1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
// strciphr.cpp - originally written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "strciphr.h"
// Squash MS LNK4221 and libtool warnings
#ifndef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
extern const char STRCIPHER_FNAME[] = __FILE__;
#endif
NAMESPACE_BEGIN(CryptoPP)
template <class S>
void AdditiveCipherTemplate<S>::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms)
{
PolicyInterface &policy = this->AccessPolicy();
policy.CipherSetKey(params, key, length);
m_leftOver = 0;
unsigned int bufferByteSize = policy.CanOperateKeystream() ? GetBufferByteSize(policy) : RoundUpToMultipleOf(1024U, GetBufferByteSize(policy));
m_buffer.New(bufferByteSize);
if (this->IsResynchronizable())
{
size_t ivLength;
const byte *iv = this->GetIVAndThrowIfInvalid(params, ivLength);
policy.CipherResynchronize(m_buffer, iv, ivLength);
}
}
template <class S>
void AdditiveCipherTemplate<S>::GenerateBlock(byte *outString, size_t length)
{
if (m_leftOver > 0)
{
const size_t len = STDMIN(m_leftOver, length);
std::memcpy(outString, PtrSub(KeystreamBufferEnd(), m_leftOver), len);
length -= len; m_leftOver -= len;
outString = PtrAdd(outString, len);
if (!length) {return;}
}
PolicyInterface &policy = this->AccessPolicy();
unsigned int bytesPerIteration = policy.GetBytesPerIteration();
if (length >= bytesPerIteration)
{
const size_t iterations = length / bytesPerIteration;
policy.WriteKeystream(outString, iterations);
length -= iterations * bytesPerIteration;
outString = PtrAdd(outString, iterations * bytesPerIteration);
}
if (length > 0)
{
size_t bufferByteSize = RoundUpToMultipleOf(length, bytesPerIteration);
size_t bufferIterations = bufferByteSize / bytesPerIteration;
policy.WriteKeystream(PtrSub(KeystreamBufferEnd(), bufferByteSize), bufferIterations);
std::memcpy(outString, PtrSub(KeystreamBufferEnd(), bufferByteSize), length);
m_leftOver = bufferByteSize - length;
}
}
template <class S>
void AdditiveCipherTemplate<S>::ProcessData(byte *outString, const byte *inString, size_t length)
{
if (m_leftOver > 0)
{
const size_t len = STDMIN(m_leftOver, length);
xorbuf(outString, inString, PtrSub(KeystreamBufferEnd(), m_leftOver), len);
length -= len; m_leftOver -= len;
inString = PtrAdd(inString, len);
outString = PtrAdd(outString, len);
if (!length) {return;}
}
PolicyInterface &policy = this->AccessPolicy();
unsigned int bytesPerIteration = policy.GetBytesPerIteration();
if (policy.CanOperateKeystream() && length >= bytesPerIteration)
{
const size_t iterations = length / bytesPerIteration;
unsigned int alignment = policy.GetAlignment();
volatile int inAligned = IsAlignedOn(inString, alignment) << 1;
volatile int outAligned = IsAlignedOn(outString, alignment) << 0;
KeystreamOperation operation = KeystreamOperation(inAligned | outAligned);
policy.OperateKeystream(operation, outString, inString, iterations);
inString = PtrAdd(inString, iterations * bytesPerIteration);
outString = PtrAdd(outString, iterations * bytesPerIteration);
length -= iterations * bytesPerIteration;
if (!length) {return;}
}
size_t bufferByteSize = m_buffer.size();
size_t bufferIterations = bufferByteSize / bytesPerIteration;
while (length >= bufferByteSize)
{
policy.WriteKeystream(m_buffer, bufferIterations);
xorbuf(outString, inString, KeystreamBufferBegin(), bufferByteSize);
length -= bufferByteSize;
inString = PtrAdd(inString, bufferByteSize);
outString = PtrAdd(outString, bufferByteSize);
}
if (length > 0)
{
bufferByteSize = RoundUpToMultipleOf(length, bytesPerIteration);
bufferIterations = bufferByteSize / bytesPerIteration;
policy.WriteKeystream(PtrSub(KeystreamBufferEnd(), bufferByteSize), bufferIterations);
xorbuf(outString, inString, PtrSub(KeystreamBufferEnd(), bufferByteSize), length);
m_leftOver = bufferByteSize - length;
}
}
template <class S>
void AdditiveCipherTemplate<S>::Resynchronize(const byte *iv, int length)
{
PolicyInterface &policy = this->AccessPolicy();
m_leftOver = 0;
m_buffer.New(GetBufferByteSize(policy));
policy.CipherResynchronize(m_buffer, iv, this->ThrowIfInvalidIVLength(length));
}
template <class BASE>
void AdditiveCipherTemplate<BASE>::Seek(lword position)
{
PolicyInterface &policy = this->AccessPolicy();
word32 bytesPerIteration = policy.GetBytesPerIteration();
policy.SeekToIteration(position / bytesPerIteration);
position %= bytesPerIteration;
if (position > 0)
{
policy.WriteKeystream(PtrSub(KeystreamBufferEnd(), bytesPerIteration), 1);
m_leftOver = bytesPerIteration - static_cast<word32>(position);
}
else
m_leftOver = 0;
}
template <class BASE>
void CFB_CipherTemplate<BASE>::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms)
{
PolicyInterface &policy = this->AccessPolicy();
policy.CipherSetKey(params, key, length);
if (this->IsResynchronizable())
{
size_t ivLength;
const byte *iv = this->GetIVAndThrowIfInvalid(params, ivLength);
policy.CipherResynchronize(iv, ivLength);
}
m_leftOver = policy.GetBytesPerIteration();
}
template <class BASE>
void CFB_CipherTemplate<BASE>::Resynchronize(const byte *iv, int length)
{
PolicyInterface &policy = this->AccessPolicy();
policy.CipherResynchronize(iv, this->ThrowIfInvalidIVLength(length));
m_leftOver = policy.GetBytesPerIteration();
}
template <class BASE>
void CFB_CipherTemplate<BASE>::ProcessData(byte *outString, const byte *inString, size_t length)
{
CRYPTOPP_ASSERT(outString); CRYPTOPP_ASSERT(inString);
CRYPTOPP_ASSERT(length % this->MandatoryBlockSize() == 0);
PolicyInterface &policy = this->AccessPolicy();
word32 bytesPerIteration = policy.GetBytesPerIteration();
byte *reg = policy.GetRegisterBegin();
if (m_leftOver)
{
const size_t len = STDMIN(m_leftOver, length);
CombineMessageAndShiftRegister(outString, PtrAdd(reg, bytesPerIteration - m_leftOver), inString, len);
m_leftOver -= len; length -= len;
inString = PtrAdd(inString, len);
outString = PtrAdd(outString, len);
}
if (!length) {return;}
// TODO: Figure out what is happening on ARM A-32. x86, Aarch64 and PowerPC are OK.
// The issue surfaced for CFB mode when we cut-in Cryptogams AES ARMv7 asm.
// Using 'outString' for both input and output leads to incorrect results.
//
// Benchmarking on Cortex-A7 and Cortex-A9 indicates removing the block
// below costs about 9 cpb for CFB mode on ARM.
//
// Also see https://github.com/weidai11/cryptopp/issues/683.
const unsigned int alignment = policy.GetAlignment();
volatile bool inAligned = IsAlignedOn(inString, alignment);
volatile bool outAligned = IsAlignedOn(outString, alignment);
if (policy.CanIterate() && length >= bytesPerIteration && outAligned)
{
CipherDir cipherDir = GetCipherDir(*this);
if (inAligned)
policy.Iterate(outString, inString, cipherDir, length / bytesPerIteration);
else
{
// GCC and Clang do not like this on ARM. The incorrect result is a string
// of 0's instead of ciphertext (or plaintext if decrypting). The 0's trace
// back to the allocation for the std::string in datatest.cpp. Elements in the
// string are initialized to their default value, which is 0.
//
// It almost feels as if the compiler does not see the string is transformed
// in-place so it short-circuits the transform. However, if we use a stand-alone
// reproducer with the same data then the issue is _not_ present.
//
// When working on this issue we introduced PtrAdd and PtrSub to ensure we were
// not running afoul of pointer arithmetic rules of the language. Namely we need
// to use ptrdiff_t when subtracting pointers. We believe the relevant code paths
// are clean.
//
// One workaround is a distinct and aligned temporary buffer. It [mostly] works
// as expected but requires an extra allocation (casts not shown):
//
// std::string temp(inString, length);
// policy.Iterate(outString, &temp[0], cipherDir, length / bytesPerIteration);
std::memcpy(outString, inString, length);
policy.Iterate(outString, outString, cipherDir, length / bytesPerIteration);
}
const size_t remainder = length % bytesPerIteration;
inString = PtrAdd(inString, length - remainder);
outString = PtrAdd(outString, length - remainder);
length = remainder;
}
while (length >= bytesPerIteration)
{
policy.TransformRegister();
CombineMessageAndShiftRegister(outString, reg, inString, bytesPerIteration);
length -= bytesPerIteration;
inString = PtrAdd(inString, bytesPerIteration);
outString = PtrAdd(outString, bytesPerIteration);
}
if (length > 0)
{
policy.TransformRegister();
CombineMessageAndShiftRegister(outString, reg, inString, length);
m_leftOver = bytesPerIteration - length;
}
}
template <class BASE>
void CFB_EncryptionTemplate<BASE>::CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length)
{
xorbuf(reg, message, length);
std::memcpy(output, reg, length);
}
template <class BASE>
void CFB_DecryptionTemplate<BASE>::CombineMessageAndShiftRegister(byte *output, byte *reg, const byte *message, size_t length)
{
for (size_t i=0; i<length; i++)
{
byte b = message[i];
output[i] = reg[i] ^ b;
reg[i] = b;
}
}
NAMESPACE_END
#endif
|