1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
// speck.cpp - written and placed in the public domain by Jeffrey Walton
#include "pch.h"
#include "config.h"
#include "speck.h"
#include "misc.h"
#include "cpu.h"
// Uncomment for benchmarking C++ against SSE or NEON.
// Do so in both speck.cpp and speck_simd.cpp.
// #undef CRYPTOPP_SSSE3_AVAILABLE
// #undef CRYPTOPP_SSE41_AVAILABLE
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::rotlConstant;
using CryptoPP::rotrConstant;
/// \brief Forward round transformation
/// \tparam W word type
/// \details TF83() is the forward round transformation using a=8 and b=3 rotations.
/// The initial test implementation provided template parameters, but they were
/// removed because SPECK32 using a=7 and b=2 was not on the road map. The
/// additional template parameters also made calling SPECK_Encrypt and SPECK_Decrypt
/// kind of messy.
template <class W>
inline void TF83(W& x, W& y, const W k)
{
x = rotrConstant<8>(x);
x += y; x ^= k;
y = rotlConstant<3>(y);
y ^= x;
}
/// \brief Reverse round transformation
/// \tparam W word type
/// \details TR83() is the reverse round transformation using a=8 and b=3 rotations.
/// The initial test implementation provided template parameters, but they were
/// removed because SPECK32 using a=7 and b=2 was not on the road map. The
/// additional template parameters also made calling SPECK_Encrypt and SPECK_Decrypt
/// kind of messy.
template <class W>
inline void TR83(W& x, W& y, const W k)
{
y ^= x;
y = rotrConstant<3>(y);
x ^= k; x -= y;
x = rotlConstant<8>(x);
}
/// \brief Forward transformation
/// \tparam W word type
/// \tparam R number of rounds
/// \param c output array
/// \param p input array
/// \param k subkey array
template <class W, unsigned int R>
inline void SPECK_Encrypt(W c[2], const W p[2], const W k[R])
{
c[0]=p[0]; c[1]=p[1];
// Don't unroll this loop. Things slow down.
for (int i = 0; i < static_cast<int>(R); ++i)
TF83(c[0], c[1], k[i]);
}
/// \brief Reverse transformation
/// \tparam W word type
/// \tparam R number of rounds
/// \param p output array
/// \param c input array
/// \param k subkey array
template <class W, unsigned int R>
inline void SPECK_Decrypt(W p[2], const W c[2], const W k[R])
{
p[0]=c[0]; p[1]=c[1];
// Don't unroll this loop. Things slow down.
for (int i = static_cast<int>(R-1); i >= 0; --i)
TR83(p[0], p[1], k[i]);
}
/// \brief Subkey generation function
/// \details Used when the user key consists of 2 words
/// \tparam W word type
/// \tparam R number of rounds
/// \param key empty subkey array
/// \param k user key array
template <class W, unsigned int R>
inline void SPECK_ExpandKey_2W(W key[R], const W k[2])
{
CRYPTOPP_ASSERT(R==32);
W i=0, B=k[0], A=k[1];
while (i<R-1)
{
key[i]=A; TF83(B, A, i);
i++;
}
key[R-1]=A;
}
/// \brief Subkey generation function
/// \details Used when the user key consists of 3 words
/// \tparam W word type
/// \tparam R number of rounds
/// \param key empty subkey array
/// \param k user key array
template <class W, unsigned int R>
inline void SPECK_ExpandKey_3W(W key[R], const W k[3])
{
CRYPTOPP_ASSERT(R==33 || R==26);
W i=0, C=k[0], B=k[1], A=k[2];
unsigned int blocks = R/2;
while (blocks--)
{
key[i+0]=A; TF83(B, A, i+0);
key[i+1]=A; TF83(C, A, i+1);
i+=2;
}
// The constexpr residue should allow the optimizer to remove unneeded statements
if(R%2 == 1)
{
key[R-1]=A;
}
}
/// \brief Subkey generation function
/// \details Used when the user key consists of 4 words
/// \tparam W word type
/// \tparam R number of rounds
/// \param key empty subkey array
/// \param k user key array
template <class W, unsigned int R>
inline void SPECK_ExpandKey_4W(W key[R], const W k[4])
{
CRYPTOPP_ASSERT(R==34 || R==27);
W i=0, D=k[0], C=k[1], B=k[2], A=k[3];
unsigned int blocks = R/3;
while (blocks--)
{
key[i+0]=A; TF83(B, A, i+0);
key[i+1]=A; TF83(C, A, i+1);
key[i+2]=A; TF83(D, A, i+2);
i+=3;
}
// The constexpr residue should allow the optimizer to remove unneeded statements
if(R%3 == 1)
{
key[R-1]=A;
}
else if(R%3 == 2)
{
key[R-2]=A; TF83(B, A, W(R-2));
key[R-1]=A;
}
}
ANONYMOUS_NAMESPACE_END
///////////////////////////////////////////////////////////
NAMESPACE_BEGIN(CryptoPP)
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
extern size_t SPECK128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t SPECK128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
#endif
#if (CRYPTOPP_SSE41_AVAILABLE)
extern size_t SPECK64_Enc_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t SPECK64_Dec_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
#endif
#if (CRYPTOPP_SSSE3_AVAILABLE)
extern size_t SPECK128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t SPECK128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
extern size_t SPECK128_Enc_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t SPECK128_Dec_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
#endif
std::string SPECK64::Base::AlgorithmProvider() const
{
return "C++";
}
unsigned int SPECK64::Base::OptimalDataAlignment() const
{
return GetAlignmentOf<word32>();
}
void SPECK64::Base::UncheckedSetKey(const byte *userKey, unsigned int keyLength, const NameValuePairs ¶ms)
{
CRYPTOPP_ASSERT(keyLength == 12 || keyLength == 16);
CRYPTOPP_UNUSED(params);
// Building the key schedule table requires {3,4} words workspace.
// Encrypting and decrypting requires 4 words workspace.
m_kwords = keyLength/sizeof(word32);
m_wspace.New(4U);
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word32, LittleEndian> KeyBlock;
KeyBlock kblk(userKey);
switch (m_kwords)
{
case 3:
m_rkeys.New((m_rounds = 26));
kblk(m_wspace[2])(m_wspace[1])(m_wspace[0]);
SPECK_ExpandKey_3W<word32, 26>(m_rkeys, m_wspace);
break;
case 4:
m_rkeys.New((m_rounds = 27));
kblk(m_wspace[3])(m_wspace[2])(m_wspace[1])(m_wspace[0]);
SPECK_ExpandKey_4W<word32, 27>(m_rkeys, m_wspace);
break;
default:
CRYPTOPP_ASSERT(0);
}
}
void SPECK64::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word32, LittleEndian> InBlock;
InBlock iblk(inBlock); iblk(m_wspace[1])(m_wspace[0]);
switch (m_rounds)
{
case 26:
SPECK_Encrypt<word32, 26>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 27:
SPECK_Encrypt<word32, 27>(m_wspace+2, m_wspace+0, m_rkeys);
break;
default:
CRYPTOPP_ASSERT(0);
}
// Do the endian gyrations from the paper and align pointers
typedef PutBlock<word32, LittleEndian> OutBlock;
OutBlock oblk(xorBlock, outBlock); oblk(m_wspace[3])(m_wspace[2]);
}
void SPECK64::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word32, LittleEndian> InBlock;
InBlock iblk(inBlock); iblk(m_wspace[1])(m_wspace[0]);
switch (m_rounds)
{
case 26:
SPECK_Decrypt<word32, 26>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 27:
SPECK_Decrypt<word32, 27>(m_wspace+2, m_wspace+0, m_rkeys);
break;
default:
CRYPTOPP_ASSERT(0);
}
// Do the endian gyrations from the paper and align pointers
typedef PutBlock<word32, LittleEndian> OutBlock;
OutBlock oblk(xorBlock, outBlock); oblk(m_wspace[3])(m_wspace[2]);
}
///////////////////////////////////////////////////////////
std::string SPECK128::Base::AlgorithmProvider() const
{
#if (CRYPTOPP_SPECK128_ADVANCED_PROCESS_BLOCKS)
# if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return "SSSE3";
# endif
# if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return "NEON";
# endif
# if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return "Altivec";
# endif
#endif
return "C++";
}
unsigned int SPECK128::Base::OptimalDataAlignment() const
{
#if (CRYPTOPP_SPECK128_ADVANCED_PROCESS_BLOCKS)
# if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return 16; // load __m128i
# endif
# if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return 8; // load uint64x2_t
# endif
# if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 16; // load uint64x2_p
# endif
#endif
return GetAlignmentOf<word64>();
}
void SPECK128::Base::UncheckedSetKey(const byte *userKey, unsigned int keyLength, const NameValuePairs ¶ms)
{
CRYPTOPP_ASSERT(keyLength == 16 || keyLength == 24 || keyLength == 32);
CRYPTOPP_UNUSED(params);
// Building the key schedule table requires {2,3,4} words workspace.
// Encrypting and decrypting requires 4 words workspace.
m_kwords = keyLength/sizeof(word64);
m_wspace.New(4U);
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word64, LittleEndian> KeyBlock;
KeyBlock kblk(userKey);
switch (m_kwords)
{
case 2:
m_rkeys.New((m_rounds = 32));
kblk(m_wspace[1])(m_wspace[0]);
SPECK_ExpandKey_2W<word64, 32>(m_rkeys, m_wspace);
break;
case 3:
m_rkeys.New((m_rounds = 33));
kblk(m_wspace[2])(m_wspace[1])(m_wspace[0]);
SPECK_ExpandKey_3W<word64, 33>(m_rkeys, m_wspace);
break;
case 4:
m_rkeys.New((m_rounds = 34));
kblk(m_wspace[3])(m_wspace[2])(m_wspace[1])(m_wspace[0]);
SPECK_ExpandKey_4W<word64, 34>(m_rkeys, m_wspace);
break;
default:
CRYPTOPP_ASSERT(0);
}
#if CRYPTOPP_SPECK128_ADVANCED_PROCESS_BLOCKS
// Pre-splat the round keys for Altivec forward transformation
#if CRYPTOPP_ALTIVEC_AVAILABLE
if (IsForwardTransformation() && HasAltivec())
{
AlignedSecBlock presplat(m_rkeys.size()*2);
for (size_t i=0, j=0; i<m_rkeys.size(); i++, j+=2)
presplat[j+0] = presplat[j+1] = m_rkeys[i];
m_rkeys.swap(presplat);
}
#elif CRYPTOPP_SSSE3_AVAILABLE
if (IsForwardTransformation() && HasSSSE3())
{
AlignedSecBlock presplat(m_rkeys.size()*2);
for (size_t i=0, j=0; i<m_rkeys.size(); i++, j+=2)
presplat[j+0] = presplat[j+1] = m_rkeys[i];
m_rkeys.swap(presplat);
}
#endif
#endif // CRYPTOPP_SPECK128_ADVANCED_PROCESS_BLOCKS
}
void SPECK128::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word64, LittleEndian> InBlock;
InBlock iblk(inBlock); iblk(m_wspace[1])(m_wspace[0]);
switch (m_rounds)
{
case 32:
SPECK_Encrypt<word64, 32>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 33:
SPECK_Encrypt<word64, 33>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 34:
SPECK_Encrypt<word64, 34>(m_wspace+2, m_wspace+0, m_rkeys);
break;
default:
CRYPTOPP_ASSERT(0);
}
// Do the endian gyrations from the paper and align pointers
typedef PutBlock<word64, LittleEndian> OutBlock;
OutBlock oblk(xorBlock, outBlock); oblk(m_wspace[3])(m_wspace[2]);
}
void SPECK128::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word64, LittleEndian> InBlock;
InBlock iblk(inBlock); iblk(m_wspace[1])(m_wspace[0]);
switch (m_rounds)
{
case 32:
SPECK_Decrypt<word64, 32>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 33:
SPECK_Decrypt<word64, 33>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 34:
SPECK_Decrypt<word64, 34>(m_wspace+2, m_wspace+0, m_rkeys);
break;
default:
CRYPTOPP_ASSERT(0);
}
// Do the endian gyrations from the paper and align pointers
typedef PutBlock<word64, LittleEndian> OutBlock;
OutBlock oblk(xorBlock, outBlock); oblk(m_wspace[3])(m_wspace[2]);
}
#if (CRYPTOPP_SPECK128_ADVANCED_PROCESS_BLOCKS)
size_t SPECK128::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
#if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return SPECK128_Enc_AdvancedProcessBlocks_SSSE3(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return SPECK128_Enc_AdvancedProcessBlocks_NEON(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return SPECK128_Enc_AdvancedProcessBlocks_ALTIVEC(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SPECK128::Dec::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
#if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return SPECK128_Dec_AdvancedProcessBlocks_SSSE3(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return SPECK128_Dec_AdvancedProcessBlocks_NEON(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return SPECK128_Dec_AdvancedProcessBlocks_ALTIVEC(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_SPECK128_ADVANCED_PROCESS_BLOCKS
NAMESPACE_END
|