1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
// validat6.cpp - originally written and placed in the public domain by Wei Dai
// CryptoPP::Test namespace added by JW in February 2017.
// Source files split in July 2018 to expedite compiles.
#include "pch.h"
#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1
#include "cryptlib.h"
#include "cpu.h"
#include "validate.h"
#include "asn.h"
#include "oids.h"
#include "blumshub.h"
#include "eccrypto.h"
#include <iostream>
#include <iomanip>
#include <sstream>
// Aggressive stack checking with VS2005 SP1 and above.
#if (_MSC_FULL_VER >= 140050727)
# pragma strict_gs_check (on)
#endif
#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4505 4355)
#endif
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Test)
bool CryptoSystemValidate(PK_Decryptor &priv, PK_Encryptor &pub, bool thorough)
{
bool pass = true, fail;
fail = !pub.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2) || !priv.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2);
pass = pass && !fail;
std::cout << (fail ? "FAILED " : "passed ");
std::cout << "cryptosystem key validation\n";
const byte message[] = "test message";
const int messageLen = 12;
SecByteBlock ciphertext(priv.CiphertextLength(messageLen));
SecByteBlock plaintext(priv.MaxPlaintextLength(ciphertext.size()));
pub.Encrypt(GlobalRNG(), message, messageLen, ciphertext);
fail = priv.Decrypt(GlobalRNG(), ciphertext, priv.CiphertextLength(messageLen), plaintext) != DecodingResult(messageLen);
fail = fail || memcmp(message, plaintext, messageLen);
pass = pass && !fail;
std::cout << (fail ? "FAILED " : "passed ");
std::cout << "encryption and decryption\n";
return pass;
}
bool SimpleKeyAgreementValidate(SimpleKeyAgreementDomain &d)
{
if (d.GetCryptoParameters().Validate(GlobalRNG(), 3))
std::cout << "passed simple key agreement domain parameters validation" << std::endl;
else
{
std::cout << "FAILED simple key agreement domain parameters invalid" << std::endl;
return false;
}
SecByteBlock priv1(d.PrivateKeyLength()), priv2(d.PrivateKeyLength());
SecByteBlock pub1(d.PublicKeyLength()), pub2(d.PublicKeyLength());
SecByteBlock val1(d.AgreedValueLength()), val2(d.AgreedValueLength());
d.GenerateKeyPair(GlobalRNG(), priv1, pub1);
d.GenerateKeyPair(GlobalRNG(), priv2, pub2);
memset(val1.begin(), 0x10, val1.size());
memset(val2.begin(), 0x11, val2.size());
if (!(d.Agree(val1, priv1, pub2) && d.Agree(val2, priv2, pub1)))
{
std::cout << "FAILED simple key agreement failed" << std::endl;
return false;
}
if (memcmp(val1.begin(), val2.begin(), d.AgreedValueLength()))
{
std::cout << "FAILED simple agreed values not equal" << std::endl;
return false;
}
std::cout << "passed simple key agreement" << std::endl;
return true;
}
bool AuthenticatedKeyAgreementValidate(AuthenticatedKeyAgreementDomain &d)
{
if (d.GetCryptoParameters().Validate(GlobalRNG(), 3))
std::cout << "passed authenticated key agreement domain parameters validation" << std::endl;
else
{
std::cout << "FAILED authenticated key agreement domain parameters invalid" << std::endl;
return false;
}
SecByteBlock spriv1(d.StaticPrivateKeyLength()), spriv2(d.StaticPrivateKeyLength());
SecByteBlock epriv1(d.EphemeralPrivateKeyLength()), epriv2(d.EphemeralPrivateKeyLength());
SecByteBlock spub1(d.StaticPublicKeyLength()), spub2(d.StaticPublicKeyLength());
SecByteBlock epub1(d.EphemeralPublicKeyLength()), epub2(d.EphemeralPublicKeyLength());
SecByteBlock val1(d.AgreedValueLength()), val2(d.AgreedValueLength());
d.GenerateStaticKeyPair(GlobalRNG(), spriv1, spub1);
d.GenerateStaticKeyPair(GlobalRNG(), spriv2, spub2);
d.GenerateEphemeralKeyPair(GlobalRNG(), epriv1, epub1);
d.GenerateEphemeralKeyPair(GlobalRNG(), epriv2, epub2);
memset(val1.begin(), 0x10, val1.size());
memset(val2.begin(), 0x11, val2.size());
if (d.Agree(val1, spriv1, epriv1, spub2, epub2) && d.Agree(val2, spriv2, epriv2, spub1, epub1))
{
std::cout << "passed authenticated key agreement protocol execution" << std::endl;
}
else
{
std::cout << "FAILED authenticated key agreement protocol execution" << std::endl;
return false;
}
if (memcmp(val1.begin(), val2.begin(), d.AgreedValueLength()))
{
std::cout << "FAILED authenticated agreed values not equal" << std::endl;
return false;
}
std::cout << "passed authenticated key agreement" << std::endl;
return true;
}
bool AuthenticatedKeyAgreementWithRolesValidate(AuthenticatedKeyAgreementDomain &initiator, AuthenticatedKeyAgreementDomain &recipient)
{
if (initiator.GetCryptoParameters().Validate(GlobalRNG(), 3))
std::cout << "passed authenticated key agreement domain parameters validation (initiator)" << std::endl;
else
{
std::cout << "FAILED authenticated key agreement domain parameters invalid (initiator)" << std::endl;
return false;
}
if (recipient.GetCryptoParameters().Validate(GlobalRNG(), 3))
std::cout << "passed authenticated key agreement domain parameters validation (recipient)" << std::endl;
else
{
std::cout << "FAILED authenticated key agreement domain parameters invalid (recipient)" << std::endl;
return false;
}
if (initiator.StaticPrivateKeyLength() != recipient.StaticPrivateKeyLength() ||
initiator.EphemeralPrivateKeyLength() != recipient.EphemeralPrivateKeyLength() ||
initiator.StaticPublicKeyLength() != recipient.StaticPublicKeyLength() ||
initiator.EphemeralPublicKeyLength() != recipient.EphemeralPublicKeyLength() ||
initiator.AgreedValueLength() != recipient.AgreedValueLength())
{
std::cout << "FAILED authenticated key agreement domain parameter consistency" << std::endl;
return false;
}
else
{
std::cout << "passed authenticated key agreement domain parameter consistency" << std::endl;
}
SecByteBlock spriv1(initiator.StaticPrivateKeyLength()), spriv2(recipient.StaticPrivateKeyLength());
SecByteBlock epriv1(initiator.EphemeralPrivateKeyLength()), epriv2(recipient.EphemeralPrivateKeyLength());
SecByteBlock spub1(initiator.StaticPublicKeyLength()), spub2(recipient.StaticPublicKeyLength());
SecByteBlock epub1(initiator.EphemeralPublicKeyLength()), epub2(recipient.EphemeralPublicKeyLength());
SecByteBlock val1(initiator.AgreedValueLength()), val2(recipient.AgreedValueLength());
initiator.GenerateStaticKeyPair(GlobalRNG(), spriv1, spub1);
recipient.GenerateStaticKeyPair(GlobalRNG(), spriv2, spub2);
initiator.GenerateEphemeralKeyPair(GlobalRNG(), epriv1, epub1);
recipient.GenerateEphemeralKeyPair(GlobalRNG(), epriv2, epub2);
memset(val1.begin(), 0x10, val1.size());
memset(val2.begin(), 0x11, val2.size());
if (initiator.Agree(val1, spriv1, epriv1, spub2, epub2) && recipient.Agree(val2, spriv2, epriv2, spub1, epub1))
{
std::cout << "passed authenticated key agreement protocol execution" << std::endl;
}
else
{
std::cout << "FAILED authenticated key agreement protocol execution" << std::endl;
return false;
}
if (memcmp(val1.begin(), val2.begin(), initiator.AgreedValueLength()))
{
std::cout << "FAILED authenticated agreed values not equal" << std::endl;
return false;
}
std::cout << "passed authenticated key agreement shared secret" << std::endl;
return true;
}
bool SignatureValidate(PK_Signer &priv, PK_Verifier &pub, bool thorough)
{
bool pass = true, fail;
fail = !pub.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2) || !priv.GetMaterial().Validate(GlobalRNG(), thorough ? 3 : 2);
pass = pass && !fail;
std::cout << (fail ? "FAILED " : "passed ");
std::cout << "signature key validation\n";
const byte message[] = "test message";
const int messageLen = 12;
SecByteBlock signature(priv.MaxSignatureLength());
size_t signatureLength = priv.SignMessage(GlobalRNG(), message, messageLen, signature);
fail = !pub.VerifyMessage(message, messageLen, signature, signatureLength);
pass = pass && !fail;
std::cout << (fail ? "FAILED " : "passed ");
std::cout << "signature and verification\n";
++signature[0];
fail = pub.VerifyMessage(message, messageLen, signature, signatureLength);
pass = pass && !fail;
std::cout << (fail ? "FAILED " : "passed ");
std::cout << "checking invalid signature" << std::endl;
if (priv.MaxRecoverableLength() > 0)
{
signatureLength = priv.SignMessageWithRecovery(GlobalRNG(), message, messageLen, NULLPTR, 0, signature);
SecByteBlock recovered(priv.MaxRecoverableLengthFromSignatureLength(signatureLength));
DecodingResult result = pub.RecoverMessage(recovered, NULLPTR, 0, signature, signatureLength);
fail = !(result.isValidCoding && result.messageLength == messageLen && memcmp(recovered, message, messageLen) == 0);
pass = pass && !fail;
std::cout << (fail ? "FAILED " : "passed ");
std::cout << "signature and verification with recovery" << std::endl;
++signature[0];
result = pub.RecoverMessage(recovered, NULLPTR, 0, signature, signatureLength);
fail = result.isValidCoding;
pass = pass && !fail;
std::cout << (fail ? "FAILED " : "passed ");
std::cout << "recovery with invalid signature" << std::endl;
}
return pass;
}
bool ValidateBBS()
{
std::cout << "\nBlumBlumShub validation suite running...\n\n";
Integer p("212004934506826557583707108431463840565872545889679278744389317666981496005411448865750399674653351");
Integer q("100677295735404212434355574418077394581488455772477016953458064183204108039226017738610663984508231");
Integer seed("63239752671357255800299643604761065219897634268887145610573595874544114193025997412441121667211431");
BlumBlumShub bbs(p, q, seed);
bool pass = true, fail;
int j;
const byte output1[] = {
0x49,0xEA,0x2C,0xFD,0xB0,0x10,0x64,0xA0,0xBB,0xB9,
0x2A,0xF1,0x01,0xDA,0xC1,0x8A,0x94,0xF7,0xB7,0xCE};
const byte output2[] = {
0x74,0x45,0x48,0xAE,0xAC,0xB7,0x0E,0xDF,0xAF,0xD7,
0xD5,0x0E,0x8E,0x29,0x83,0x75,0x6B,0x27,0x46,0xA1};
byte buf[20];
std::ostringstream oss;
bbs.GenerateBlock(buf, 20);
fail = memcmp(output1, buf, 20) != 0;
pass = pass && !fail;
oss << (fail ? "FAILED " : "passed ");
for (j=0;j<20;j++)
oss << std::setw(2) << std::setfill('0') << std::hex << (int)buf[j];
oss << std::endl;
bbs.Seek(10);
bbs.GenerateBlock(buf, 10);
fail = memcmp(output1+10, buf, 10) != 0;
pass = pass && !fail;
oss << (fail ? "FAILED " : "passed ");
for (j=0;j<10;j++)
oss << std::setw(2) << std::setfill('0') << std::hex << (int)buf[j];
oss << std::endl;
bbs.Seek(1234567);
bbs.GenerateBlock(buf, 20);
fail = memcmp(output2, buf, 20) != 0;
pass = pass && !fail;
oss << (fail ? "FAILED " : "passed ");
for (j=0;j<20;j++)
oss << std::setw(2) << std::setfill('0') << std::hex << (int)buf[j];
oss << std::endl;
std::cout << oss.str();
return pass;
}
bool ValidateECP()
{
// Remove word recommend. Some ECP curves may not be recommended depending
// on whom you ask. ECP is more descriptive item in this case.
std::cout << "\nTesting SEC 2, NIST and Brainpool ECP curves...\n\n";
bool pass = true; OID oid;
while (!(oid = DL_GroupParameters_EC<ECP>::GetNextRecommendedParametersOID(oid)).GetValues().empty())
{
DL_GroupParameters_EC<ECP> params(oid);
pass = params.Validate(GlobalRNG(), 2);
// Test addition of identity element
DL_GroupParameters_EC<ECP>::Element e1;
e1 = params.GetCurve().Add(e1, e1);
pass = params.IsIdentity(e1) && pass;
// Test doubling of identity element
DL_GroupParameters_EC<ECP>::Element e2;
e2 = params.GetCurve().Double(e2);
pass = params.IsIdentity(e2) && pass;
// Test multiplication of identity element
DL_GroupParameters_EC<ECP>::Element e3;
Integer two = Integer::Two();
e3 = params.GetCurve().Multiply(two, e3);
pass = params.IsIdentity(e3) && pass;
std::cout << (pass ? "passed" : "FAILED") << " " << std::dec << params.GetCurve().GetField().MaxElementBitLength() << " bits\n";
}
std::cout << "\nECP validation suite running...\n\n";
return ValidateECP_Agreement() && ValidateECP_Encrypt() && ValidateECP_NULLDigest_Encrypt() && ValidateECP_Sign() && pass;
}
bool ValidateEC2N()
{
// Remove word recommend. Binary curves may not be recommended depending
// on whom you ask. EC2N is more descriptive item in this case.
std::cout << "\nTesting SEC 2 EC2N curves...\n\n";
bool pass = true; OID oid;
#if 1 // TODO: turn this back on when I make EC2N faster for pentanomial basis
while (!(oid = DL_GroupParameters_EC<EC2N>::GetNextRecommendedParametersOID(oid)).GetValues().empty())
{
DL_GroupParameters_EC<EC2N> params(oid);
pass = params.Validate(GlobalRNG(), 2);
// Test addition of identity element
DL_GroupParameters_EC<EC2N>::Element e1;
e1 = params.GetCurve().Add(e1, e1);
pass = params.IsIdentity(e1) && pass;
// Test doubling of identity element
DL_GroupParameters_EC<EC2N>::Element e2;
e2 = params.GetCurve().Double(e2);
pass = params.IsIdentity(e2) && pass;
// Test multiplication of identity element
DL_GroupParameters_EC<EC2N>::Element e3;
Integer two = Integer::Two();
e3 = params.GetCurve().Multiply(two, e3);
pass = params.IsIdentity(e3) && pass;
std::cout << (pass ? "passed" : "FAILED") << " " << params.GetCurve().GetField().MaxElementBitLength() << " bits\n";
}
#endif
std::cout << "\nEC2N validation suite running...\n\n";
return ValidateEC2N_Agreement() && ValidateEC2N_Encrypt() && ValidateEC2N_Sign() && pass;
}
bool ValidateRSA()
{
std::cout << "\nRSA validation suite running...\n\n";
return ValidateRSA_Encrypt() && ValidateRSA_Sign();
}
bool ValidateLUC()
{
std::cout << "\nLUC validation suite running...\n\n";
return ValidateLUC_Encrypt() && ValidateLUC_Sign();
}
bool ValidateLUC_DL()
{
// Prologue printed in each function
return ValidateLUC_DL_Encrypt() && ValidateLUC_DL_Sign();
}
bool ValidateRabin()
{
std::cout << "\nRabin validation suite running...\n\n";
return ValidateRabin_Encrypt() && ValidateRabin_Sign();
}
NAMESPACE_END // Test
NAMESPACE_END // CryptoPP
|