1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
// validat7.cpp - originally written and placed in the public domain by Wei Dai
// CryptoPP::Test namespace added by JW in February 2017.
// Source files split in July 2018 to expedite compiles.
#include "pch.h"
#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1
#include "cryptlib.h"
#include "cpu.h"
#include "validate.h"
#include "asn.h"
#include "oids.h"
#include "sha.h"
#include "sha3.h"
#include "dh.h"
#include "luc.h"
#include "mqv.h"
#include "xtr.h"
#include "hmqv.h"
#include "pubkey.h"
#include "xtrcrypt.h"
#include "eccrypto.h"
// Curve25519
#include "xed25519.h"
#include "donna.h"
#include "naclite.h"
#include <iostream>
#include <iomanip>
#include <sstream>
// Aggressive stack checking with VS2005 SP1 and above.
#if (_MSC_FULL_VER >= 140050727)
# pragma strict_gs_check (on)
#endif
#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4505 4355)
#endif
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Test)
bool ValidateDH()
{
std::cout << "\nDH validation suite running...\n\n";
FileSource f(DataDir("TestData/dh1024.dat").c_str(), true, new HexDecoder);
DH dh(f);
return SimpleKeyAgreementValidate(dh);
}
bool ValidateX25519()
{
std::cout << "\nx25519 validation suite running...\n\n";
FileSource f(DataDir("TestData/x25519.dat").c_str(), true, new HexDecoder);
x25519 dh(f);
return SimpleKeyAgreementValidate(dh);
}
bool ValidateMQV()
{
std::cout << "\nMQV validation suite running...\n\n";
FileSource f(DataDir("TestData/mqv1024.dat").c_str(), true, new HexDecoder);
MQV mqv(f);
return AuthenticatedKeyAgreementValidate(mqv);
}
bool ValidateHMQV()
{
std::cout << "\nHMQV validation suite running...\n\n";
bool success = true, fail;
FileSource f256(DataDir("TestData/hmqv256.dat").c_str(), true, new HexDecoder);
FileSource f384(DataDir("TestData/hmqv384.dat").c_str(), true, new HexDecoder);
FileSource f512(DataDir("TestData/hmqv512.dat").c_str(), true, new HexDecoder);
/////////////////////////
std::cout << "HMQV with NIST P-256 and SHA-256:" << std::endl;
ECHMQV256 hmqvB256(false);
hmqvB256.AccessGroupParameters().BERDecode(f256);
const OID oid = ASN1::secp256r1();
ECHMQV< ECP >::Domain hmqvA256(oid, true /*client*/);
fail = !AuthenticatedKeyAgreementWithRolesValidate(hmqvA256, hmqvB256);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
/////////////////////////
std::cout << "HMQV with NIST P-384 and SHA-384:" << std::endl;
ECHMQV384 hmqvB384(false);
hmqvB384.AccessGroupParameters().BERDecode(f384);
const OID oid384 = ASN1::secp384r1();
ECHMQV384 hmqvA384(oid384, true /*client*/);
fail = !AuthenticatedKeyAgreementWithRolesValidate(hmqvA384, hmqvB384);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
/////////////////////////
std::cout << "HMQV with NIST P-521 and SHA-512:" << std::endl;
ECHMQV512 hmqvB521(false);
hmqvB521.AccessGroupParameters().BERDecode(f512);
const OID oid521 = ASN1::secp521r1();
ECHMQV512 hmqvA521(oid521, true /*client*/);
fail = !AuthenticatedKeyAgreementWithRolesValidate(hmqvA521, hmqvB521);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
return success;
}
bool ValidateFHMQV()
{
std::cout << "\nFHMQV validation suite running...\n\n";
bool success = true, fail;
FileSource f256(DataDir("TestData/fhmqv256.dat").c_str(), true, new HexDecoder);
FileSource f384(DataDir("TestData/fhmqv384.dat").c_str(), true, new HexDecoder);
FileSource f512(DataDir("TestData/fhmqv512.dat").c_str(), true, new HexDecoder);
/////////////////////////
std::cout << "FHMQV with NIST P-256 and SHA-256:" << std::endl;
ECFHMQV256 fhmqvB256(false);
fhmqvB256.AccessGroupParameters().BERDecode(f256);
const OID oid = ASN1::secp256r1();
ECFHMQV< ECP >::Domain fhmqvA256(oid, true /*client*/);
fail = !AuthenticatedKeyAgreementWithRolesValidate(fhmqvA256, fhmqvB256);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
/////////////////////////
std::cout << "FHMQV with NIST P-384 and SHA-384:" << std::endl;
ECHMQV384 fhmqvB384(false);
fhmqvB384.AccessGroupParameters().BERDecode(f384);
const OID oid384 = ASN1::secp384r1();
ECHMQV384 fhmqvA384(oid384, true /*client*/);
fail = !AuthenticatedKeyAgreementWithRolesValidate(fhmqvA384, fhmqvB384);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
/////////////////////////
std::cout << "FHMQV with NIST P-521 and SHA-512:" << std::endl;
ECHMQV512 fhmqvB521(false);
fhmqvB521.AccessGroupParameters().BERDecode(f512);
const OID oid521 = ASN1::secp521r1();
ECHMQV512 fhmqvA521(oid521, true /*client*/);
fail = !AuthenticatedKeyAgreementWithRolesValidate(fhmqvA521, fhmqvB521);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
return success;
}
bool ValidateLUC_DH()
{
std::cout << "\nLUC-DH validation suite running...\n\n";
FileSource f(DataDir("TestData/lucd512.dat").c_str(), true, new HexDecoder);
LUC_DH dh(f);
return SimpleKeyAgreementValidate(dh);
}
bool ValidateXTR_DH()
{
std::cout << "\nXTR-DH validation suite running...\n\n";
FileSource f(DataDir("TestData/xtrdh171.dat").c_str(), true, new HexDecoder);
XTR_DH dh(f);
return SimpleKeyAgreementValidate(dh);
}
bool ValidateECP_Agreement()
{
ECDH<ECP>::Domain ecdhc(ASN1::secp192r1());
ECMQV<ECP>::Domain ecmqvc(ASN1::secp192r1());
bool pass = SimpleKeyAgreementValidate(ecdhc);
pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass;
std::cout << "Turning on point compression..." << std::endl;
ecdhc.AccessGroupParameters().SetPointCompression(true);
ecmqvc.AccessGroupParameters().SetPointCompression(true);
pass = SimpleKeyAgreementValidate(ecdhc) && pass;
pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass;
return pass;
}
bool ValidateEC2N_Agreement()
{
ECDH<EC2N>::Domain ecdhc(ASN1::sect193r1());
ECMQV<EC2N>::Domain ecmqvc(ASN1::sect193r1());
bool pass = SimpleKeyAgreementValidate(ecdhc);
pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass;
std::cout << "Turning on point compression..." << std::endl;
ecdhc.AccessGroupParameters().SetPointCompression(true);
ecmqvc.AccessGroupParameters().SetPointCompression(true);
pass = SimpleKeyAgreementValidate(ecdhc) && pass;
pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass;
return pass;
}
// TestX25519 is slighty more comprehensive than ValidateX25519
// because it cross-validates against Bernstein's NaCL library.
// TestX25519 called in Debug builds.
bool TestX25519()
{
std::cout << "\nTesting curve25519 Key Agreements...\n\n";
const unsigned int AGREE_COUNT = 64;
bool pass = true;
try {
FileSource f1(DataDir("TestData/x25519.dat").c_str(), true, new HexDecoder);
FileSource f2(DataDir("TestData/x25519v0.dat").c_str(), true, new HexDecoder);
FileSource f3(DataDir("TestData/x25519v1.dat").c_str(), true, new HexDecoder);
x25519 x1(f1);
x25519 x2(f2);
x25519 x3(f3);
FileSource f4(DataDir("TestData/x25519.dat").c_str(), true, new HexDecoder);
FileSource f5(DataDir("TestData/x25519v0.dat").c_str(), true, new HexDecoder);
FileSource f6(DataDir("TestData/x25519v1.dat").c_str(), true, new HexDecoder);
x1.Load(f4);
x2.Load(f5);
x3.Load(f6);
}
catch (const BERDecodeErr&) {
pass = false;
}
SecByteBlock priv1(32), priv2(32), pub1(32), pub2(32), share1(32), share2(32);
for (unsigned int i=0; i<AGREE_COUNT; ++i)
{
GlobalRNG().GenerateBlock(priv1, priv1.size());
GlobalRNG().GenerateBlock(priv2, priv2.size());
priv1[0] &= 248; priv1[31] &= 127; priv1[31] |= 64;
priv2[0] &= 248; priv2[31] &= 127; priv2[31] |= 64;
// Andrew Moon's curve25519-donna
Donna::curve25519_mult(pub1, priv1);
Donna::curve25519_mult(pub2, priv2);
int ret1 = Donna::curve25519_mult(share1, priv1, pub2);
int ret2 = Donna::curve25519_mult(share2, priv2, pub1);
int ret3 = std::memcmp(share1, share2, 32);
#if defined(CRYPTOPP_DISABLE_NACL)
int ret4=0, ret5=0, ret6=0;
#else
// Bernstein's NaCl requires DefaultAutoSeededRNG.
NaCl::crypto_box_keypair(pub2, priv2);
int ret4 = Donna::curve25519_mult(share1, priv1, pub2);
int ret5 = NaCl::crypto_scalarmult(share2, priv2, pub1);
int ret6 = std::memcmp(share1, share2, 32);
#endif
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0 || ret4 != 0 || ret5 != 0 || ret6 != 0;
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << AGREE_COUNT << " key agreements" << std::endl;
return pass;
}
// TestEd25519 is slighty more comprehensive than ValidateEd25519
// because it cross-validates against Bernstein's NaCL library.
// TestEd25519 called in Debug builds.
bool TestEd25519()
{
std::cout << "\nTesting ed25519 Signatures...\n\n";
bool pass = true;
#ifndef CRYPTOPP_DISABLE_NACL
const unsigned int SIGN_COUNT = 64, MSG_SIZE=128;
const unsigned int NACL_EXTRA=NaCl::crypto_sign_BYTES;
// Test key conversion
byte seed[32], sk1[64], sk2[64], pk1[32], pk2[32];
for (unsigned int i = 0; i<SIGN_COUNT; ++i)
{
GlobalRNG().GenerateBlock(seed, 32);
std::memcpy(sk1, seed, 32);
std::memcpy(sk2, seed, 32);
int ret1 = NaCl::crypto_sign_sk2pk(pk1, sk1);
int ret2 = Donna::ed25519_publickey(pk2, sk2);
int ret3 = std::memcmp(pk1, pk2, 32);
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0;
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << SIGN_COUNT << " public keys" << std::endl;
// Test signature generation
for (unsigned int i = 0; i<SIGN_COUNT; ++i)
{
// Fresh keypair
(void)NaCl::crypto_sign_keypair(pk1, sk1);
std::memcpy(sk2, sk1, 32);
std::memcpy(pk2, pk1, 32);
// Message and signatures
byte msg[MSG_SIZE], sig1[MSG_SIZE+NACL_EXTRA], sig2[64];
GlobalRNG().GenerateBlock(msg, MSG_SIZE);
size_t len = GlobalRNG().GenerateWord32(0, MSG_SIZE);
// Spike the signatures
sig1[1] = 1; sig2[2] = 2;
word64 smlen = sizeof(sig1);
int ret1 = NaCl::crypto_sign(sig1, &smlen, msg, len, sk1);
int ret2 = Donna::ed25519_sign(msg, len, sk2, pk2, sig2);
int ret3 = std::memcmp(sig1, sig2, 64);
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0;
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << SIGN_COUNT << " signatures" << std::endl;
// Test signature verification
for (unsigned int i = 0; i<SIGN_COUNT; ++i)
{
// Fresh keypair
(void)NaCl::crypto_sign_keypair(pk1, sk1);
std::memcpy(sk2, sk1, 32);
std::memcpy(pk2, pk1, 32);
// Message and signatures
byte msg1[MSG_SIZE+NACL_EXTRA], msg2[MSG_SIZE];
byte sig1[MSG_SIZE+NACL_EXTRA], sig2[64];
GlobalRNG().GenerateBlock(msg1, MSG_SIZE);
size_t len = GlobalRNG().GenerateWord32(0, MSG_SIZE);
std::memcpy(msg2, msg1, len);
// Spike the signatures
sig1[1] = 1; sig2[2] = 2;
word64 smlen = sizeof(sig1);
int ret1 = NaCl::crypto_sign(sig1, &smlen, msg1, len, sk1);
int ret2 = Donna::ed25519_sign(msg2, len, sk2, pk2, sig2);
int ret3 = std::memcmp(sig1, sig2, 64);
bool tamper = !!GlobalRNG().GenerateBit();
if (tamper)
{
sig1[1] ^= 1;
sig2[1] ^= 1;
}
// Verify the other's signature using the other's key
word64 mlen = len+NACL_EXTRA;
int ret4 = NaCl::crypto_sign_open(msg1, &mlen, sig1, smlen, pk2);
int ret5 = Donna::ed25519_sign_open(msg2, len, pk1, sig2);
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0 || ((ret4 != 0) ^ tamper) || ((ret5 != 0) ^ tamper);
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << SIGN_COUNT << " verifications" << std::endl;
// Test signature verification using streams
for (unsigned int i = 0; i<SIGN_COUNT; ++i)
{
// Fresh keypair
(void)NaCl::crypto_sign_keypair(pk1, sk1);
std::memcpy(sk2, sk1, 32);
std::memcpy(pk2, pk1, 32);
// Message and signatures
byte msg1[MSG_SIZE+NACL_EXTRA], msg2[MSG_SIZE];
byte sig1[MSG_SIZE+NACL_EXTRA], sig2[64];
GlobalRNG().GenerateBlock(msg1, MSG_SIZE);
size_t len = GlobalRNG().GenerateWord32(0, MSG_SIZE);
std::memcpy(msg2, msg1, len);
// Spike the signatures
sig1[1] = 1; sig2[2] = 2;
// Create a stream
std::string str2((const char*)msg2, len);
std::istringstream iss(str2);
word64 smlen = sizeof(sig1);
int ret1 = NaCl::crypto_sign(sig1, &smlen, msg1, len, sk1);
int ret2 = Donna::ed25519_sign(iss, sk2, pk2, sig2);
int ret3 = std::memcmp(sig1, sig2, 64);
bool tamper = !!GlobalRNG().GenerateBit();
if (tamper)
{
sig1[1] ^= 1;
sig2[1] ^= 1;
}
// Reset stream
iss.clear();
iss.seekg(0);
// Verify the other's signature using the other's key
word64 mlen = len+NACL_EXTRA;
int ret4 = NaCl::crypto_sign_open(msg1, &mlen, sig1, smlen, pk2);
int ret5 = Donna::ed25519_sign_open(iss, pk1, sig2);
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0 || ((ret4 != 0) ^ tamper) || ((ret5 != 0) ^ tamper);
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << SIGN_COUNT << " streams" << std::endl;
#endif
// RFC 8032 test vector
try
{
// RFC 8032 Ed25519 test vector 3, p. 23
byte sk[] = {
0xc5,0xaa,0x8d,0xf4,0x3f,0x9f,0x83,0x7b,0xed,0xb7,0x44,0x2f,0x31,0xdc,0xb7,0xb1,
0x66,0xd3,0x85,0x35,0x07,0x6f,0x09,0x4b,0x85,0xce,0x3a,0x2e,0x0b,0x44,0x58,0xf7
};
byte pk[] = {
0xfc,0x51,0xcd,0x8e,0x62,0x18,0xa1,0xa3,0x8d,0xa4,0x7e,0xd0,0x02,0x30,0xf0,0x58,
0x08,0x16,0xed,0x13,0xba,0x33,0x03,0xac,0x5d,0xeb,0x91,0x15,0x48,0x90,0x80,0x25
};
const byte exp[] = {
0x62,0x91,0xd6,0x57,0xde,0xec,0x24,0x02,0x48,0x27,0xe6,0x9c,0x3a,0xbe,0x01,0xa3,
0x0c,0xe5,0x48,0xa2,0x84,0x74,0x3a,0x44,0x5e,0x36,0x80,0xd7,0xdb,0x5a,0xc3,0xac,
0x18,0xff,0x9b,0x53,0x8d,0x16,0xf2,0x90,0xae,0x67,0xf7,0x60,0x98,0x4d,0xc6,0x59,
0x4a,0x7c,0x15,0xe9,0x71,0x6e,0xd2,0x8d,0xc0,0x27,0xbe,0xce,0xea,0x1e,0xc4,0x0a
};
const byte msg[2] = {0xaf, 0x82}; byte sig[64];
// Test the filter framework
ed25519Signer signer(pk, sk);
StringSource(msg, sizeof(msg), true, new SignerFilter(NullRNG(), signer, new ArraySink(sig, sizeof(sig))));
if (std::memcmp(exp, sig, 64) != 0)
throw Exception(Exception::OTHER_ERROR, "TestEd25519: SignerFilter");
ed25519Verifier verifier(pk);
int flags = SignatureVerificationFilter::THROW_EXCEPTION | SignatureVerificationFilter::SIGNATURE_AT_END;
std::string msg_sig = std::string((char*)msg, sizeof(msg)) + std::string((char*)sig, sizeof(sig));
StringSource(msg_sig, true, new SignatureVerificationFilter(verifier, NULLPTR, flags));
// No throw is success
}
catch(const Exception&)
{
pass = false;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " RFC 8032 test vectors" << std::endl;
// Test key loads
try {
FileSource f1(DataDir("TestData/ed25519.dat").c_str(), true, new HexDecoder);
FileSource f2(DataDir("TestData/ed25519v0.dat").c_str(), true, new HexDecoder);
FileSource f3(DataDir("TestData/ed25519v1.dat").c_str(), true, new HexDecoder);
ed25519::Signer s1(f1);
ed25519::Signer s2(f2);
ed25519::Signer s3(f3);
FileSource f4(DataDir("TestData/ed25519.dat").c_str(), true, new HexDecoder);
FileSource f5(DataDir("TestData/ed25519v0.dat").c_str(), true, new HexDecoder);
FileSource f6(DataDir("TestData/ed25519v1.dat").c_str(), true, new HexDecoder);
s1.AccessKey().Load(f4);
s2.AccessKey().Load(f5);
s3.AccessKey().Load(f6);
}
catch (const BERDecodeErr&) {
pass = false;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " RFC 5208 and 5958 key loads" << std::endl;
return pass;
}
NAMESPACE_END // Test
NAMESPACE_END // CryptoPP
|