1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/*
* $Id: _twofish.c,v 2.12 2001/05/21 17:38:01 ams Exp $
* Copyright 1999 Dr. Brian Gladman <brian.gladman@btinternet.com>
* Copyright 2001 Abhijit Menon-Sen <ams@wiw.org>
*/
/* Twofish is a 128-bit symmetric block cipher with a variable length
key, developed by Counterpane Labs. It is unpatented and free for all
uses, as described at <URL:http://www.counterpane.com/twofish.html>
and <URL:http://www.counterpane.com/twofish-paper.html>.
This implementation is based on code by Dr. Brian Gladman, at
<URL:http://fp.gladman.plus.com/cryptography_technology/aes/twofish.c>.
Some of his comments are reproduced below:
"Copyright in this implementation is held by Dr. B R Gladman but I
hereby give permission for its free direct or derivative use subject
to ackowledgement of its origin and compliance with any conditions
that the originators of the algorithm place on its exploitation.
My thanks to Doug Whiting and Niels Ferguson for comments that led to
improvements in this implementation." */
#include "twofish.h"
#include "tables.h"
/* Extract the n'th byte from a 32-bit word */
#define byte(x,n) ((unsigned char)((x) >> (8 * n)))
/* 32 bit rotate-left and right macros */
#define ror(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
#define rol(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
/* Endian-independent byte -> word conversion */
#define strtonl(s) (uint32_t)(*(s)|*(s+1)<<8|*(s+2)<<16|*(s+3)<<24)
#define nltostr(l, s) \
do { \
*(s )=(unsigned char)((l) ); \
*(s+1)=(unsigned char)((l) >> 8); \
*(s+2)=(unsigned char)((l) >> 16); \
*(s+3)=(unsigned char)((l) >> 24); \
} while (0)
static uint32_t mds_rem(uint32_t a, uint32_t b);
static uint32_t h(int len, const int x, unsigned char *key, int odd);
/* The key schedule takes a 128, 192, or 256-bit key, and provides 40
32-bit words of expanded key K0,...,K39 and the 4 key-dependent
S-boxes used in the g function. */
struct twofish *twofish_setup(unsigned char *key, int len)
{
int i;
uint32_t a, b, x;
struct twofish *t;
unsigned char *s, skey[16];
if ((t = malloc(sizeof(struct twofish))) == NULL)
return NULL;
/* The key consists of k=len/8 (2, 3 or 4) 64-bit units. */
t->len = len /= 8;
/* We must derive three vectors Me, Mo, and S, each with k 32-bit
words, from the 2k words in the key.
Me = (key[0], key[2], ..., key[2k-2]) (even words)
Mo = (key[1], key[3], ..., key[2k-1]) (odd words)
The third vector is derived by multiplying each of the k groups
of 8 bytes from the key by a 4x8 matrix, to get k 32-bit words.
S = (S[k-1], S[k-2], ..., S[0])
where S[i] are the 4 bytes from the multiplication, interpreted
as a 32-bit word. As described later, mds_rem is equivalent to
the matrix multiplication, but faster.
Since all these vectors are going to be used byte-by-byte, we
avoid converting them to words altogether, and write the bytes of
S into the array skey below: */
s = skey + 4*(len - 1);
for (i = 0; i < len; i++) {
x = mds_rem(strtonl(key+8*i), strtonl(key+8*i+4));
nltostr(x, s);
s -= 4;
}
s = skey;
/* The words of the expanded key K are defined using the h function:
rho = 2^24 + 2^16 + 2^8 + 2^0 (0x01010101)
A[i] = h(2i*rho, Me)
B[i] = ROL(h(2(i+1)*rho, Mo), 8)
K[2i] = (A[i] + B[i]) mod 2^32
K[2i+1] = ROL((A[i] + 2B[i]) mod 2^32, 9)
rho has the property that, for i = 0..255, the word i*rho
consists of four equal bytes, each with the value i. The function
h is only applied to words of this type, so we only pass it the
value of i.
We also didn't generate the vectors Me and Mo separately: we pass
the entire key, and indicate whether we want the even or odd
words to be used. */
for (i = 0; i < 40; i += 2) {
a = h(len, i, key, 0);
b = rol(h(len, i+1, key, 1), 8);
t->K[i] = a+b;
t->K[i+1] = rol(a+2*b, 9);
}
/* The key-dependent S-boxes used in the g() function are created
below. They are defined by g(X) = h(X, S), where S is the vector
derived from the key. That is, for i=0..3, the S-box S[i] is
formed by mapping from x[i] to y[i] in the h function.
The relevant lookup tables qN have been precomputed and stored in
tables.h; we also perform full key precomputations incorporating
the MDS matrix multiplications. */
switch (len) {
case 2:
for (i = 0; i < 256; i++) {
x = (unsigned char)i;
t->S[0][i] = m[0][q[0][q[0][x]^s[4]]^s[0]];
t->S[1][i] = m[1][q[0][q[1][x]^s[5]]^s[1]];
t->S[2][i] = m[2][q[1][q[0][x]^s[6]]^s[2]];
t->S[3][i] = m[3][q[1][q[1][x]^s[7]]^s[3]];
}
break;
case 3:
for (i = 0; i < 256; i++) {
x = (unsigned char)i;
t->S[0][i] = m[0][q[0][q[0][q[1][x]^s[ 8]]^s[4]]^s[0]];
t->S[1][i] = m[1][q[0][q[1][q[1][x]^s[ 9]]^s[5]]^s[1]];
t->S[2][i] = m[2][q[1][q[0][q[0][x]^s[10]]^s[6]]^s[2]];
t->S[3][i] = m[3][q[1][q[1][q[0][x]^s[11]]^s[7]]^s[3]];
}
break;
case 4:
for (i = 0; i < 256; i++) {
x = (unsigned char)i;
t->S[0][i] = m[0][q[0][q[0][q[1][q[1][x]^s[12]]^s[ 8]]^s[4]]^s[0]];
t->S[1][i] = m[1][q[0][q[1][q[1][q[0][x]^s[13]]^s[ 9]]^s[5]]^s[1]];
t->S[2][i] = m[2][q[1][q[0][q[0][q[0][x]^s[14]]^s[10]]^s[6]]^s[2]];
t->S[3][i] = m[3][q[1][q[1][q[0][q[1][x]^s[15]]^s[11]]^s[7]]^s[3]];
}
break;
}
return t;
}
void twofish_free(struct twofish *self)
{
free(self);
}
/* The function g splits the input word x into four bytes; each byte is
run through its own key-dependent S-box. Each S-box is bijective,
takes 8 bits of input and produces 8 bits of output. The four results
are interpreted as a vector of length 4 over GF(2^8), and multiplied
by the 4x4 MDS matrix. The resulting vector is interpreted as a
32-bit word.
Since we have performed the full key precomputations, g consists only
of four lookups and three XORs. g0 is g; g1 is a shortcut for
g(ROL(x, 8)). */
#define g0(x) \
t->S[0][byte(x,0)]^t->S[1][byte(x,1)]^t->S[2][byte(x,2)]^t->S[3][byte(x,3)]
#define g1(x) \
t->S[0][byte(x,3)]^t->S[1][byte(x,0)]^t->S[2][byte(x,1)]^t->S[3][byte(x,2)]
/* F is a key-dependent permutation on 64-bit values. It takes two input
words R0 and R1, and a round number r:
T0 = g(R0)
T1 = g(ROL(R1, 8))
F0 = (T0 + T1 + K[2r+8])
F1 = (T0 + 2*T1 + K[2r+9])
Each of the 16 encryption rounds consists of the following operations:
(F0, F1) = F(R0, R1, r)
R0 = ROR(R2 ^ F0, 1)
R1 = ROL(R3, 1) ^ F1
R2 = R0
R3 = R1
For efficiency, two rounds are combined into one in the macros below. */
#define f_2rounds(i) \
t0 = g0(R[0]); \
t1 = g1(R[1]); \
R[2] = ror(R[2] ^ (t0 + t1 + t->K[4*i+8]), 1); \
R[3] = rol(R[3], 1) ^ (t0 + 2*t1 + t->K[4*i+9]); \
t0 = g0(R[2]); \
t1 = g1(R[3]); \
R[0] = ror(R[0] ^ (t0 + t1 + t->K[4*i+10]), 1); \
R[1] = rol(R[1], 1) ^ (t0 + 2*t1 + t->K[4*i+11]);
/* This is the inverse of f_2rounds */
#define i_2rounds(i) \
t0 = g0(R[0]); \
t1 = g1(R[1]); \
R[2] = rol(R[2], 1) ^ (t0 + t1 + t->K[4*i+10]); \
R[3] = ror(R[3] ^ (t0 + 2*t1 + t->K[4*i+11]), 1); \
t0 = g0(R[2]); \
t1 = g1(R[3]); \
R[0] = rol(R[0], 1) ^ (t0 + t1 + t->K[4*i+8]); \
R[1] = ror(R[1] ^ (t0 + 2*t1 + t->K[4*i+9]), 1)
/* This function encrypts or decrypts 16 bytes of input data and writes
it to output, using the key defined in t. */
void twofish_crypt(struct twofish *t,
unsigned char *input, unsigned char *output,
int decrypt)
{
uint32_t t0, t1, R[4], out[4];
if (!decrypt) {
/* Whiten four 32-bit input words. */
R[0] = t->K[0] ^ strtonl(input);
R[1] = t->K[1] ^ strtonl(input+4);
R[2] = t->K[2] ^ strtonl(input+8);
R[3] = t->K[3] ^ strtonl(input+12);
/* 16 rounds of encryption, combined into 8 pairs. */
f_2rounds(0); f_2rounds(1); f_2rounds(2); f_2rounds(3);
f_2rounds(4); f_2rounds(5); f_2rounds(6); f_2rounds(7);
/* Output whitening; The order of R[n] undoes the last swap. */
out[0] = t->K[4] ^ R[2];
out[1] = t->K[5] ^ R[3];
out[2] = t->K[6] ^ R[0];
out[3] = t->K[7] ^ R[1];
} else {
R[0] = t->K[4] ^ strtonl(input);
R[1] = t->K[5] ^ strtonl(input+4);
R[2] = t->K[6] ^ strtonl(input+8);
R[3] = t->K[7] ^ strtonl(input+12);
i_2rounds(7); i_2rounds(6); i_2rounds(5); i_2rounds(4);
i_2rounds(3); i_2rounds(2); i_2rounds(1); i_2rounds(0);
out[0] = t->K[0] ^ R[2];
out[1] = t->K[1] ^ R[3];
out[2] = t->K[2] ^ R[0];
out[3] = t->K[3] ^ R[1];
}
/* Write 16 output bytes. */
nltostr(out[0], output);
nltostr(out[1], output+4);
nltostr(out[2], output+8);
nltostr(out[3], output+12);
}
/* h takes a 32-bit word X, and a list, L = (L[0],...,L[k-1]), of 32-bit
words, and produces one word of output. During each of the k stages
of the function, the four bytes from X are each passed through a
fixed S-box, and XORed with a byte derived from the list. Finally,
the bytes are once again passed through an S-box and multiplied by
the MDS matrix, just as in g.
We use the Lbyte macro to extract a given byte from the list L
(expressed in little endian). */
#define Lbyte(w, b) L[4*(2*w+odd)+b]
static uint32_t h(int len, const int X, unsigned char *L, int odd)
{
unsigned char b0, b1, b2, b3;
b0 = b1 = b2 = b3 = (unsigned char)X;
switch (len) {
case 4:
b0 = q[1][b0] ^ Lbyte(3, 0);
b1 = q[0][b1] ^ Lbyte(3, 1);
b2 = q[0][b2] ^ Lbyte(3, 2);
b3 = q[1][b3] ^ Lbyte(3, 3);
case 3:
b0 = q[1][b0] ^ Lbyte(2, 0);
b1 = q[1][b1] ^ Lbyte(2, 1);
b2 = q[0][b2] ^ Lbyte(2, 2);
b3 = q[0][b3] ^ Lbyte(2, 3);
case 2:
b0 = q[0][q[0][b0] ^ Lbyte(1, 0)] ^ Lbyte(0, 0);
b1 = q[0][q[1][b1] ^ Lbyte(1, 1)] ^ Lbyte(0, 1);
b2 = q[1][q[0][b2] ^ Lbyte(1, 2)] ^ Lbyte(0, 2);
b3 = q[1][q[1][b3] ^ Lbyte(1, 3)] ^ Lbyte(0, 3);
}
return m[0][b0] ^ m[1][b1] ^ m[2][b2] ^ m[3][b3];
}
/* The (12, 8) Reed Solomon code has the generator polynomial:
g(x) = x^4 + (a + 1/a) * x^3 + a * x^2 + (a + 1/a) * x + 1
where the coefficients are in the finite field GF(2^8) with a modular
polynomial a^8+a^6+a^3+a^2+1. To generate the remainder, we have to
start with a 12th order polynomial with our eight input bytes as the
coefficients of the 4th to 11th terms:
m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0
We then multiply the generator polynomial by m[7]*x^7 and subtract it
(XOR in GF(2^8)) from the above to eliminate the x^7 term (the
arithmetic on the coefficients is done in GF(2^8)). We then multiply
the generator polynomial by m[6]*x^6 and use this to remove the x^10
term, and so on until the x^4 term is removed, and we are left with:
r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0]
which give the resulting 4 bytes of the remainder. This is equivalent
to the matrix multiplication described in the Twofish paper, but is
much faster. */
static uint32_t mds_rem(uint32_t a, uint32_t b)
{
int i;
uint32_t t, u;
enum { G_MOD = 0x0000014d };
for (i = 0; i < 8; i++) {
/* Get most significant coefficient */
t = b >> 24;
/* Shift the others up */
b = (b << 8) | (a >> 24);
a <<= 8;
u = t << 1;
/* Subtract the modular polynomial on overflow */
if (t & 0x80)
u ^= G_MOD;
/* Remove t * (a * x^2 + 1) */
b ^= t ^ (u << 16);
/* Form u = a*t + t/a = t*(a + 1/a) */
u ^= t >> 1;
/* Add the modular polynomial on underflow */
if (t & 0x01)
u ^= G_MOD >> 1;
/* Remove t * (a + 1/a) * (x^3 + x) */
b ^= (u << 24) | (u << 8);
}
return b;
}
|