1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
|
// rijndael.cpp - modified by Chris Morgan <cmorgan@wpi.edu>
// and Wei Dai from Paulo Baretto's Rijndael implementation
// The original code and all modifications are in the public domain.
// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM rijndael.cpp" to generate MASM code
/*
Defense against timing attacks was added in July 2006 by Wei Dai.
The code now uses smaller tables in the first and last rounds,
and preloads them into L1 cache before usage (by loading at least
one element in each cache line).
We try to delay subsequent accesses to each table (used in the first
and last rounds) until all of the table has been preloaded. Hopefully
the compiler isn't smart enough to optimize that code away.
After preloading the table, we also try not to access any memory location
other than the table and the stack, in order to prevent table entries from
being unloaded from L1 cache, until that round is finished.
(Some popular CPUs have 2-way associative caches.)
*/
// This is the original introductory comment:
/**
* version 3.0 (December 2000)
*
* Optimised ANSI C code for the Rijndael cipher (now AES)
*
* author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
* author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
* author Paulo Barreto <paulo.barreto@terra.com.br>
*
* This code is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM
#include "rijndael.h"
#include "misc.h"
#include "cpu.h"
NAMESPACE_BEGIN(CryptoPP)
void Rijndael::Base::UncheckedSetKey(const byte *userKey, unsigned int keylen, const NameValuePairs &)
{
AssertValidKeyLength(keylen);
m_rounds = keylen/4 + 6;
m_key.New(4*(m_rounds+1));
word32 temp, *rk = m_key;
const word32 *rc = rcon;
GetUserKey(BIG_ENDIAN_ORDER, rk, keylen/4, userKey, keylen);
while (true)
{
temp = rk[keylen/4-1];
rk[keylen/4] = rk[0] ^
(word32(Se[GETBYTE(temp, 2)]) << 24) ^
(word32(Se[GETBYTE(temp, 1)]) << 16) ^
(word32(Se[GETBYTE(temp, 0)]) << 8) ^
Se[GETBYTE(temp, 3)] ^
*(rc++);
rk[keylen/4+1] = rk[1] ^ rk[keylen/4];
rk[keylen/4+2] = rk[2] ^ rk[keylen/4+1];
rk[keylen/4+3] = rk[3] ^ rk[keylen/4+2];
if (rk + keylen/4 + 4 == m_key.end())
break;
if (keylen == 24)
{
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
}
else if (keylen == 32)
{
temp = rk[11];
rk[12] = rk[ 4] ^
(word32(Se[GETBYTE(temp, 3)]) << 24) ^
(word32(Se[GETBYTE(temp, 2)]) << 16) ^
(word32(Se[GETBYTE(temp, 1)]) << 8) ^
Se[GETBYTE(temp, 0)];
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
}
rk += keylen/4;
}
if (!IsForwardTransformation())
{
unsigned int i, j;
rk = m_key;
/* invert the order of the round keys: */
for (i = 0, j = 4*m_rounds; i < j; i += 4, j -= 4) {
temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
}
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
for (i = 1; i < m_rounds; i++) {
rk += 4;
rk[0] =
Td[0*256+Se[GETBYTE(rk[0], 3)]] ^
Td[1*256+Se[GETBYTE(rk[0], 2)]] ^
Td[2*256+Se[GETBYTE(rk[0], 1)]] ^
Td[3*256+Se[GETBYTE(rk[0], 0)]];
rk[1] =
Td[0*256+Se[GETBYTE(rk[1], 3)]] ^
Td[1*256+Se[GETBYTE(rk[1], 2)]] ^
Td[2*256+Se[GETBYTE(rk[1], 1)]] ^
Td[3*256+Se[GETBYTE(rk[1], 0)]];
rk[2] =
Td[0*256+Se[GETBYTE(rk[2], 3)]] ^
Td[1*256+Se[GETBYTE(rk[2], 2)]] ^
Td[2*256+Se[GETBYTE(rk[2], 1)]] ^
Td[3*256+Se[GETBYTE(rk[2], 0)]];
rk[3] =
Td[0*256+Se[GETBYTE(rk[3], 3)]] ^
Td[1*256+Se[GETBYTE(rk[3], 2)]] ^
Td[2*256+Se[GETBYTE(rk[3], 1)]] ^
Td[3*256+Se[GETBYTE(rk[3], 0)]];
}
}
ConditionalByteReverse(BIG_ENDIAN_ORDER, m_key.begin(), m_key.begin(), 16);
ConditionalByteReverse(BIG_ENDIAN_ORDER, m_key + m_rounds*4, m_key + m_rounds*4, 16);
}
#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" {
void Rijndael_Enc_ProcessAndXorBlock(const word32 *table, word32 cacheLineSize, const word32 *k, const word32 *kLoopEnd, const byte *inBlock, const byte *xorBlock, byte *outBlock);
}
#endif
#pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code
void Rijndael::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
#endif // #ifdef CRYPTOPP_GENERATE_X64_MASM
#ifdef CRYPTOPP_X64_MASM_AVAILABLE
Rijndael_Enc_ProcessAndXorBlock(Te, g_cacheLineSize, m_key, m_key + m_rounds*4, inBlock, xorBlock, outBlock);
return;
#endif
#if defined(CRYPTOPP_X86_ASM_AVAILABLE)
#ifdef CRYPTOPP_GENERATE_X64_MASM
ALIGN 8
Rijndael_Enc_ProcessAndXorBlock PROC FRAME
rex_push_reg rbx
push_reg rsi
push_reg rdi
push_reg r12
push_reg r13
push_reg r14
push_reg r15
.endprolog
mov AS_REG_7, rcx
mov rdi, [rsp + 5*8 + 7*8] ; inBlock
#else
if (HasMMX())
{
const word32 *k = m_key;
const word32 *kLoopEnd = k + m_rounds*4;
#endif
#if CRYPTOPP_BOOL_X64
#define K_REG r8
#define K_END_REG r9
#define SAVE_K
#define RESTORE_K
#define RESTORE_K_END
#define SAVE_0(x) AS2(mov r13d, x)
#define SAVE_1(x) AS2(mov r14d, x)
#define SAVE_2(x) AS2(mov r15d, x)
#define RESTORE_0(x) AS2(mov x, r13d)
#define RESTORE_1(x) AS2(mov x, r14d)
#define RESTORE_2(x) AS2(mov x, r15d)
#else
#define K_REG esi
#define K_END_REG edi
#define SAVE_K AS2(movd mm4, esi)
#define RESTORE_K AS2(movd esi, mm4)
#define RESTORE_K_END AS2(movd edi, mm5)
#define SAVE_0(x) AS2(movd mm0, x)
#define SAVE_1(x) AS2(movd mm1, x)
#define SAVE_2(x) AS2(movd mm2, x)
#define RESTORE_0(x) AS2(movd x, mm0)
#define RESTORE_1(x) AS2(movd x, mm1)
#define RESTORE_2(x) AS2(movd x, mm2)
#endif
#ifdef __GNUC__
word32 t0, t1, t2, t3;
__asm__ __volatile__
(
".intel_syntax noprefix;"
#if CRYPTOPP_BOOL_X64
AS2( mov K_REG, rsi)
AS2( mov K_END_REG, rcx)
#else
AS1( push ebx)
AS1( push ebp)
AS2( movd mm5, ecx)
#endif
AS2( mov AS_REG_7, WORD_REG(ax))
#elif CRYPTOPP_BOOL_X86
#if _MSC_VER < 1300
const word32 *t = Te;
AS2( mov eax, t)
#endif
AS2( mov edx, g_cacheLineSize)
AS2( mov WORD_REG(di), inBlock)
AS2( mov K_REG, k)
AS2( movd mm5, kLoopEnd)
#if _MSC_VER < 1300
AS1( push ebx)
AS1( push ebp)
AS2( mov AS_REG_7, eax)
#else
AS1( push ebp)
AS2( lea AS_REG_7, Te)
#endif
#endif
AS2( mov eax, [K_REG+0*4]) // s0
AS2( xor eax, [WORD_REG(di)+0*4])
SAVE_0(eax)
AS2( mov ebx, [K_REG+1*4])
AS2( xor ebx, [WORD_REG(di)+1*4])
SAVE_1(ebx)
AS2( and ebx, eax)
AS2( mov eax, [K_REG+2*4])
AS2( xor eax, [WORD_REG(di)+2*4])
SAVE_2(eax)
AS2( and ebx, eax)
AS2( mov ecx, [K_REG+3*4])
AS2( xor ecx, [WORD_REG(di)+3*4])
AS2( and ebx, ecx)
// read Te0 into L1 cache. this code could be simplifed by using lfence, but that is an SSE2 instruction
AS2( and ebx, 0)
AS2( mov edi, ebx) // make index depend on previous loads to simulate lfence
ASL(2)
AS2( and ebx, [AS_REG_7+WORD_REG(di)])
AS2( add edi, edx)
AS2( and ebx, [AS_REG_7+WORD_REG(di)])
AS2( add edi, edx)
AS2( and ebx, [AS_REG_7+WORD_REG(di)])
AS2( add edi, edx)
AS2( and ebx, [AS_REG_7+WORD_REG(di)])
AS2( add edi, edx)
AS2( cmp edi, 1024)
ASJ( jl, 2, b)
AS2( and ebx, [AS_REG_7+1020])
#if CRYPTOPP_BOOL_X64
AS2( xor r13d, ebx)
AS2( xor r14d, ebx)
AS2( xor r15d, ebx)
#else
AS2( movd mm6, ebx)
AS2( pxor mm2, mm6)
AS2( pxor mm1, mm6)
AS2( pxor mm0, mm6)
#endif
AS2( xor ecx, ebx)
AS2( mov edi, [K_REG+4*4]) // t0
AS2( mov eax, [K_REG+5*4])
AS2( mov ebx, [K_REG+6*4])
AS2( mov edx, [K_REG+7*4])
AS2( add K_REG, 8*4)
SAVE_K
#define QUARTER_ROUND(t, a, b, c, d) \
AS2(movzx esi, t##l)\
AS2(d, [AS_REG_7+0*1024+4*WORD_REG(si)])\
AS2(movzx esi, t##h)\
AS2(c, [AS_REG_7+1*1024+4*WORD_REG(si)])\
AS2(shr e##t##x, 16)\
AS2(movzx esi, t##l)\
AS2(b, [AS_REG_7+2*1024+4*WORD_REG(si)])\
AS2(movzx esi, t##h)\
AS2(a, [AS_REG_7+3*1024+4*WORD_REG(si)])
#define s0 xor edi
#define s1 xor eax
#define s2 xor ebx
#define s3 xor ecx
#define t0 xor edi
#define t1 xor eax
#define t2 xor ebx
#define t3 xor edx
QUARTER_ROUND(c, t0, t1, t2, t3)
RESTORE_2(ecx)
QUARTER_ROUND(c, t3, t0, t1, t2)
RESTORE_1(ecx)
QUARTER_ROUND(c, t2, t3, t0, t1)
RESTORE_0(ecx)
QUARTER_ROUND(c, t1, t2, t3, t0)
SAVE_2(ebx)
SAVE_1(eax)
SAVE_0(edi)
#undef QUARTER_ROUND
RESTORE_K
ASL(0)
AS2( mov edi, [K_REG+0*4])
AS2( mov eax, [K_REG+1*4])
AS2( mov ebx, [K_REG+2*4])
AS2( mov ecx, [K_REG+3*4])
#define QUARTER_ROUND(t, a, b, c, d) \
AS2(movzx esi, t##l)\
AS2(a, [AS_REG_7+3*1024+4*WORD_REG(si)])\
AS2(movzx esi, t##h)\
AS2(b, [AS_REG_7+2*1024+4*WORD_REG(si)])\
AS2(shr e##t##x, 16)\
AS2(movzx esi, t##l)\
AS2(c, [AS_REG_7+1*1024+4*WORD_REG(si)])\
AS2(movzx esi, t##h)\
AS2(d, [AS_REG_7+0*1024+4*WORD_REG(si)])
QUARTER_ROUND(d, s0, s1, s2, s3)
RESTORE_2(edx)
QUARTER_ROUND(d, s3, s0, s1, s2)
RESTORE_1(edx)
QUARTER_ROUND(d, s2, s3, s0, s1)
RESTORE_0(edx)
QUARTER_ROUND(d, s1, s2, s3, s0)
RESTORE_K
SAVE_2(ebx)
SAVE_1(eax)
SAVE_0(edi)
AS2( mov edi, [K_REG+4*4])
AS2( mov eax, [K_REG+5*4])
AS2( mov ebx, [K_REG+6*4])
AS2( mov edx, [K_REG+7*4])
QUARTER_ROUND(c, t0, t1, t2, t3)
RESTORE_2(ecx)
QUARTER_ROUND(c, t3, t0, t1, t2)
RESTORE_1(ecx)
QUARTER_ROUND(c, t2, t3, t0, t1)
RESTORE_0(ecx)
QUARTER_ROUND(c, t1, t2, t3, t0)
SAVE_2(ebx)
SAVE_1(eax)
SAVE_0(edi)
RESTORE_K
RESTORE_K_END
AS2( add K_REG, 8*4)
SAVE_K
AS2( cmp K_END_REG, K_REG)
ASJ( jne, 0, b)
#undef QUARTER_ROUND
#undef s0
#undef s1
#undef s2
#undef s3
#undef t0
#undef t1
#undef t2
#undef t3
AS2( mov eax, [K_END_REG+0*4])
AS2( mov ecx, [K_END_REG+1*4])
AS2( mov esi, [K_END_REG+2*4])
AS2( mov edi, [K_END_REG+3*4])
#define QUARTER_ROUND(a, b, c, d) \
AS2( movzx ebx, dl)\
AS2( movzx ebx, BYTE PTR [AS_REG_7+1+4*WORD_REG(bx)])\
AS2( shl ebx, 3*8)\
AS2( xor a, ebx)\
AS2( movzx ebx, dh)\
AS2( movzx ebx, BYTE PTR [AS_REG_7+1+4*WORD_REG(bx)])\
AS2( shl ebx, 2*8)\
AS2( xor b, ebx)\
AS2( shr edx, 16)\
AS2( movzx ebx, dl)\
AS2( shr edx, 8)\
AS2( movzx ebx, BYTE PTR [AS_REG_7+1+4*WORD_REG(bx)])\
AS2( shl ebx, 1*8)\
AS2( xor c, ebx)\
AS2( movzx ebx, BYTE PTR [AS_REG_7+1+4*WORD_REG(dx)])\
AS2( xor d, ebx)
QUARTER_ROUND(eax, ecx, esi, edi)
RESTORE_2(edx)
QUARTER_ROUND(edi, eax, ecx, esi)
RESTORE_1(edx)
QUARTER_ROUND(esi, edi, eax, ecx)
RESTORE_0(edx)
QUARTER_ROUND(ecx, esi, edi, eax)
#undef QUARTER_ROUND
#if CRYPTOPP_BOOL_X86
AS1(emms)
AS1(pop ebp)
#if defined(__GNUC__) || (defined(_MSC_VER) && _MSC_VER < 1300)
AS1(pop ebx)
#endif
#endif
#ifdef __GNUC__
".att_syntax prefix;"
: "=a" (t0), "=c" (t1), "=S" (t2), "=D" (t3)
: "a" (Te), "D" (inBlock), "S" (k), "c" (kLoopEnd), "d" (g_cacheLineSize)
: "memory", "cc"
#if CRYPTOPP_BOOL_X64
, "%ebx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15"
#endif
);
if (xorBlock)
{
t0 ^= ((const word32 *)xorBlock)[0];
t1 ^= ((const word32 *)xorBlock)[1];
t2 ^= ((const word32 *)xorBlock)[2];
t3 ^= ((const word32 *)xorBlock)[3];
}
((word32 *)outBlock)[0] = t0;
((word32 *)outBlock)[1] = t1;
((word32 *)outBlock)[2] = t2;
((word32 *)outBlock)[3] = t3;
#else
#if CRYPTOPP_BOOL_X64
mov rbx, [rsp + 6*8 + 7*8] ; xorBlock
#else
AS2( mov ebx, xorBlock)
#endif
AS2( test WORD_REG(bx), WORD_REG(bx))
ASJ( jz, 1, f)
AS2( xor eax, [WORD_REG(bx)+0*4])
AS2( xor ecx, [WORD_REG(bx)+1*4])
AS2( xor esi, [WORD_REG(bx)+2*4])
AS2( xor edi, [WORD_REG(bx)+3*4])
ASL(1)
#if CRYPTOPP_BOOL_X64
mov rbx, [rsp + 7*8 + 7*8] ; outBlock
#else
AS2( mov ebx, outBlock)
#endif
AS2( mov [WORD_REG(bx)+0*4], eax)
AS2( mov [WORD_REG(bx)+1*4], ecx)
AS2( mov [WORD_REG(bx)+2*4], esi)
AS2( mov [WORD_REG(bx)+3*4], edi)
#endif
#if CRYPTOPP_GENERATE_X64_MASM
pop r15
pop r14
pop r13
pop r12
pop rdi
pop rsi
pop rbx
ret
Rijndael_Enc_ProcessAndXorBlock ENDP
#else
}
else
#endif
#endif // #ifdef CRYPTOPP_X86_ASM_AVAILABLE
#ifndef CRYPTOPP_GENERATE_X64_MASM
{
word32 s0, s1, s2, s3, t0, t1, t2, t3;
const word32 *rk = m_key;
s0 = ((const word32 *)inBlock)[0] ^ rk[0];
s1 = ((const word32 *)inBlock)[1] ^ rk[1];
s2 = ((const word32 *)inBlock)[2] ^ rk[2];
s3 = ((const word32 *)inBlock)[3] ^ rk[3];
t0 = rk[4];
t1 = rk[5];
t2 = rk[6];
t3 = rk[7];
rk += 8;
// timing attack countermeasure. see comments at top for more details
const int cacheLineSize = GetCacheLineSize();
unsigned int i;
word32 u = 0;
for (i=0; i<1024; i+=cacheLineSize)
u &= *(const word32 *)(((const byte *)Te)+i);
u &= Te[255];
s0 |= u; s1 |= u; s2 |= u; s3 |= u;
// first round
#ifdef IS_BIG_ENDIAN
#define QUARTER_ROUND(t, a, b, c, d) \
a ^= rotrFixed(Te[byte(t)], 24); t >>= 8;\
b ^= rotrFixed(Te[byte(t)], 16); t >>= 8;\
c ^= rotrFixed(Te[byte(t)], 8); t >>= 8;\
d ^= Te[t];
#else
#define QUARTER_ROUND(t, a, b, c, d) \
d ^= Te[byte(t)]; t >>= 8;\
c ^= rotrFixed(Te[byte(t)], 8); t >>= 8;\
b ^= rotrFixed(Te[byte(t)], 16); t >>= 8;\
a ^= rotrFixed(Te[t], 24);
#endif
QUARTER_ROUND(s3, t0, t1, t2, t3)
QUARTER_ROUND(s2, t3, t0, t1, t2)
QUARTER_ROUND(s1, t2, t3, t0, t1)
QUARTER_ROUND(s0, t1, t2, t3, t0)
#undef QUARTER_ROUND
// Nr - 2 full rounds:
unsigned int r = m_rounds/2 - 1;
do
{
#define QUARTER_ROUND(t, a, b, c, d) \
a ^= Te[3*256+byte(t)]; t >>= 8;\
b ^= Te[2*256+byte(t)]; t >>= 8;\
c ^= Te[1*256+byte(t)]; t >>= 8;\
d ^= Te[t];
s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3];
QUARTER_ROUND(t3, s0, s1, s2, s3)
QUARTER_ROUND(t2, s3, s0, s1, s2)
QUARTER_ROUND(t1, s2, s3, s0, s1)
QUARTER_ROUND(t0, s1, s2, s3, s0)
t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7];
QUARTER_ROUND(s3, t0, t1, t2, t3)
QUARTER_ROUND(s2, t3, t0, t1, t2)
QUARTER_ROUND(s1, t2, t3, t0, t1)
QUARTER_ROUND(s0, t1, t2, t3, t0)
#undef QUARTER_ROUND
rk += 8;
} while (--r);
// timing attack countermeasure. see comments at top for more details
u = 0;
for (i=0; i<256; i+=cacheLineSize)
u &= *(const word32 *)(Se+i);
u &= *(const word32 *)(Se+252);
t0 |= u; t1 |= u; t2 |= u; t3 |= u;
word32 tbw[4];
byte *const tempBlock = (byte *)tbw;
word32 *const obw = (word32 *)outBlock;
const word32 *const xbw = (const word32 *)xorBlock;
#define QUARTER_ROUND(t, a, b, c, d) \
tempBlock[a] = Se[byte(t)]; t >>= 8;\
tempBlock[b] = Se[byte(t)]; t >>= 8;\
tempBlock[c] = Se[byte(t)]; t >>= 8;\
tempBlock[d] = Se[t];
QUARTER_ROUND(t2, 15, 2, 5, 8)
QUARTER_ROUND(t1, 11, 14, 1, 4)
QUARTER_ROUND(t0, 7, 10, 13, 0)
QUARTER_ROUND(t3, 3, 6, 9, 12)
#undef QUARTER_ROUND
if (xbw)
{
obw[0] = tbw[0] ^ xbw[0] ^ rk[0];
obw[1] = tbw[1] ^ xbw[1] ^ rk[1];
obw[2] = tbw[2] ^ xbw[2] ^ rk[2];
obw[3] = tbw[3] ^ xbw[3] ^ rk[3];
}
else
{
obw[0] = tbw[0] ^ rk[0];
obw[1] = tbw[1] ^ rk[1];
obw[2] = tbw[2] ^ rk[2];
obw[3] = tbw[3] ^ rk[3];
}
}
}
void Rijndael::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
word32 s0, s1, s2, s3, t0, t1, t2, t3;
const word32 *rk = m_key;
s0 = ((const word32 *)inBlock)[0] ^ rk[0];
s1 = ((const word32 *)inBlock)[1] ^ rk[1];
s2 = ((const word32 *)inBlock)[2] ^ rk[2];
s3 = ((const word32 *)inBlock)[3] ^ rk[3];
t0 = rk[4];
t1 = rk[5];
t2 = rk[6];
t3 = rk[7];
rk += 8;
// timing attack countermeasure. see comments at top for more details
const int cacheLineSize = GetCacheLineSize();
unsigned int i;
word32 u = 0;
for (i=0; i<1024; i+=cacheLineSize)
u &= *(const word32 *)(((const byte *)Td)+i);
u &= Td[255];
s0 |= u; s1 |= u; s2 |= u; s3 |= u;
// first round
#ifdef IS_BIG_ENDIAN
#define QUARTER_ROUND(t, a, b, c, d) \
a ^= rotrFixed(Td[byte(t)], 24); t >>= 8;\
b ^= rotrFixed(Td[byte(t)], 16); t >>= 8;\
c ^= rotrFixed(Td[byte(t)], 8); t >>= 8;\
d ^= Td[t];
#else
#define QUARTER_ROUND(t, a, b, c, d) \
d ^= Td[byte(t)]; t >>= 8;\
c ^= rotrFixed(Td[byte(t)], 8); t >>= 8;\
b ^= rotrFixed(Td[byte(t)], 16); t >>= 8;\
a ^= rotrFixed(Td[t], 24);
#endif
QUARTER_ROUND(s3, t2, t1, t0, t3)
QUARTER_ROUND(s2, t1, t0, t3, t2)
QUARTER_ROUND(s1, t0, t3, t2, t1)
QUARTER_ROUND(s0, t3, t2, t1, t0)
#undef QUARTER_ROUND
// Nr - 2 full rounds:
unsigned int r = m_rounds/2 - 1;
do
{
#define QUARTER_ROUND(t, a, b, c, d) \
a ^= Td[3*256+byte(t)]; t >>= 8;\
b ^= Td[2*256+byte(t)]; t >>= 8;\
c ^= Td[1*256+byte(t)]; t >>= 8;\
d ^= Td[t];
s0 = rk[0]; s1 = rk[1]; s2 = rk[2]; s3 = rk[3];
QUARTER_ROUND(t3, s2, s1, s0, s3)
QUARTER_ROUND(t2, s1, s0, s3, s2)
QUARTER_ROUND(t1, s0, s3, s2, s1)
QUARTER_ROUND(t0, s3, s2, s1, s0)
t0 = rk[4]; t1 = rk[5]; t2 = rk[6]; t3 = rk[7];
QUARTER_ROUND(s3, t2, t1, t0, t3)
QUARTER_ROUND(s2, t1, t0, t3, t2)
QUARTER_ROUND(s1, t0, t3, t2, t1)
QUARTER_ROUND(s0, t3, t2, t1, t0)
#undef QUARTER_ROUND
rk += 8;
} while (--r);
// timing attack countermeasure. see comments at top for more details
u = 0;
for (i=0; i<256; i+=cacheLineSize)
u &= *(const word32 *)(Sd+i);
u &= *(const word32 *)(Sd+252);
t0 |= u; t1 |= u; t2 |= u; t3 |= u;
word32 tbw[4];
byte *const tempBlock = (byte *)tbw;
word32 *const obw = (word32 *)outBlock;
const word32 *const xbw = (const word32 *)xorBlock;
#define QUARTER_ROUND(t, a, b, c, d) \
tempBlock[a] = Sd[byte(t)]; t >>= 8;\
tempBlock[b] = Sd[byte(t)]; t >>= 8;\
tempBlock[c] = Sd[byte(t)]; t >>= 8;\
tempBlock[d] = Sd[t];
QUARTER_ROUND(t2, 7, 2, 13, 8)
QUARTER_ROUND(t1, 3, 14, 9, 4)
QUARTER_ROUND(t0, 15, 10, 5, 0)
QUARTER_ROUND(t3, 11, 6, 1, 12)
#undef QUARTER_ROUND
if (xbw)
{
obw[0] = tbw[0] ^ xbw[0] ^ rk[0];
obw[1] = tbw[1] ^ xbw[1] ^ rk[1];
obw[2] = tbw[2] ^ xbw[2] ^ rk[2];
obw[3] = tbw[3] ^ xbw[3] ^ rk[3];
}
else
{
obw[0] = tbw[0] ^ rk[0];
obw[1] = tbw[1] ^ rk[1];
obw[2] = tbw[2] ^ rk[2];
obw[3] = tbw[3] ^ rk[3];
}
}
NAMESPACE_END
#endif
#endif
|