1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
// rw.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "rw.h"
#include "nbtheory.h"
#include "asn.h"
#ifndef CRYPTOPP_IMPORTS
NAMESPACE_BEGIN(CryptoPP)
void RWFunction::BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_n.BERDecode(seq);
seq.MessageEnd();
}
void RWFunction::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_n.DEREncode(seq);
seq.MessageEnd();
}
Integer RWFunction::ApplyFunction(const Integer &in) const
{
DoQuickSanityCheck();
Integer out = in.Squared()%m_n;
const word r = 12;
// this code was written to handle both r = 6 and r = 12,
// but now only r = 12 is used in P1363
const word r2 = r/2;
const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13
const word r3b = (16 + 13 - r) % 16;
const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5
switch (out % 16)
{
case r:
break;
case r2:
case r2+8:
out <<= 1;
break;
case r3a:
case r3b:
out.Negate();
out += m_n;
break;
case r4:
case r4+8:
out.Negate();
out += m_n;
out <<= 1;
break;
default:
out = Integer::Zero();
}
return out;
}
bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
bool pass = true;
pass = pass && m_n > Integer::One() && m_n%8 == 5;
return pass;
}
bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
;
}
void RWFunction::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
;
}
// *****************************************************************************
// private key operations:
// generate a random private key
void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
int modulusSize = 2048;
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
if (modulusSize < 16)
throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small");
AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize);
m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8)));
m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8)));
m_n = m_p * m_q;
m_u = m_q.InverseMod(m_p);
}
void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_n.BERDecode(seq);
m_p.BERDecode(seq);
m_q.BERDecode(seq);
m_u.BERDecode(seq);
seq.MessageEnd();
}
void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_n.DEREncode(seq);
m_p.DEREncode(seq);
m_q.DEREncode(seq);
m_u.DEREncode(seq);
seq.MessageEnd();
}
Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
{
DoQuickSanityCheck();
ModularArithmetic modn(m_n);
Integer r, rInv;
// do this in a loop for people using small numbers for testing
do {
r.Randomize(rng, Integer::One(), m_n - Integer::One());
// Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting.
// Squaring to satisfy Jacobi requirements suggested by JPM.
r = modn.Square(r);
rInv = modn.MultiplicativeInverse(r);
} while (rInv.IsZero());
Integer re = modn.Square(r);
re = modn.Multiply(re, x); // blind
Integer cp=re%m_p, cq=re%m_q;
if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1)
{
cp = cp.IsOdd() ? (cp+m_p) >> 1 : cp >> 1;
cq = cq.IsOdd() ? (cq+m_q) >> 1 : cq >> 1;
}
#pragma omp parallel
#pragma omp sections
{
#pragma omp section
cp = ModularSquareRoot(cp, m_p);
#pragma omp section
cq = ModularSquareRoot(cq, m_q);
}
Integer y = CRT(cq, m_q, cp, m_p, m_u);
y = modn.Multiply(y, rInv); // unblind
y = STDMIN(y, m_n-y);
if (ApplyFunction(y) != x) // check
throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation");
return y;
}
bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
bool pass = RWFunction::Validate(rng, level);
pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n;
pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n;
pass = pass && m_u.IsPositive() && m_u < m_p;
if (level >= 1)
{
pass = pass && m_p * m_q == m_n;
pass = pass && m_u * m_q % m_p == 1;
}
if (level >= 2)
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
return pass;
}
bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper<RWFunction>(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
;
}
void InvertibleRWFunction::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper<RWFunction>(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
;
}
NAMESPACE_END
#endif
|