1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
// randpool.cpp - originally written and placed in the public domain by Wei Dai
// RandomPool used to follow the design of randpool in PGP 2.6.x,
// but as of version 5.5 it has been redesigned to reduce the risk
// of reusing random numbers after state rollback (which may occur
// when running in a virtual machine like VMware).
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "randpool.h"
#include "aes.h"
#include "sha.h"
#include "hrtimer.h"
#include "trap.h"
// OldRandomPool
#include "mdc.h"
#include "modes.h"
#include <time.h>
NAMESPACE_BEGIN(CryptoPP)
RandomPool::RandomPool()
: m_pCipher(new AES::Encryption), m_keySet(false)
{
std::memset(m_key, 0, m_key.SizeInBytes());
std::memset(m_seed, 0, m_seed.SizeInBytes());
}
void RandomPool::IncorporateEntropy(const byte *input, size_t length)
{
SHA256 hash;
hash.Update(m_key, 32);
hash.Update(input, length);
hash.Final(m_key);
m_keySet = false;
}
void RandomPool::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword size)
{
if (size > 0)
{
if (!m_keySet)
m_pCipher->SetKey(m_key, 32);
CRYPTOPP_COMPILE_ASSERT(sizeof(TimerWord) <= 16);
CRYPTOPP_COMPILE_ASSERT(sizeof(time_t) <= 8);
Timer timer;
TimerWord tw = timer.GetCurrentTimerValue();
*(TimerWord *)(void*)m_seed.data() += tw;
time_t t = time(NULLPTR);
// UBsan finding: signed integer overflow: 1876017710 + 1446085457 cannot be represented in type 'long int'
// *(time_t *)(m_seed.data()+8) += t;
word64 tt1 = 0, tt2 = (word64)t;
std::memcpy(&tt1, m_seed.data()+8, 8);
std::memcpy(m_seed.data()+8, &(tt2 += tt1), 8);
// Wipe the intermediates
*((volatile TimerWord*)&tw) = 0;
*((volatile word64*)&tt1) = 0;
*((volatile word64*)&tt2) = 0;
do
{
m_pCipher->ProcessBlock(m_seed);
size_t len = UnsignedMin(16, size);
target.ChannelPut(channel, m_seed, len);
size -= len;
} while (size > 0);
}
}
// OldRandomPool is provided for backwards compatibility for a migration path
typedef MDC<SHA1> OldRandomPoolCipher;
OldRandomPool::OldRandomPool(unsigned int poolSize)
: pool(poolSize), key(OldRandomPoolCipher::DEFAULT_KEYLENGTH), addPos(0), getPos(poolSize)
{
CRYPTOPP_ASSERT(poolSize > key.size());
std::memset(pool, 0, poolSize);
std::memset(key, 0, key.size());
}
void OldRandomPool::IncorporateEntropy(const byte *input, size_t length)
{
size_t t;
while (length > (t = pool.size() - addPos))
{
xorbuf(pool+addPos, input, t);
input += t;
length -= t;
Stir();
}
if (length)
{
xorbuf(pool+addPos, input, length);
addPos += length;
getPos = pool.size(); // Force stir on get
}
}
void OldRandomPool::Stir()
{
CFB_Mode<OldRandomPoolCipher>::Encryption cipher;
for (int i=0; i<2; i++)
{
cipher.SetKeyWithIV(key, key.size(), pool.end()-cipher.IVSize());
cipher.ProcessString(pool, pool.size());
std::memcpy(key, pool, key.size());
}
addPos = 0;
getPos = key.size();
}
void OldRandomPool::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword size)
{
while (size > 0)
{
if (getPos == pool.size())
Stir();
size_t t = UnsignedMin(pool.size() - getPos, size);
target.ChannelPut(channel, pool+getPos, t);
size -= t;
getPos += t;
}
}
byte OldRandomPool::GenerateByte()
{
if (getPos == pool.size())
Stir();
return pool[getPos++];
}
void OldRandomPool::GenerateBlock(byte *outString, size_t size)
{
ArraySink sink(outString, size);
GenerateIntoBufferedTransformation(sink, DEFAULT_CHANNEL, size);
}
NAMESPACE_END
#endif
|