1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// modes.cpp - originally written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "modes.h"
#include "misc.h"
#if defined(CRYPTOPP_DEBUG)
#include "des.h"
#endif
NAMESPACE_BEGIN(CryptoPP)
#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
void Modes_TestInstantiations()
{
CFB_Mode<DES>::Encryption m0;
CFB_Mode<DES>::Decryption m1;
OFB_Mode<DES>::Encryption m2;
CTR_Mode<DES>::Encryption m3;
ECB_Mode<DES>::Encryption m4;
CBC_Mode<DES>::Encryption m5;
}
#endif
void CipherModeBase::ResizeBuffers()
{
m_register.New(m_cipher->BlockSize());
}
void CFB_ModePolicy::Iterate(byte *output, const byte *input, CipherDir dir, size_t iterationCount)
{
CRYPTOPP_ASSERT(input); CRYPTOPP_ASSERT(output);
CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation());
CRYPTOPP_ASSERT(m_register.size() == BlockSize());
CRYPTOPP_ASSERT(m_temp.size() == BlockSize());
CRYPTOPP_ASSERT(iterationCount > 0);
const unsigned int s = BlockSize();
if (dir == ENCRYPTION)
{
m_cipher->ProcessAndXorBlock(m_register, input, output);
if (iterationCount > 1)
m_cipher->AdvancedProcessBlocks(output, PtrAdd(input,s), PtrAdd(output,s), (iterationCount-1)*s, 0);
memcpy(m_register, PtrAdd(output,(iterationCount-1)*s), s);
}
else
{
// make copy first in case of in-place decryption
memcpy(m_temp, PtrAdd(input,(iterationCount-1)*s), s);
if (iterationCount > 1)
m_cipher->AdvancedProcessBlocks(input, PtrAdd(input,s), PtrAdd(output,s), (iterationCount-1)*s, BlockTransformation::BT_ReverseDirection);
m_cipher->ProcessAndXorBlock(m_register, input, output);
memcpy(m_register, m_temp, s);
}
}
void CFB_ModePolicy::TransformRegister()
{
CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation());
CRYPTOPP_ASSERT(m_register.size() == BlockSize());
CRYPTOPP_ASSERT(m_temp.size() == BlockSize());
const ptrdiff_t updateSize = BlockSize()-m_feedbackSize;
m_cipher->ProcessBlock(m_register, m_temp);
memmove_s(m_register, m_register.size(), PtrAdd(m_register.begin(),m_feedbackSize), updateSize);
memcpy_s(PtrAdd(m_register.begin(),updateSize), m_register.size()-updateSize, m_temp, m_feedbackSize);
}
void CFB_ModePolicy::CipherResynchronize(const byte *iv, size_t length)
{
CRYPTOPP_ASSERT(length == BlockSize());
CRYPTOPP_ASSERT(m_register.size() == BlockSize());
CopyOrZero(m_register, m_register.size(), iv, length);
TransformRegister();
}
void CFB_ModePolicy::SetFeedbackSize(unsigned int feedbackSize)
{
if (feedbackSize > BlockSize())
throw InvalidArgument("CFB_Mode: invalid feedback size");
m_feedbackSize = feedbackSize ? feedbackSize : BlockSize();
}
void CFB_ModePolicy::ResizeBuffers()
{
CipherModeBase::ResizeBuffers();
m_temp.New(BlockSize());
}
byte* CFB_ModePolicy::GetRegisterBegin()
{
CRYPTOPP_ASSERT(!m_register.empty());
CRYPTOPP_ASSERT(BlockSize() >= m_feedbackSize);
return PtrAdd(m_register.begin(), BlockSize() - m_feedbackSize);
}
void OFB_ModePolicy::WriteKeystream(byte *keystreamBuffer, size_t iterationCount)
{
CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation());
CRYPTOPP_ASSERT(m_register.size() == BlockSize());
CRYPTOPP_ASSERT(iterationCount > 0);
const unsigned int s = BlockSize();
m_cipher->ProcessBlock(m_register, keystreamBuffer);
if (iterationCount > 1)
m_cipher->AdvancedProcessBlocks(keystreamBuffer, NULLPTR, PtrAdd(keystreamBuffer, s), s*(iterationCount-1), 0);
memcpy(m_register, PtrAdd(keystreamBuffer, (iterationCount-1)*s), s);
}
void OFB_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(m_register.size() == BlockSize());
CRYPTOPP_ASSERT(length == BlockSize());
CopyOrZero(m_register, m_register.size(), iv, length);
}
void CTR_ModePolicy::SeekToIteration(lword iterationCount)
{
int carry=0;
for (int i=BlockSize()-1; i>=0; i--)
{
unsigned int sum = m_register[i] + (byte)iterationCount + carry;
m_counterArray[i] = byte(sum & 0xff);
carry = sum >> 8;
iterationCount >>= 8;
}
}
void CTR_ModePolicy::IncrementCounterBy256()
{
IncrementCounterByOne(m_counterArray, BlockSize()-1);
}
void CTR_ModePolicy::OperateKeystream(KeystreamOperation /*operation*/, byte *output, const byte *input, size_t iterationCount)
{
CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation());
CRYPTOPP_ASSERT(m_counterArray.size() == BlockSize());
const unsigned int s = BlockSize();
const unsigned int inputIncrement = input ? s : 0;
while (iterationCount)
{
const byte lsb = m_counterArray[s-1];
const size_t blocks = UnsignedMin(iterationCount, 256U-lsb);
m_cipher->AdvancedProcessBlocks(m_counterArray, input, output, blocks*s, BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_AllowParallel);
if ((m_counterArray[s-1] = byte(lsb + blocks)) == 0)
IncrementCounterBy256();
output = PtrAdd(output, blocks*s);
input = PtrAdd(input, blocks*inputIncrement);
iterationCount -= blocks;
}
}
void CTR_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(m_register.size() == BlockSize());
CRYPTOPP_ASSERT(length == BlockSize());
CopyOrZero(m_register, m_register.size(), iv, length);
m_counterArray.Assign(m_register.begin(), m_register.size());
}
void BlockOrientedCipherModeBase::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms)
{
m_cipher->SetKey(key, length, params);
ResizeBuffers();
if (IsResynchronizable())
{
size_t ivLength;
const byte *iv = GetIVAndThrowIfInvalid(params, ivLength);
Resynchronize(iv, (int)ivLength);
}
}
void BlockOrientedCipherModeBase::ResizeBuffers()
{
CipherModeBase::ResizeBuffers();
m_buffer.New(BlockSize());
}
void ECB_OneWay::ProcessData(byte *outString, const byte *inString, size_t length)
{
CRYPTOPP_ASSERT(length%BlockSize()==0);
m_cipher->AdvancedProcessBlocks(inString, NULLPTR, outString, length, BlockTransformation::BT_AllowParallel);
}
void CBC_Encryption::ProcessData(byte *outString, const byte *inString, size_t length)
{
CRYPTOPP_ASSERT(length%BlockSize()==0);
CRYPTOPP_ASSERT(m_register.size() == BlockSize());
if (!length) return;
const unsigned int blockSize = BlockSize();
m_cipher->AdvancedProcessBlocks(inString, m_register, outString, blockSize, BlockTransformation::BT_XorInput);
if (length > blockSize)
m_cipher->AdvancedProcessBlocks(PtrAdd(inString,blockSize), outString, PtrAdd(outString,blockSize), length-blockSize, BlockTransformation::BT_XorInput);
memcpy(m_register, PtrAdd(outString, length - blockSize), blockSize);
}
size_t CBC_CTS_Encryption::ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
{
CRYPTOPP_UNUSED(outLength);
const size_t used = inLength;
const unsigned int blockSize = BlockSize();
if (inLength <= blockSize)
{
if (!m_stolenIV)
throw InvalidArgument("CBC_Encryption: message is too short for ciphertext stealing");
// steal from IV
memcpy(outString, m_register, inLength);
outString = m_stolenIV;
}
else
{
// steal from next to last block
xorbuf(m_register, inString, blockSize);
m_cipher->ProcessBlock(m_register);
inString = PtrAdd(inString, blockSize);
inLength -= blockSize;
memcpy(PtrAdd(outString, blockSize), m_register, inLength);
}
// output last full ciphertext block
xorbuf(m_register, inString, inLength);
m_cipher->ProcessBlock(m_register);
memcpy(outString, m_register, blockSize);
return used;
}
void CBC_Decryption::ResizeBuffers()
{
BlockOrientedCipherModeBase::ResizeBuffers();
m_temp.New(BlockSize());
}
void CBC_Decryption::ProcessData(byte *outString, const byte *inString, size_t length)
{
CRYPTOPP_ASSERT(length%BlockSize()==0);
if (!length) {return;}
// save copy now in case of in-place decryption
const unsigned int blockSize = BlockSize();
memcpy(m_temp, PtrAdd(inString,length-blockSize), blockSize);
if (length > blockSize)
m_cipher->AdvancedProcessBlocks(PtrAdd(inString,blockSize), inString, PtrAdd(outString,blockSize), length-blockSize, BlockTransformation::BT_ReverseDirection|BlockTransformation::BT_AllowParallel);
m_cipher->ProcessAndXorBlock(inString, m_register, outString);
m_register.swap(m_temp);
}
size_t CBC_CTS_Decryption::ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength)
{
CRYPTOPP_UNUSED(outLength);
const byte *pn1, *pn2;
const size_t used = inLength;
const bool stealIV = inLength <= BlockSize();
const unsigned int blockSize = BlockSize();
if (stealIV)
{
pn1 = inString;
pn2 = m_register;
}
else
{
pn1 = PtrAdd(inString, blockSize);
pn2 = inString;
inLength -= blockSize;
}
// decrypt last partial plaintext block
memcpy(m_temp, pn2, blockSize);
m_cipher->ProcessBlock(m_temp);
xorbuf(m_temp, pn1, inLength);
if (stealIV)
{
memcpy(outString, m_temp, inLength);
}
else
{
memcpy(PtrAdd(outString, blockSize), m_temp, inLength);
// decrypt next to last plaintext block
memcpy(m_temp, pn1, inLength);
m_cipher->ProcessBlock(m_temp);
xorbuf(outString, m_temp, m_register, blockSize);
}
return used;
}
NAMESPACE_END
#endif
|