File: _PDCLIB_mktime_tzname.c

package info (click to toggle)
libconvert-binary-c-perl 0.86-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,264 kB
  • sloc: ansic: 47,836; perl: 4,980; yacc: 2,143; makefile: 61
file content (528 lines) | stat: -rw-r--r-- 12,862 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/* _PDCLIB_mktime_tzname( struct state *, struct tm *, bool )

   This file is part of the Public Domain C Library (PDCLib).
   Permission is granted to use, modify, and / or redistribute at will.
*/

#ifndef REGTEST

#include "pdclib/_PDCLIB_tzcode.h"

/* Adapted from code provided by Robert Elz, who writes:
    The "best" way to do mktime I think is based on an idea of Bob
    Kridle's (so its said...) from a long time ago.
    It does a binary search of the time_t space. Since time_t's are
    just 32 bits, its a max of 32 iterations (even at 64 bits it
    would still be very reasonable).
*/

#ifndef WRONG
#define WRONG   (-1)
#endif

/* Normalize logic courtesy Paul Eggert. */

static bool increment_overflow32( int_fast32_t * lp, int m )
{
    int_fast32_t const l = *lp;

    if ( ( l >= 0 ) ? ( m > _PDCLIB_INT_FAST32_MAX - l ) : ( m < _PDCLIB_INT_FAST32_MIN - l ) )
    {
        return true;
    }

    *lp += m;
    return false;
}

static bool normalize_overflow( int * tensptr, int * unitsptr, int base )
{
    int tensdelta;

    tensdelta = ( *unitsptr >= 0 ) ?
        ( *unitsptr / base ) :
        ( -1 - ( -1 - *unitsptr ) / base );
    *unitsptr -= tensdelta * base;
    return _PDCLIB_increment_overflow( tensptr, tensdelta );
}

static bool normalize_overflow32( int_fast32_t * tensptr, int * unitsptr, int base )
{
    int tensdelta;

    tensdelta = ( *unitsptr >= 0 ) ?
        ( *unitsptr / base ) :
        ( -1 - ( -1 - *unitsptr ) / base );
    *unitsptr -= tensdelta * base;
    return increment_overflow32( tensptr, tensdelta );
}

static int tmcomp( const struct tm * atmp, const struct tm * btmp )
{
    int result;

    if ( atmp->tm_year != btmp->tm_year )
    {
        return atmp->tm_year < btmp->tm_year ? -1 : 1;
    }

    if ( ( result = ( atmp->tm_mon - btmp->tm_mon ) ) == 0 &&
         ( result = ( atmp->tm_mday - btmp->tm_mday ) ) == 0 &&
         ( result = ( atmp->tm_hour - btmp->tm_hour ) ) == 0 &&
         ( result = ( atmp->tm_min - btmp->tm_min ) ) == 0 )
    {
        result = atmp->tm_sec - btmp->tm_sec;
    }

    return result;
}

static time_t time2sub( struct tm * tmp, struct tm *(*funcp)( struct state const *, time_t const *, int_fast32_t, struct tm * ), struct state const * sp, const int_fast32_t offset, bool * okayp, bool do_norm_secs )
{
    int          dir;
    int          i, j;
    int          saved_seconds;
    int_fast32_t li;
    time_t       lo;
    time_t       hi;
    int_fast32_t y;
    time_t       newt;
    time_t       t;
    struct tm    yourtm, mytm;

    *okayp = false;
    yourtm = *tmp;

    if ( do_norm_secs )
    {
        if ( normalize_overflow( &yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN ) )
        {
            return WRONG;
        }
    }

    if ( normalize_overflow( &yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR ) )
    {
        return WRONG;
    }

    if ( normalize_overflow( &yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY ) )
    {
        return WRONG;
    }

    y = yourtm.tm_year;

    if ( normalize_overflow32( &y, &yourtm.tm_mon, MONSPERYEAR ) )
    {
        return WRONG;
    }

    /* Turn y into an actual year number for now.
       It is converted back to an offset from TM_YEAR_BASE later.
    */
    if ( increment_overflow32( &y, TM_YEAR_BASE ) )
    {
        return WRONG;
    }

    while ( yourtm.tm_mday <= 0 )
    {
        if ( increment_overflow32( &y, -1 ) )
        {
            return WRONG;
        }

        li = y + ( 1 < yourtm.tm_mon );
        yourtm.tm_mday += year_lengths[ _PDCLIB_is_leap( li ) ];
    }
    while ( yourtm.tm_mday > DAYSPERLYEAR )
    {
        li = y + ( 1 < yourtm.tm_mon );
        yourtm.tm_mday -= year_lengths[ _PDCLIB_is_leap( li ) ];

        if ( increment_overflow32( &y, 1 ) )
        {
            return WRONG;
        }
    }

    for ( ; ; )
    {
        i = mon_lengths[ _PDCLIB_is_leap( y ) ][ yourtm.tm_mon ];

        if ( yourtm.tm_mday <= i )
        {
            break;
        }

        yourtm.tm_mday -= i;

        if ( ++yourtm.tm_mon >= MONSPERYEAR )
        {
            yourtm.tm_mon = 0;

            if ( increment_overflow32( &y, 1 ) )
            {
                return WRONG;
            }
        }
    }

    if ( increment_overflow32( &y, -TM_YEAR_BASE ) )
    {
        return WRONG;
    }

    if ( ! ( _PDCLIB_INT_MIN <= y && y <= _PDCLIB_INT_MAX ) )
    {
        return WRONG;
    }

    yourtm.tm_year = y;

    if ( yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN )
    {
        saved_seconds = 0;
    }
    else if ( y + TM_YEAR_BASE < EPOCH_YEAR )
    {
        /* We can't set tm_sec to 0, because that might push the
           time below the minimum representable time.
           Set tm_sec to 59 instead.
           This assumes that the minimum representable time is
           not in the same minute that a leap second was deleted from,
           which is a safer assumption than using 58 would be.
        */
        if ( _PDCLIB_increment_overflow( &yourtm.tm_sec, 1 - SECSPERMIN ) )
        {
            return WRONG;
        }

        saved_seconds = yourtm.tm_sec;
        yourtm.tm_sec = SECSPERMIN - 1;
    }
    else
    {
        saved_seconds = yourtm.tm_sec;
        yourtm.tm_sec = 0;
    }

    /* Do a binary search (this works whatever time_t's type is). */
    lo = _PDCLIB_TIME_MIN;
    hi = _PDCLIB_TIME_MAX;

    for ( ; ; )
    {
        t = lo / 2 + hi / 2;

        if ( t < lo )
        {
            t = lo;
        }
        else if ( t > hi )
        {
            t = hi;
        }

        if ( ! funcp( sp, &t, offset, &mytm ) )
        {
            /* Assume that t is too extreme to be represented in
               a struct tm; arrange things so that it is less
               extreme on the next pass.
            */
            dir = ( t > 0 ) ? 1 : -1;
        }
        else
        {
            dir = tmcomp( &mytm, &yourtm );
        }

        if ( dir != 0 )
        {
            if ( t == lo )
            {
                if ( t == _PDCLIB_TIME_MAX )
                {
                    return WRONG;
                }

                ++t;
                ++lo;
            }
            else if ( t == hi )
            {
                if ( t == _PDCLIB_TIME_MIN )
                {
                    return WRONG;
                }

                --t;
                --hi;
            }

            if ( lo > hi )
            {
                return WRONG;
            }

            if ( dir > 0 )
            {
                hi = t;
            }
            else
            {
                lo = t;
            }

            continue;
        }

#if defined TM_GMTOFF && ! UNINIT_TRAP
        if ( mytm.TM_GMTOFF != yourtm.TM_GMTOFF
            && ( yourtm.TM_GMTOFF < 0
            ? ( -SECSPERDAY <= yourtm.TM_GMTOFF
               && ( mytm.TM_GMTOFF <=
                   ( SMALLEST ( _PDCLIB_INT_FAST32_MAX, _PDCLIB_LONG_MAX )
                + yourtm.TM_GMTOFF ) ) )
            : ( yourtm.TM_GMTOFF <= SECSPERDAY
               && ( ( BIGGEST ( _PDCLIB_INT_FAST32_MIN, _PDCLIB_LONG_MIN )
                + yourtm.TM_GMTOFF )
                   <= mytm.TM_GMTOFF ) ) ) )
        {
            /* MYTM matches YOURTM except with the wrong UT offset.
               YOURTM.TM_GMTOFF is plausible, so try it instead.
               It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
               since the guess gets checked.
            */
            time_t altt = t;
            int_fast32_t diff = mytm.TM_GMTOFF - yourtm.TM_GMTOFF;

            if ( ! increment_overflow_time( &altt, diff ) )
            {
                struct tm alttm;
                if ( funcp( sp, &altt, offset, &alttm )
                    && alttm.tm_isdst == mytm.tm_isdst
                    && alttm.TM_GMTOFF == yourtm.TM_GMTOFF
                    && tmcomp( &alttm, &yourtm ) == 0 )
                {
                    t = altt;
                    mytm = alttm;
                }
            }
        }
#endif

        if ( yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst )
        {
            break;
        }

        /* Right time, wrong type.
           Hunt for right time, right type.
           It's okay to guess wrong since the guess
           gets checked.
        */
        if ( sp == NULL )
        {
            return WRONG;
        }

        for ( i = sp->typecnt - 1; i >= 0; --i )
        {
            if ( sp->ttis[ i ].isdst != yourtm.tm_isdst )
            {
                continue;
            }

            for ( j = sp->typecnt - 1; j >= 0; --j )
            {
                if ( sp->ttis[ j ].isdst == yourtm.tm_isdst )
                {
                    continue;
                }

                newt = ( t + sp->ttis[ j ].utoff - sp->ttis[ i ].utoff );

                if ( ! funcp( sp, &newt, offset, &mytm ) )
                {
                    continue;
                }

                if ( tmcomp( &mytm, &yourtm ) != 0 )
                {
                    continue;
                }

                if ( mytm.tm_isdst != yourtm.tm_isdst )
                {
                    continue;
                }

                /* We have a match. */
                t = newt;
                goto label;
            }
        }

        return WRONG;
    }

label:
    newt = t + saved_seconds;

    if ( ( newt < t ) != ( saved_seconds < 0 ) )
    {
        return WRONG;
    }

    t = newt;

    if ( funcp( sp, &t, offset, tmp ) )
    {
        *okayp = true;
    }

    return t;
}

static time_t time2( struct tm * tmp, struct tm *(*funcp)( struct state const *, time_t const *, int_fast32_t, struct tm * ), struct state const * sp, const int_fast32_t offset, bool * okayp )
{
    time_t t;

    /* First try without normalization of seconds
       (in case tm_sec contains a value associated with a leap second).
       If that fails, try with normalization of seconds.
    */
    t = time2sub( tmp, funcp, sp, offset, okayp, false );
    return *okayp ? t : time2sub( tmp, funcp, sp, offset, okayp, true );
}

static time_t time1( struct tm * tmp, struct tm *(*funcp)( struct state const *, time_t const *, int_fast32_t, struct tm * ), struct state const * sp, const int_fast32_t offset )
{
    time_t        t;
    int           samei, otheri;
    int           sameind, otherind;
    int           i;
    int           nseen;
    char          seen[TZ_MAX_TYPES];
    unsigned char types[TZ_MAX_TYPES];
    bool          okay;

    if ( tmp == NULL )
    {
        *_PDCLIB_errno_func() = _PDCLIB_EINVAL;
        return WRONG;
    }

    if ( tmp->tm_isdst > 1 )
    {
        tmp->tm_isdst = 1;
    }

    t = time2( tmp, funcp, sp, offset, &okay );

    if ( okay )
    {
        return t;
    }

    if ( tmp->tm_isdst < 0 )
    {
#ifdef PCTS
        /* POSIX Conformance Test Suite code courtesy Grant Sullivan. */
        tmp->tm_isdst = 0;  /* reset to std and try again */
#else
        return t;
#endif
    }

    /* We're supposed to assume that somebody took a time of one type
       and did some math on it that yielded a "struct tm" that's bad.
       We try to divine the type they started from and adjust to the
       type they need.
    */
    if ( sp == NULL )
    {
        return WRONG;
    }

    for ( i = 0; i < sp->typecnt; ++i )
    {
        seen[ i ] = false;
    }

    nseen = 0;

    for ( i = sp->timecnt - 1; i >= 0; --i )
    {
        if ( ! seen[ sp->types[ i ] ] )
        {
            seen[ sp->types[ i ] ] = true;
            types[ nseen++ ] = sp->types[ i ];
        }
    }

    for ( sameind = 0; sameind < nseen; ++sameind )
    {
        samei = types[ sameind ];

        if ( sp->ttis[ samei ].isdst != tmp->tm_isdst )
        {
            continue;
        }

        for ( otherind = 0; otherind < nseen; ++otherind )
        {
            otheri = types[ otherind ];

            if ( sp->ttis[ otheri ].isdst == tmp->tm_isdst )
            {
                continue;
            }

            tmp->tm_sec += ( sp->ttis[ otheri ].utoff - sp->ttis[ samei ].utoff );
            tmp->tm_isdst = ! tmp->tm_isdst;
            t = time2( tmp, funcp, sp, offset, &okay );

            if ( okay )
            {
                return t;
            }

            tmp->tm_sec -= ( sp->ttis[ otheri ].utoff - sp->ttis[ samei ].utoff );
            tmp->tm_isdst = ! tmp->tm_isdst;
        }
    }

    return WRONG;
}

time_t _PDCLIB_mktime_tzname( struct state * sp, struct tm * tmp, bool setname )
{
    if ( sp )
    {
        return time1( tmp, _PDCLIB_localsub, sp, setname );
    }
    else
    {
        _PDCLIB_gmtcheck();
        return time1( tmp, _PDCLIB_gmtsub, &_PDCLIB_gmtmem, 0 );
    }
}

#endif

#ifdef TEST

#include "_PDCLIB_test.h"

int main( void )
{
#ifndef REGTEST
#endif

    return TEST_RESULTS;
}

#endif