay )
{
return t;
}
tmp->tm_sec -= ( sp->ttis[ otheri ].utoff - sp->ttis[ samei ].utoff );
tmp->tm_isdst = ! tmp->tm_isdst;
}
}
return WRONG;
}
time_t _PDCLIB_mktime_tzname( struct state * sp, struct tm * tmp, bool setname )
{
if ( sp )
{
return time1( tmp, _PDCLIB_localsub, sp, setname );
}
else
{
_PDCLIB_gmtcheck();
return time1( tmp, _PDCLIB_gmtsub, &_PDCLIB_gmtmem, 0 );
}
}
#endif
#ifdef TEST
#include "_PDCLIB_test.h"
int main( void )
{
#ifndef REGTEST
#endif
return TEST_RESULTS;
}
#endif
|