1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
// aria_simd.cpp - written and placed in the public domain by
// Jeffrey Walton, Uri Blumenthal and Marcel Raad.
//
// This source file uses intrinsics to gain access to ARMv7a and
// ARMv8a NEON instructions. A separate source file is needed
// because additional CXXFLAGS are required to enable the
// appropriate instructions sets in some build configurations.
#include "pch.h"
#include "config.h"
#include "misc.h"
#if (CRYPTOPP_SSSE3_AVAILABLE)
# include <tmmintrin.h>
#endif
#if (CRYPTOPP_ARM_NEON_HEADER)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_ARM_ACLE_HEADER)
# include <stdint.h>
# include <arm_acle.h>
#endif
// Clang intrinsic casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
// Squash MS LNK4221 and libtool warnings
extern const char ARIA_SIMD_FNAME[] = __FILE__;
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(ARIATab)
extern const word32 S1[256];
extern const word32 S2[256];
extern const word32 X1[256];
extern const word32 X2[256];
extern const word32 KRK[3][4];
NAMESPACE_END
NAMESPACE_END
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
inline byte ARIA_BRF(const word32 x, const int y) {
return static_cast<byte>(GETBYTE(x, y));
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
using CryptoPP::ARIATab::S1;
using CryptoPP::ARIATab::S2;
using CryptoPP::ARIATab::X1;
using CryptoPP::ARIATab::X2;
using CryptoPP::ARIATab::KRK;
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
template <unsigned int N>
inline void ARIA_GSRK_NEON(const uint32x4_t X, const uint32x4_t Y, byte RK[16])
{
enum { Q1 = (4-(N/32)) % 4,
Q2 = (3-(N/32)) % 4,
R = N % 32
};
vst1q_u8(RK, vreinterpretq_u8_u32(
veorq_u32(X, veorq_u32(
vshrq_n_u32(vextq_u32(Y, Y, Q1), R),
vshlq_n_u32(vextq_u32(Y, Y, Q2), 32-R)))));
}
void ARIA_UncheckedSetKey_Schedule_NEON(byte* rk, word32* ws, unsigned int keylen)
{
const uint32x4_t w0 = vld1q_u32(ws+ 0);
const uint32x4_t w1 = vld1q_u32(ws+ 8);
const uint32x4_t w2 = vld1q_u32(ws+12);
const uint32x4_t w3 = vld1q_u32(ws+16);
ARIA_GSRK_NEON<19>(w0, w1, rk + 0);
ARIA_GSRK_NEON<19>(w1, w2, rk + 16);
ARIA_GSRK_NEON<19>(w2, w3, rk + 32);
ARIA_GSRK_NEON<19>(w3, w0, rk + 48);
ARIA_GSRK_NEON<31>(w0, w1, rk + 64);
ARIA_GSRK_NEON<31>(w1, w2, rk + 80);
ARIA_GSRK_NEON<31>(w2, w3, rk + 96);
ARIA_GSRK_NEON<31>(w3, w0, rk + 112);
ARIA_GSRK_NEON<67>(w0, w1, rk + 128);
ARIA_GSRK_NEON<67>(w1, w2, rk + 144);
ARIA_GSRK_NEON<67>(w2, w3, rk + 160);
ARIA_GSRK_NEON<67>(w3, w0, rk + 176);
ARIA_GSRK_NEON<97>(w0, w1, rk + 192);
if (keylen > 16)
{
ARIA_GSRK_NEON<97>(w1, w2, rk + 208);
ARIA_GSRK_NEON<97>(w2, w3, rk + 224);
if (keylen > 24)
{
ARIA_GSRK_NEON< 97>(w3, w0, rk + 240);
ARIA_GSRK_NEON<109>(w0, w1, rk + 256);
}
}
}
void ARIA_ProcessAndXorBlock_NEON(const byte* xorBlock, byte* outBlock, const byte *rk, word32 *t)
{
outBlock[ 0] = (byte)(X1[ARIA_BRF(t[0],3)] );
outBlock[ 1] = (byte)(X2[ARIA_BRF(t[0],2)]>>8);
outBlock[ 2] = (byte)(S1[ARIA_BRF(t[0],1)] );
outBlock[ 3] = (byte)(S2[ARIA_BRF(t[0],0)] );
outBlock[ 4] = (byte)(X1[ARIA_BRF(t[1],3)] );
outBlock[ 5] = (byte)(X2[ARIA_BRF(t[1],2)]>>8);
outBlock[ 6] = (byte)(S1[ARIA_BRF(t[1],1)] );
outBlock[ 7] = (byte)(S2[ARIA_BRF(t[1],0)] );
outBlock[ 8] = (byte)(X1[ARIA_BRF(t[2],3)] );
outBlock[ 9] = (byte)(X2[ARIA_BRF(t[2],2)]>>8);
outBlock[10] = (byte)(S1[ARIA_BRF(t[2],1)] );
outBlock[11] = (byte)(S2[ARIA_BRF(t[2],0)] );
outBlock[12] = (byte)(X1[ARIA_BRF(t[3],3)] );
outBlock[13] = (byte)(X2[ARIA_BRF(t[3],2)]>>8);
outBlock[14] = (byte)(S1[ARIA_BRF(t[3],1)] );
outBlock[15] = (byte)(S2[ARIA_BRF(t[3],0)] );
// 'outBlock' and 'xorBlock' may be unaligned.
if (xorBlock != NULLPTR)
{
vst1q_u8(outBlock,
veorq_u8(
vld1q_u8(xorBlock),
veorq_u8(
vld1q_u8(outBlock),
vrev32q_u8(vld1q_u8((rk))))));
}
else
{
vst1q_u8(outBlock,
veorq_u8(
vld1q_u8(outBlock),
vrev32q_u8(vld1q_u8(rk))));
}
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
#if (CRYPTOPP_SSSE3_AVAILABLE)
void ARIA_ProcessAndXorBlock_SSSE3(const byte* xorBlock, byte* outBlock, const byte *rk, word32 *t)
{
const __m128i MASK = _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3);
outBlock[ 0] = (byte)(X1[ARIA_BRF(t[0],3)] );
outBlock[ 1] = (byte)(X2[ARIA_BRF(t[0],2)]>>8);
outBlock[ 2] = (byte)(S1[ARIA_BRF(t[0],1)] );
outBlock[ 3] = (byte)(S2[ARIA_BRF(t[0],0)] );
outBlock[ 4] = (byte)(X1[ARIA_BRF(t[1],3)] );
outBlock[ 5] = (byte)(X2[ARIA_BRF(t[1],2)]>>8);
outBlock[ 6] = (byte)(S1[ARIA_BRF(t[1],1)] );
outBlock[ 7] = (byte)(S2[ARIA_BRF(t[1],0)] );
outBlock[ 8] = (byte)(X1[ARIA_BRF(t[2],3)] );
outBlock[ 9] = (byte)(X2[ARIA_BRF(t[2],2)]>>8);
outBlock[10] = (byte)(S1[ARIA_BRF(t[2],1)] );
outBlock[11] = (byte)(S2[ARIA_BRF(t[2],0)] );
outBlock[12] = (byte)(X1[ARIA_BRF(t[3],3)] );
outBlock[13] = (byte)(X2[ARIA_BRF(t[3],2)]>>8);
outBlock[14] = (byte)(S1[ARIA_BRF(t[3],1)] );
outBlock[15] = (byte)(S2[ARIA_BRF(t[3],0)] );
// 'outBlock' and 'xorBlock' may be unaligned.
if (xorBlock != NULLPTR)
{
_mm_storeu_si128(M128_CAST(outBlock),
_mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(xorBlock)),
_mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(outBlock)),
_mm_shuffle_epi8(_mm_load_si128(CONST_M128_CAST(rk)), MASK)))
);
}
else
{
_mm_storeu_si128(M128_CAST(outBlock),
_mm_xor_si128(_mm_loadu_si128(CONST_M128_CAST(outBlock)),
_mm_shuffle_epi8(_mm_load_si128(CONST_M128_CAST(rk)), MASK)));
}
}
#endif // CRYPTOPP_SSSE3_AVAILABLE
NAMESPACE_END
|