1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
// seckey.h - written and placed in the public domain by Wei Dai
// This file contains helper classes/functions for implementing secret key algorithms.
#ifndef CRYPTOPP_SECKEY_H
#define CRYPTOPP_SECKEY_H
#include "cryptlib.h"
#include "misc.h"
#include "simple.h"
NAMESPACE_BEGIN(CryptoPP)
inline CipherDir ReverseCipherDir(CipherDir dir)
{
return (dir == ENCRYPTION) ? DECRYPTION : ENCRYPTION;
}
//! to be inherited by block ciphers with fixed block size
template <unsigned int N>
class FixedBlockSize
{
public:
enum {BLOCKSIZE = N};
};
// ************** rounds ***************
//! to be inherited by ciphers with fixed number of rounds
template <unsigned int R>
class FixedRounds
{
public:
enum {ROUNDS = R};
protected:
template <class T>
static inline void CheckedSetKey(T *obj, CipherDir dir, const byte *key, unsigned int length, const NameValuePairs ¶m)
{
obj->ThrowIfInvalidKeyLength(length);
int rounds = param.GetIntValueWithDefault("Rounds", ROUNDS);
if (rounds != ROUNDS)
throw InvalidRounds(obj->StaticAlgorithmName(), rounds);
obj->UncheckedSetKey(dir, key, length);
}
};
//! to be inherited by ciphers with variable number of rounds
template <unsigned int D, unsigned int N=1, unsigned int M=INT_MAX> // use INT_MAX here because enums are treated as signed ints
class VariableRounds
{
public:
enum {DEFAULT_ROUNDS = D, MIN_ROUNDS = N, MAX_ROUNDS = M};
static unsigned int StaticGetDefaultRounds(unsigned int keylength) {return DEFAULT_ROUNDS;}
protected:
static inline void AssertValidRounds(unsigned int rounds)
{
assert(rounds >= (unsigned int)MIN_ROUNDS && rounds <= (unsigned int)MAX_ROUNDS);
}
template <class T>
static inline void CheckedSetKey(T *obj, CipherDir dir, const byte *key, unsigned int length, const NameValuePairs ¶m)
{
obj->ThrowIfInvalidKeyLength(length);
int rounds = param.GetIntValueWithDefault("Rounds", obj->StaticGetDefaultRounds(length));
if (rounds < (int)MIN_ROUNDS || rounds > (int)MAX_ROUNDS)
throw InvalidRounds(obj->AlgorithmName(), rounds);
obj->UncheckedSetKey(dir, key, length, rounds);
}
};
// ************** key length ***************
//! to be inherited by keyed algorithms with fixed key length
template <unsigned int N, unsigned int IV_REQ = SimpleKeyingInterface::NOT_RESYNCHRONIZABLE>
class FixedKeyLength
{
public:
enum {KEYLENGTH=N, MIN_KEYLENGTH=N, MAX_KEYLENGTH=N, DEFAULT_KEYLENGTH=N};
enum {IV_REQUIREMENT = IV_REQ};
static unsigned int StaticGetValidKeyLength(unsigned int) {return KEYLENGTH;}
};
/// support query of variable key length, template parameters are default, min, max, multiple (default multiple 1)
template <unsigned int D, unsigned int N, unsigned int M, unsigned int Q = 1, unsigned int IV_REQ = SimpleKeyingInterface::NOT_RESYNCHRONIZABLE>
class VariableKeyLength
{
// make these private to avoid Doxygen documenting them in all derived classes
CRYPTOPP_COMPILE_ASSERT(Q > 0);
CRYPTOPP_COMPILE_ASSERT(N % Q == 0);
CRYPTOPP_COMPILE_ASSERT(M % Q == 0);
CRYPTOPP_COMPILE_ASSERT(N < M);
CRYPTOPP_COMPILE_ASSERT(D >= N && M >= D);
public:
enum {MIN_KEYLENGTH=N, MAX_KEYLENGTH=M, DEFAULT_KEYLENGTH=D, KEYLENGTH_MULTIPLE=Q};
enum {IV_REQUIREMENT = IV_REQ};
static unsigned int StaticGetValidKeyLength(unsigned int n)
{
if (n < (unsigned int)MIN_KEYLENGTH)
return MIN_KEYLENGTH;
else if (n > (unsigned int)MAX_KEYLENGTH)
return (unsigned int)MAX_KEYLENGTH;
else
{
n += KEYLENGTH_MULTIPLE-1;
return n - n%KEYLENGTH_MULTIPLE;
}
}
};
/// support query of key length that's the same as another class
template <class T>
class SameKeyLengthAs
{
public:
enum {MIN_KEYLENGTH=T::MIN_KEYLENGTH, MAX_KEYLENGTH=T::MAX_KEYLENGTH, DEFAULT_KEYLENGTH=T::DEFAULT_KEYLENGTH};
enum {IV_REQUIREMENT = T::IV_REQUIREMENT};
static unsigned int StaticGetValidKeyLength(unsigned int keylength)
{return T::StaticGetValidKeyLength(keylength);}
};
// ************** implementation helper for SimpledKeyed ***************
template <class T>
static inline void CheckedSetKey(T *obj, Empty empty, const byte *key, unsigned int length, const NameValuePairs ¶m)
{
obj->ThrowIfInvalidKeyLength(length);
obj->UncheckedSetKey(key, length);
}
template <class T>
static inline void CheckedSetKey(T *obj, CipherDir dir, const byte *key, unsigned int length, const NameValuePairs ¶m)
{
obj->ThrowIfInvalidKeyLength(length);
obj->UncheckedSetKey(dir, key, length);
}
//! _
template <class BASE, class INFO = BASE>
class CRYPTOPP_NO_VTABLE SimpleKeyingInterfaceImpl : public BASE
{
public:
unsigned int MinKeyLength() const {return INFO::MIN_KEYLENGTH;}
unsigned int MaxKeyLength() const {return (unsigned int)INFO::MAX_KEYLENGTH;}
unsigned int DefaultKeyLength() const {return INFO::DEFAULT_KEYLENGTH;}
unsigned int GetValidKeyLength(unsigned int n) const {return INFO::StaticGetValidKeyLength(n);}
typename BASE::IV_Requirement IVRequirement() const {return (typename BASE::IV_Requirement)INFO::IV_REQUIREMENT;}
protected:
void AssertValidKeyLength(unsigned int length) {assert(GetValidKeyLength(length) == length);}
};
template <class INFO, class BASE = BlockCipher>
class CRYPTOPP_NO_VTABLE BlockCipherImpl : public AlgorithmImpl<SimpleKeyingInterfaceImpl<TwoBases<BASE, INFO> > >
{
public:
unsigned int BlockSize() const {return this->BLOCKSIZE;}
};
//! _
template <CipherDir DIR, class BASE>
class BlockCipherFinal : public ClonableImpl<BlockCipherFinal<DIR, BASE>, BASE>
{
public:
BlockCipherFinal() {}
BlockCipherFinal(const byte *key)
{SetKey(key, this->DEFAULT_KEYLENGTH);}
BlockCipherFinal(const byte *key, unsigned int length)
{SetKey(key, length);}
BlockCipherFinal(const byte *key, unsigned int length, unsigned int rounds)
{this->SetKeyWithRounds(key, length, rounds);}
bool IsForwardTransformation() const {return DIR == ENCRYPTION;}
void SetKey(const byte *key, unsigned int length, const NameValuePairs ¶m = g_nullNameValuePairs)
{
CheckedSetKey(this, DIR, key, length, param);
}
};
//! _
template <class BASE, class INFO = BASE>
class MessageAuthenticationCodeImpl : public AlgorithmImpl<SimpleKeyingInterfaceImpl<BASE, INFO>, INFO>
{
public:
void SetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms = g_nullNameValuePairs)
{
CheckedSetKey(this, Empty(), key, length, params);
}
};
//! _
template <class BASE>
class MessageAuthenticationCodeFinal : public ClonableImpl<MessageAuthenticationCodeFinal<BASE>, MessageAuthenticationCodeImpl<BASE> >
{
public:
MessageAuthenticationCodeFinal() {}
MessageAuthenticationCodeFinal(const byte *key)
{SetKey(key, this->DEFAULT_KEYLENGTH);}
MessageAuthenticationCodeFinal(const byte *key, unsigned int length)
{this->SetKey(key, length);}
};
// ************** documentation ***************
//! These objects usually should not be used directly. See CipherModeDocumentation instead.
/*! Each class derived from this one defines two types, Encryption and Decryption,
both of which implement the BlockCipher interface. */
struct BlockCipherDocumentation
{
//! implements the BlockCipher interface
typedef BlockCipher Encryption;
//! implements the BlockCipher interface
typedef BlockCipher Decryption;
};
/*! \brief Each class derived from this one defines two types, Encryption and Decryption,
both of which implement the SymmetricCipher interface. Two types of classes derive
from this class: stream ciphers and block cipher modes. Stream ciphers can be used
alone, cipher mode classes need to be used with a block cipher. See CipherModeDocumentation
for more for information about using cipher modes and block ciphers. */
struct SymmetricCipherDocumentation
{
//! implements the SymmetricCipher interface
typedef SymmetricCipher Encryption;
//! implements the SymmetricCipher interface
typedef SymmetricCipher Decryption;
};
NAMESPACE_END
#endif
|