1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
// Copyright 2010 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Implements CRC32C using Intel's SSE4 crc32 instruction.
// Uses _mm_crc32_u64/32/8 intrinsics if CRCUTIL_USE_MM_CRC32 is not zero,
// emilates intrinsics via CRC_WORD/CRC_BYTE otherwise.
#include "crc32c_sse4.h"
#if HAVE_I386 || HAVE_AMD64
#include <cpuid.h>
namespace crcutil {
#define UPDATE_STRIPE_CRCS(index, block_size, num_stripes) do { \
CRC_UPDATE_WORD(crc0, \
reinterpret_cast<const size_t *>(src + \
0 * CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes))[index]); \
CRC_UPDATE_WORD(crc1, \
reinterpret_cast<const size_t *>(src + \
1 * CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes))[index]); \
CRC_UPDATE_WORD(crc2, \
reinterpret_cast<const size_t *>(src + \
2 * CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes))[index]); \
if (num_stripes > 3) { \
CRC_UPDATE_WORD(crc3, \
reinterpret_cast<const size_t *>(src + \
3 * CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes))[index]); \
} \
} while (0)
// Multiplies "crc" by "x**(8 * STRIPE_SIZE(block_size)"
// using appropriate multiplication table(s).
//
#if 0
// This variant is for illustration purposes only.
// Actual implementation below:
// 1. Splits the computation into 2 data-independent paths
// by independently multiplying lower and upper halves
// of "crc0" in interleaved manner, and combining the
// results in the end.
// 2. Removing redundant "crc0 = 0" etc. in the beginning.
// 3. Removing redundant shifts of "tmp0" and "tmp1" in the last round.
#define MULTIPLY_CRC(crc0, block_size, num_stripes) do { \
size_t tmp0 = crc0; \
crc0 = 0; \
for (size_t i = 0; i < kNumTables; ++i) { \
crc0 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[i][tmp0 & (kTableEntries - 1)]; \
tmp0 >>= kTableEntryBits; \
} \
} while (0)
#else
#define MULTIPLY_CRC(crc0, block_size, num_stripes) do { \
size_t tmp0 = crc0; \
size_t tmp1 = crc0 >> (kTableEntryBits * kNumTablesHalfHi); \
crc0 = CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[0][tmp0 & (kTableEntries - 1)]; \
tmp0 >>= kTableEntryBits; \
size_t crc1 = CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[kNumTablesHalfHi][tmp1 & (kTableEntries - 1)]; \
tmp1 >>= kTableEntryBits; \
for (size_t i = 1; i < kNumTablesHalfLo - 1; ++i) { \
crc0 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[i][tmp0 & (kTableEntries - 1)]; \
tmp0 >>= kTableEntryBits; \
crc1 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[i + kNumTablesHalfHi][tmp1 & (kTableEntries - 1)]; \
tmp1 >>= kTableEntryBits; \
} \
crc0 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[kNumTablesHalfLo - 1][tmp0 & (kTableEntries - 1)]; \
if (kNumTables & 1) { \
tmp0 >>= kTableEntryBits; \
} \
crc1 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[kNumTables - 1][tmp1]; \
if (kNumTables & 1) { \
crc0 ^= CRC32C_SSE4_MUL_TABLE(block_size, num_stripes) \
[kNumTablesHalfLo][tmp0 & (kTableEntries - 1)]; \
} \
crc0 ^= crc1; \
} while (0)
#endif
// Given CRCs (crc0, crc1, etc.) of consequitive
// stripes of STRIPE_SIZE(block_size) bytes each,
// produces CRC of concatenated stripes.
#define COMBINE_STRIPE_CRCS(block_size, num_stripes) do { \
MULTIPLY_CRC(crc0, block_size, num_stripes); \
crc0 ^= crc1; \
MULTIPLY_CRC(crc0, block_size, num_stripes); \
crc0 ^= crc2; \
if (num_stripes > 3) { \
MULTIPLY_CRC(crc0, block_size, num_stripes); \
crc0 ^= crc3; \
} \
} while (0)
// Processes input BLOCK_SIZE(block) bytes per iteration
// by splitting a block of BLOCK_SIZE(block) bytes into N
// equally-sized stripes of STRIPE_SIZE(block_size) each,
// computing CRC of each stripe, and concatenating stripe CRCs.
#define PROCESS_BLOCK(block_size, num_stripes) do { \
while (bytes >= CRC32C_SSE4_BLOCK_SIZE(block_size, num_stripes)) { \
Crc crc1 = 0; \
Crc crc2 = 0; \
Crc crc3; \
if (num_stripes > 3) crc3 = 0; \
{ \
const uint8 *stripe_end = src + \
(CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes) / \
kUnrolledLoopBytes) * kUnrolledLoopBytes; \
do { \
UPDATE_STRIPE_CRCS(0, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(1, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(2, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(3, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(4, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(5, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(6, block_size, num_stripes); \
UPDATE_STRIPE_CRCS(7, block_size, num_stripes); \
src += kUnrolledLoopBytes; \
} while (src < stripe_end); \
if ((CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes) % \
kUnrolledLoopBytes) != 0) { \
stripe_end += \
CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes) % \
kUnrolledLoopBytes; \
do { \
UPDATE_STRIPE_CRCS(0, block_size, num_stripes); \
src += sizeof(size_t); \
} while (src < stripe_end); \
} \
} \
COMBINE_STRIPE_CRCS(block_size, num_stripes); \
src += CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes) * \
((num_stripes) - 1); \
bytes = static_cast<size_t>(end - src); \
} \
no_more_##block_size##_##num_stripes:; \
} while (0)
size_t Crc32cSSE4::Crc32c(const void *data, size_t bytes, Crc crc0) const {
const uint8 *src = static_cast<const uint8 *>(data);
const uint8 *end = src + bytes;
crc0 ^= Base().Canonize();
// If we don't have too much data to process,
// do not waste time trying to align input etc.
// Noticeably improves performance on small inputs.
if (bytes < 4 * sizeof(size_t)) goto less_than_4_size_t;
if (bytes < 8 * sizeof(size_t)) goto less_than_8_size_t;
if (bytes < 16 * sizeof(size_t)) goto less_than_16_size_t;
#define PROCESS_TAIL_IF_SMALL(block_size, num_stripes) do { \
if (bytes < CRC32C_SSE4_BLOCK_SIZE(block_size, num_stripes)) { \
goto no_more_##block_size##_##num_stripes; \
} \
} while (0)
#define NOOP(block_size, num_stripes)
CRC32C_SSE4_ENUMERATE_ALL_BLOCKS_ASCENDING(PROCESS_TAIL_IF_SMALL,
NOOP,
NOOP);
#undef PROCESS_TAIL_IF_SMALL
// Do not use ALIGN_ON_WORD_BOUNDARY_IF_NEEDED() here because:
// 1. It uses CRC_BYTE() which won't work.
// 2. Its threshold may be incorrect becuase Crc32 that uses
// native CPU crc32 instruction is much faster than
// generic table-based CRC computation.
//
// In case of X5550 CPU, break even point is at 2KB -- exactly.
if (bytes >= 2 * 1024) {
while ((reinterpret_cast<size_t>(src) & (sizeof(Word) - 1)) != 0) {
if (src >= end) {
return (crc0 ^ Base().Canonize());
}
CRC_UPDATE_BYTE(crc0, src[0]);
src += 1;
}
bytes = static_cast<size_t>(end - src);
}
if (src >= end) {
return (crc0 ^ Base().Canonize());
}
// Quickly skip processing of too large blocks
// Noticeably improves performance on small inputs.
#define SKIP_BLOCK_IF_NEEDED(block_size, num_stripes) do { \
if (bytes < CRC32C_SSE4_BLOCK_SIZE(block_size, num_stripes)) { \
goto no_more_##block_size##_##num_stripes; \
} \
} while (0)
CRC32C_SSE4_ENUMERATE_ALL_BLOCKS_ASCENDING(NOOP,
SKIP_BLOCK_IF_NEEDED,
SKIP_BLOCK_IF_NEEDED);
#undef SKIP_BLOCK_IF_NEEDED
// Process data in all blocks.
CRC32C_SSE4_ENUMERATE_ALL_BLOCKS_DESCENDING(PROCESS_BLOCK,
PROCESS_BLOCK,
PROCESS_BLOCK);
// Finish the tail word-by-word and then byte-by-byte.
#define CRC_UPDATE_WORD_4(index) do { \
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[index]); \
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[index + 1]); \
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[index + 2]); \
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[index + 3]); \
} while (0)
if (bytes >= 4 * 4 * sizeof(size_t)) {
end -= 4 * 4 * sizeof(size_t);
do {
CRC_UPDATE_WORD_4(4 * 0);
CRC_UPDATE_WORD_4(4 * 1);
CRC_UPDATE_WORD_4(4 * 2);
CRC_UPDATE_WORD_4(4 * 3);
src += 4 * 4 * sizeof(size_t);
} while (src <= end);
end += 4 * 4 * sizeof(size_t);
bytes = static_cast<size_t>(end - src);
}
less_than_16_size_t:
if (bytes >= 4 * 2 * sizeof(size_t)) {
CRC_UPDATE_WORD_4(4 * 0);
CRC_UPDATE_WORD_4(4 * 1);
src += 4 * 2 * sizeof(size_t);
bytes -= 4 * 2 * sizeof(size_t);
}
less_than_8_size_t:
if (bytes >= 4 * sizeof(size_t)) {
CRC_UPDATE_WORD_4(0);
src += 4 * sizeof(size_t);
bytes -= 4 * sizeof(size_t);
}
less_than_4_size_t:
if (bytes >= 1 * sizeof(size_t)) {
end -= 1 * sizeof(size_t);
do {
CRC_UPDATE_WORD(crc0, reinterpret_cast<const size_t *>(src)[0]);
src += 1 * sizeof(size_t);
} while (src <= end);
end += 1 * sizeof(size_t);
}
while (src < end) {
CRC_UPDATE_BYTE(crc0, src[0]);
src += 1;
}
return (crc0 ^ Base().Canonize());
}
void Crc32cSSE4::Init(bool constant) {
base_.Init(FixedGeneratingPolynomial(), FixedDegree(), constant);
#define INIT_MUL_TABLE(block_size, num_stripes) do { \
size_t multiplier = \
Base().Xpow8N(CRC32C_SSE4_STRIPE_SIZE(block_size, num_stripes)); \
for (size_t table = 0; table < kNumTables; ++table) { \
for (size_t entry = 0; entry < kTableEntries; ++entry) { \
size_t value = static_cast<uint32>(entry << (kTableEntryBits * table)); \
CRC32C_SSE4_MUL_TABLE(block_size, num_stripes)[table][entry] = \
static_cast<Entry>(Base().Multiply(value, multiplier)); \
} \
} \
} while (0)
CRC32C_SSE4_ENUMERATE_ALL_BLOCKS(INIT_MUL_TABLE);
#undef INIT_MUL_TABLE
#if !CRCUTIL_USE_MM_CRC32
for (size_t j = 0; j < sizeof(Word); ++j) {
Crc k = Base().XpowN((sizeof(Word) - 1 - j) * 8 + 32);
for (size_t i = 0; i < 256; ++i) {
crc_word_[j][i] = Base().MultiplyUnnormalized(i, 8, k);
}
}
#endif // !CRCUTIL_USE_MM_CRC32
}
bool Crc32cSSE4::IsSSE42Available() {
#if defined(_MSC_VER)
int cpu_info[4];
__cpuid(cpu_info, 1);
return ((cpu_info[3] & (1 << 20)) != 0);
#else
unsigned int eax, ebx, ecx;
unsigned int cpuid_edx=0;
__get_cpuid(1, &eax, &ebx, &ecx, &cpuid_edx);
return ((ecx & (1 << 20)) != 0);
/*
#elif defined(__GNUC__) && (HAVE_AMD64 || HAVE_I386)
// Not using "cpuid.h" intentionally: it is missing from
// too many installations.
uint32 eax;
uint32 ecx;
uint32 edx;
__asm__ volatile(
#if HAVE_I386 && defined(__PIC__)
"push ebx\n"
"cpuid\n"
"pop ebx\n"
#else
"cpuid\n"
#endif // HAVE_I386 && defined(__PIC__)
: "=a" (eax), "=c" (ecx), "=d" (edx)
: "a" (1), "2" (0)
: "%ebx"
);
return ((ecx & (1 << 20)) != 0);
#else
return false;
*/
#endif
}
void RollingCrc32cSSE4::Init(const Crc32cSSE4 &crc,
size_t roll_window_bytes,
const Crc &start_value) {
crc_ = &crc;
roll_window_bytes_ = roll_window_bytes;
start_value_ = start_value;
Crc add = crc.Base().Canonize() ^ start_value;
add = crc.Base().Multiply(add, crc.Base().Xpow8N(roll_window_bytes));
add ^= crc.Base().Canonize();
Crc mul = crc.Base().One() ^ crc.Base().Xpow8N(1);
add = crc.Base().Multiply(add, mul);
mul = crc.Base().XpowN(8 * roll_window_bytes + crc.Base().Degree());
for (size_t i = 0; i < 256; ++i) {
out_[i] = static_cast<Entry>(
crc.Base().MultiplyUnnormalized(
static_cast<Crc>(i), 8, mul) ^ add);
}
#if !CRCUTIL_USE_MM_CRC32
memcpy(crc_word_, crc_->crc_word_, sizeof(crc_word_));
#endif // !CRCUTIL_USE_MM_CRC32
}
} // namespace crcutil
#endif // HAVE_I386 || HAVE_AMD64
|