1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
// modes.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "modes.h"
#ifndef NDEBUG
#include "des.h"
#endif
NAMESPACE_BEGIN(CryptoPP)
#ifndef NDEBUG
void Modes_TestInstantiations()
{
CFB_Mode<DES>::Encryption m0;
CFB_Mode<DES>::Decryption m1;
OFB_Mode<DES>::Encryption m2;
CTR_Mode<DES>::Encryption m3;
ECB_Mode<DES>::Encryption m4;
CBC_Mode<DES>::Encryption m5;
}
#endif
void CTR_ModePolicy::SeekToIteration(lword iterationCount)
{
int carry=0;
for (int i=BlockSize()-1; i>=0; i--)
{
unsigned int sum = m_register[i] + byte(iterationCount) + carry;
m_counterArray[i] = (byte) sum;
carry = sum >> 8;
iterationCount >>= 8;
}
}
inline void CTR_ModePolicy::ProcessMultipleBlocks(byte *output, const byte *input, size_t n)
{
unsigned int s = BlockSize(), j = 0;
for (unsigned int i=1; i<n; i++, j+=s)
IncrementCounterByOne(m_counterArray + j + s, m_counterArray + j, s);
m_cipher->ProcessAndXorMultipleBlocks(m_counterArray, input, output, n);
IncrementCounterByOne(m_counterArray, m_counterArray + s*(n-1), s);
}
void CTR_ModePolicy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
assert(m_cipher->IsForwardTransformation()); // CTR mode needs the "encrypt" direction of the underlying block cipher, even to decrypt
unsigned int maxBlocks = m_cipher->OptimalNumberOfParallelBlocks();
if (maxBlocks == 1)
{
unsigned int sizeIncrement = BlockSize();
while (iterationCount)
{
m_cipher->ProcessAndXorBlock(m_counterArray, input, output);
IncrementCounterByOne(m_counterArray, sizeIncrement);
output += sizeIncrement;
input += sizeIncrement;
iterationCount -= 1;
}
}
else
{
unsigned int sizeIncrement = maxBlocks * BlockSize();
while (iterationCount >= maxBlocks)
{
ProcessMultipleBlocks(output, input, maxBlocks);
output += sizeIncrement;
input += sizeIncrement;
iterationCount -= maxBlocks;
}
if (iterationCount > 0)
ProcessMultipleBlocks(output, input, iterationCount);
}
}
void CTR_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv)
{
unsigned int s = BlockSize();
CopyOrZero(m_register, iv, s);
m_counterArray.New(s * m_cipher->OptimalNumberOfParallelBlocks());
CopyOrZero(m_counterArray, iv, s);
}
void BlockOrientedCipherModeBase::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms)
{
m_cipher->SetKey(key, length, params);
ResizeBuffers();
if (IsResynchronizable())
Resynchronize(GetIVAndThrowIfInvalid(params));
}
void BlockOrientedCipherModeBase::ProcessData(byte *outString, const byte *inString, size_t length)
{
if (!length)
return;
unsigned int s = BlockSize();
assert(length % s == 0);
if (!RequireAlignedInput() || IsAlignedOn(inString, m_cipher->BlockAlignment()))
ProcessBlocks(outString, inString, length / s);
else
{
do
{
memcpy(m_buffer, inString, s);
ProcessBlocks(outString, m_buffer, 1);
inString += s;
outString += s;
length -= s;
} while (length > 0);
}
}
void CBC_Encryption::ProcessBlocks(byte *outString, const byte *inString, size_t numberOfBlocks)
{
unsigned int blockSize = BlockSize();
xorbuf(m_register, inString, blockSize);
while (--numberOfBlocks)
{
m_cipher->ProcessBlock(m_register, outString);
inString += blockSize;
xorbuf(m_register, inString, outString, blockSize);
outString += blockSize;
}
m_cipher->ProcessBlock(m_register);
memcpy(outString, m_register, blockSize);
}
void CBC_CTS_Encryption::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
if (length <= BlockSize())
{
if (!m_stolenIV)
throw InvalidArgument("CBC_Encryption: message is too short for ciphertext stealing");
// steal from IV
memcpy(outString, m_register, length);
outString = m_stolenIV;
}
else
{
// steal from next to last block
xorbuf(m_register, inString, BlockSize());
m_cipher->ProcessBlock(m_register);
inString += BlockSize();
length -= BlockSize();
memcpy(outString+BlockSize(), m_register, length);
}
// output last full ciphertext block
xorbuf(m_register, inString, length);
m_cipher->ProcessBlock(m_register);
memcpy(outString, m_register, BlockSize());
}
void CBC_Decryption::ProcessBlocks(byte *outString, const byte *inString, size_t numberOfBlocks)
{
unsigned int blockSize = BlockSize();
do
{
memcpy(m_temp, inString, blockSize); // make copy in case we're doing in place decryption
m_cipher->ProcessAndXorBlock(m_temp, m_register, outString);
m_register.swap(m_temp);
inString += blockSize;
outString += blockSize;
} while (--numberOfBlocks);
}
void CBC_CTS_Decryption::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
const byte *pn, *pn1;
bool stealIV = length <= BlockSize();
if (stealIV)
{
pn = inString;
pn1 = m_register;
}
else
{
pn = inString + BlockSize();
pn1 = inString;
length -= BlockSize();
}
// decrypt last partial plaintext block
memcpy(m_temp, pn1, BlockSize());
m_cipher->ProcessBlock(m_temp);
xorbuf(m_temp, pn, length);
if (stealIV)
memcpy(outString, m_temp, length);
else
{
memcpy(outString+BlockSize(), m_temp, length);
// decrypt next to last plaintext block
memcpy(m_temp, pn, length);
m_cipher->ProcessBlock(m_temp);
xorbuf(outString, m_temp, m_register, BlockSize());
}
}
NAMESPACE_END
#endif
|