1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
// aria.cpp - written and placed in the public domain by Jeffrey Walton
#include "pch.h"
#include "config.h"
#include "aria.h"
#include "misc.h"
#include "cpu.h"
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(ARIATab)
extern const word32 S1[256];
extern const word32 S2[256];
extern const word32 X1[256];
extern const word32 X2[256];
extern const word32 KRK[3][4];
NAMESPACE_END
NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
using CryptoPP::ARIATab::S1;
using CryptoPP::ARIATab::S2;
using CryptoPP::ARIATab::X1;
using CryptoPP::ARIATab::X2;
using CryptoPP::ARIATab::KRK;
inline byte ARIA_BRF(const word32 x, const int y) {
return static_cast<byte>(GETBYTE(x, y));
}
// Key XOR Layer. Bumps the round key pointer.
inline const byte* ARIA_KXL(const byte rk[16], word32 t[4]) {
typedef BlockGetAndPut<word32, NativeByteOrder, true, true> NativeBlock;
NativeBlock::Put(rk, t)(t[0])(t[1])(t[2])(t[3]);
return rk+16;
}
// S-Box Layer 1 + M
inline void SBL1_M(word32& T0, word32& T1, word32& T2, word32& T3) {
T0=S1[ARIA_BRF(T0,3)]^S2[ARIA_BRF(T0,2)]^X1[ARIA_BRF(T0,1)]^X2[ARIA_BRF(T0,0)];
T1=S1[ARIA_BRF(T1,3)]^S2[ARIA_BRF(T1,2)]^X1[ARIA_BRF(T1,1)]^X2[ARIA_BRF(T1,0)];
T2=S1[ARIA_BRF(T2,3)]^S2[ARIA_BRF(T2,2)]^X1[ARIA_BRF(T2,1)]^X2[ARIA_BRF(T2,0)];
T3=S1[ARIA_BRF(T3,3)]^S2[ARIA_BRF(T3,2)]^X1[ARIA_BRF(T3,1)]^X2[ARIA_BRF(T3,0)];
}
// S-Box Layer 2 + M
inline void SBL2_M(word32& T0, word32& T1, word32& T2, word32& T3) {
T0=X1[ARIA_BRF(T0,3)]^X2[ARIA_BRF(T0,2)]^S1[ARIA_BRF(T0,1)]^S2[ARIA_BRF(T0,0)];
T1=X1[ARIA_BRF(T1,3)]^X2[ARIA_BRF(T1,2)]^S1[ARIA_BRF(T1,1)]^S2[ARIA_BRF(T1,0)];
T2=X1[ARIA_BRF(T2,3)]^X2[ARIA_BRF(T2,2)]^S1[ARIA_BRF(T2,1)]^S2[ARIA_BRF(T2,0)];
T3=X1[ARIA_BRF(T3,3)]^X2[ARIA_BRF(T3,2)]^S1[ARIA_BRF(T3,1)]^S2[ARIA_BRF(T3,0)];
}
inline void ARIA_P(word32& T0, word32& T1, word32& T2, word32& T3) {
CRYPTOPP_UNUSED(T0);
T1 = ((T1<< 8)&0xff00ff00) ^ ((T1>> 8)&0x00ff00ff);
T2 = rotrConstant<16>(T2);
T3 = ByteReverse((T3));
}
inline void ARIA_M(word32& X, word32& Y) {
Y=X<<8 ^ X>>8 ^ X<<16 ^ X>>16 ^ X<<24 ^ X>>24;
}
inline void ARIA_MM(word32& T0, word32& T1, word32& T2, word32& T3) {
T1^=T2; T2^=T3; T0^=T1;
T3^=T1; T2^=T0; T1^=T2;
}
inline void ARIA_FO(word32 t[4]) {
SBL1_M(t[0],t[1],t[2],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]);
ARIA_P(t[0],t[1],t[2],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]);
}
inline void ARIA_FE(word32 t[4]) {
SBL2_M(t[0],t[1],t[2],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]);
ARIA_P(t[2],t[3],t[0],t[1]);
ARIA_MM(t[0],t[1],t[2],t[3]);
}
// n-bit right shift of Y XORed to X
template <unsigned int N>
inline void ARIA_GSRK(const word32 X[4], const word32 Y[4], word32 RK[4])
{
// MSVC is not generating a "rotate immediate". Constify to help it along.
static const unsigned int Q = 4-(N/32);
static const unsigned int R = N % 32;
RK[0] = (X[0]) ^ ((Y[(Q )%4])>>R) ^ ((Y[(Q+3)%4])<<(32-R));
RK[1] = (X[1]) ^ ((Y[(Q+1)%4])>>R) ^ ((Y[(Q )%4])<<(32-R));
RK[2] = (X[2]) ^ ((Y[(Q+2)%4])>>R) ^ ((Y[(Q+1)%4])<<(32-R));
RK[3] = (X[3]) ^ ((Y[(Q+3)%4])>>R) ^ ((Y[(Q+2)%4])<<(32-R));
}
void ARIA::Base::UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs ¶ms)
{
CRYPTOPP_UNUSED(params);
m_rk.New(4*17); // round keys
m_w.New(4*24); // w0, w1, w2, w3, t and u
int Q, q, R, r;
switch (keylen)
{
case 16:
R = r = m_rounds = 12;
Q = q = 0;
break;
case 32:
R = r = m_rounds = 16;
Q = q = 2;
break;
case 24:
R = r = m_rounds = 14;
Q = q = 1;
break;
default:
Q = q = R = r = m_rounds = 0;
CRYPTOPP_ASSERT(0);
}
// w0-w3 each has room for 4 words (16 bytes). t and u are each 4 words (16 bytes) temp areas.
// The storage requrements for w0-w3, t and u are 96 bytes or 24 words.
word32 *w0 = m_w.data(), *w1 = m_w.data()+4, *w2 = m_w.data()+8, *w3 = m_w.data()+12, *t = m_w.data()+16;
GetBlock<word32, BigEndian, false>block(key);
block(w0[0])(w0[1])(w0[2])(w0[3]);
t[0]=w0[0]^KRK[q][0]; t[1]=w0[1]^KRK[q][1];
t[2]=w0[2]^KRK[q][2]; t[3]=w0[3]^KRK[q][3];
ARIA_FO(t);
if (keylen == 32)
{
block(w1[0])(w1[1])(w1[2])(w1[3]);
}
else if (keylen == 24)
{
block(w1[0])(w1[1]); w1[2] = w1[3] = 0;
}
else
{
w1[0]=w1[1]=w1[2]=w1[3]=0;
}
w1[0]^=t[0]; w1[1]^=t[1]; w1[2]^=t[2]; w1[3]^=t[3];
std::memcpy(t, w1, 16);
q = (q==2) ? 0 : (q+1);
t[0]^=KRK[q][0]; t[1]^=KRK[q][1]; t[2]^=KRK[q][2]; t[3]^=KRK[q][3];
ARIA_FE(t);
t[0]^=w0[0]; t[1]^=w0[1]; t[2]^=w0[2]; t[3]^=w0[3];
std::memcpy(w2, t, 16);
q = (q==2) ? 0 : (q+1);
t[0]^=KRK[q][0]; t[1]^=KRK[q][1]; t[2]^=KRK[q][2]; t[3]^=KRK[q][3];
ARIA_FO(t);
w3[0]=t[0]^w1[0]; w3[1]=t[1]^w1[1]; w3[2]=t[2]^w1[2]; w3[3]=t[3]^w1[3];
ARIA_GSRK<19>(w0, w1, m_rk + 0);
ARIA_GSRK<19>(w1, w2, m_rk + 4);
ARIA_GSRK<19>(w2, w3, m_rk + 8);
ARIA_GSRK<19>(w3, w0, m_rk + 12);
ARIA_GSRK<31>(w0, w1, m_rk + 16);
ARIA_GSRK<31>(w1, w2, m_rk + 20);
ARIA_GSRK<31>(w2, w3, m_rk + 24);
ARIA_GSRK<31>(w3, w0, m_rk + 28);
ARIA_GSRK<67>(w0, w1, m_rk + 32);
ARIA_GSRK<67>(w1, w2, m_rk + 36);
ARIA_GSRK<67>(w2, w3, m_rk + 40);
ARIA_GSRK<67>(w3, w0, m_rk + 44);
ARIA_GSRK<97>(w0, w1, m_rk + 48);
if (keylen > 16)
{
ARIA_GSRK<97>(w1, w2, m_rk + 52);
ARIA_GSRK<97>(w2, w3, m_rk + 56);
if (keylen > 24)
{
ARIA_GSRK< 97>(w3, w0, m_rk + 60);
ARIA_GSRK<109>(w0, w1, m_rk + 64);
}
}
// Decryption operation
if (!IsForwardTransformation())
{
word32 *a, *z, *s;
r = R; q = Q;
// s reuses w0 temp area
a=m_rk.data(); s=m_w.data()+0; z=a+r*4;
std::memcpy(t, a, 16); std::memcpy(a, z, 16); std::memcpy(z, t, 16);
a+=4; z-=4;
for (; a<z; a+=4, z-=4)
{
ARIA_M(a[0],t[0]); ARIA_M(a[1],t[1]); ARIA_M(a[2],t[2]); ARIA_M(a[3],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
std::memcpy(s, t, 16);
ARIA_M(z[0],t[0]); ARIA_M(z[1],t[1]); ARIA_M(z[2],t[2]); ARIA_M(z[3],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
std::memcpy(a, t, 16); std::memcpy(z, s, 16);
}
ARIA_M(a[0],t[0]); ARIA_M(a[1],t[1]); ARIA_M(a[2],t[2]); ARIA_M(a[3],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
std::memcpy(z, t, 16);
}
// Silence warnings
CRYPTOPP_UNUSED(Q); CRYPTOPP_UNUSED(R);
CRYPTOPP_UNUSED(q); CRYPTOPP_UNUSED(r);
}
void ARIA::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
const byte *rk = reinterpret_cast<const byte*>(m_rk.data());
word32 *t = const_cast<word32*>(m_w.data()+16);
// Timing attack countermeasure. See comments in Rijndael for more details.
// We used Yun's 32-bit implementation, so we use words rather than bytes.
const int cacheLineSize = GetCacheLineSize();
unsigned int i;
volatile word32 _u = 0;
word32 u = _u;
for (i=0; i<COUNTOF(S1); i+=cacheLineSize/(sizeof(S1[0])))
u |= *(S1+i);
t[0] |= u;
GetBlock<word32, BigEndian>block(inBlock);
block(t[0])(t[1])(t[2])(t[3]);
if (m_rounds > 12) {
rk = ARIA_KXL(rk, t); ARIA_FO(t);
rk = ARIA_KXL(rk, t); ARIA_FE(t);
}
if (m_rounds > 14) {
rk = ARIA_KXL(rk, t); ARIA_FO(t);
rk = ARIA_KXL(rk, t); ARIA_FE(t);
}
rk = ARIA_KXL(rk, t); ARIA_FO(t); rk = ARIA_KXL(rk, t); ARIA_FE(t);
rk = ARIA_KXL(rk, t); ARIA_FO(t); rk = ARIA_KXL(rk, t); ARIA_FE(t);
rk = ARIA_KXL(rk, t); ARIA_FO(t); rk = ARIA_KXL(rk, t); ARIA_FE(t);
rk = ARIA_KXL(rk, t); ARIA_FO(t); rk = ARIA_KXL(rk, t); ARIA_FE(t);
rk = ARIA_KXL(rk, t); ARIA_FO(t); rk = ARIA_KXL(rk, t); ARIA_FE(t);
rk = ARIA_KXL(rk, t); ARIA_FO(t); rk = ARIA_KXL(rk, t);
#if (CRYPTOPP_LITTLE_ENDIAN)
if (xorBlock)
{
outBlock[ 0] = static_cast<byte>(X1[ARIA_BRF(t[0],3)] ) ^ rk[ 3] ^ xorBlock[ 0];
outBlock[ 1] = static_cast<byte>(X2[ARIA_BRF(t[0],2)]>>8) ^ rk[ 2] ^ xorBlock[ 1];
outBlock[ 2] = static_cast<byte>(S1[ARIA_BRF(t[0],1)] ) ^ rk[ 1] ^ xorBlock[ 2];
outBlock[ 3] = static_cast<byte>(S2[ARIA_BRF(t[0],0)] ) ^ rk[ 0] ^ xorBlock[ 3];
outBlock[ 4] = static_cast<byte>(X1[ARIA_BRF(t[1],3)] ) ^ rk[ 7] ^ xorBlock[ 4];
outBlock[ 5] = static_cast<byte>(X2[ARIA_BRF(t[1],2)]>>8) ^ rk[ 6] ^ xorBlock[ 5];
outBlock[ 6] = static_cast<byte>(S1[ARIA_BRF(t[1],1)] ) ^ rk[ 5] ^ xorBlock[ 6];
outBlock[ 7] = static_cast<byte>(S2[ARIA_BRF(t[1],0)] ) ^ rk[ 4] ^ xorBlock[ 7];
outBlock[ 8] = static_cast<byte>(X1[ARIA_BRF(t[2],3)] ) ^ rk[11] ^ xorBlock[ 8];
outBlock[ 9] = static_cast<byte>(X2[ARIA_BRF(t[2],2)]>>8) ^ rk[10] ^ xorBlock[ 9];
outBlock[10] = static_cast<byte>(S1[ARIA_BRF(t[2],1)] ) ^ rk[ 9] ^ xorBlock[10];
outBlock[11] = static_cast<byte>(S2[ARIA_BRF(t[2],0)] ) ^ rk[ 8] ^ xorBlock[11];
outBlock[12] = static_cast<byte>(X1[ARIA_BRF(t[3],3)] ) ^ rk[15] ^ xorBlock[12];
outBlock[13] = static_cast<byte>(X2[ARIA_BRF(t[3],2)]>>8) ^ rk[14] ^ xorBlock[13];
outBlock[14] = static_cast<byte>(S1[ARIA_BRF(t[3],1)] ) ^ rk[13] ^ xorBlock[14];
outBlock[15] = static_cast<byte>(S2[ARIA_BRF(t[3],0)] ) ^ rk[12] ^ xorBlock[15];
}
else
{
outBlock[ 0] = static_cast<byte>(X1[ARIA_BRF(t[0],3)] ) ^ rk[ 3];
outBlock[ 1] = static_cast<byte>(X2[ARIA_BRF(t[0],2)]>>8) ^ rk[ 2];
outBlock[ 2] = static_cast<byte>(S1[ARIA_BRF(t[0],1)] ) ^ rk[ 1];
outBlock[ 3] = static_cast<byte>(S2[ARIA_BRF(t[0],0)] ) ^ rk[ 0];
outBlock[ 4] = static_cast<byte>(X1[ARIA_BRF(t[1],3)] ) ^ rk[ 7];
outBlock[ 5] = static_cast<byte>(X2[ARIA_BRF(t[1],2)]>>8) ^ rk[ 6];
outBlock[ 6] = static_cast<byte>(S1[ARIA_BRF(t[1],1)] ) ^ rk[ 5];
outBlock[ 7] = static_cast<byte>(S2[ARIA_BRF(t[1],0)] ) ^ rk[ 4];
outBlock[ 8] = static_cast<byte>(X1[ARIA_BRF(t[2],3)] ) ^ rk[11];
outBlock[ 9] = static_cast<byte>(X2[ARIA_BRF(t[2],2)]>>8) ^ rk[10];
outBlock[10] = static_cast<byte>(S1[ARIA_BRF(t[2],1)] ) ^ rk[ 9];
outBlock[11] = static_cast<byte>(S2[ARIA_BRF(t[2],0)] ) ^ rk[ 8];
outBlock[12] = static_cast<byte>(X1[ARIA_BRF(t[3],3)] ) ^ rk[15];
outBlock[13] = static_cast<byte>(X2[ARIA_BRF(t[3],2)]>>8) ^ rk[14];
outBlock[14] = static_cast<byte>(S1[ARIA_BRF(t[3],1)] ) ^ rk[13];
outBlock[15] = static_cast<byte>(S2[ARIA_BRF(t[3],0)] ) ^ rk[12];
}
#else
if (xorBlock)
{
outBlock[ 0] = static_cast<byte>(X1[ARIA_BRF(t[0],3)] ) ^ rk[ 0] ^ xorBlock[ 0];
outBlock[ 1] = static_cast<byte>(X2[ARIA_BRF(t[0],2)]>>8) ^ rk[ 1] ^ xorBlock[ 1];
outBlock[ 2] = static_cast<byte>(S1[ARIA_BRF(t[0],1)] ) ^ rk[ 2] ^ xorBlock[ 2];
outBlock[ 3] = static_cast<byte>(S2[ARIA_BRF(t[0],0)] ) ^ rk[ 3] ^ xorBlock[ 3];
outBlock[ 4] = static_cast<byte>(X1[ARIA_BRF(t[1],3)] ) ^ rk[ 4] ^ xorBlock[ 4];
outBlock[ 5] = static_cast<byte>(X2[ARIA_BRF(t[1],2)]>>8) ^ rk[ 5] ^ xorBlock[ 5];
outBlock[ 6] = static_cast<byte>(S1[ARIA_BRF(t[1],1)] ) ^ rk[ 6] ^ xorBlock[ 6];
outBlock[ 7] = static_cast<byte>(S2[ARIA_BRF(t[1],0)] ) ^ rk[ 7] ^ xorBlock[ 7];
outBlock[ 8] = static_cast<byte>(X1[ARIA_BRF(t[2],3)] ) ^ rk[ 8] ^ xorBlock[ 8];
outBlock[ 9] = static_cast<byte>(X2[ARIA_BRF(t[2],2)]>>8) ^ rk[ 9] ^ xorBlock[ 9];
outBlock[10] = static_cast<byte>(S1[ARIA_BRF(t[2],1)] ) ^ rk[10] ^ xorBlock[10];
outBlock[11] = static_cast<byte>(S2[ARIA_BRF(t[2],0)] ) ^ rk[11] ^ xorBlock[11];
outBlock[12] = static_cast<byte>(X1[ARIA_BRF(t[3],3)] ) ^ rk[12] ^ xorBlock[12];
outBlock[13] = static_cast<byte>(X2[ARIA_BRF(t[3],2)]>>8) ^ rk[13] ^ xorBlock[13];
outBlock[14] = static_cast<byte>(S1[ARIA_BRF(t[3],1)] ) ^ rk[14] ^ xorBlock[14];
outBlock[15] = static_cast<byte>(S2[ARIA_BRF(t[3],0)] ) ^ rk[15] ^ xorBlock[15];
}
else
{
outBlock[ 0] = static_cast<byte>(X1[ARIA_BRF(t[0],3)] ) ^ rk[ 0];
outBlock[ 1] = static_cast<byte>(X2[ARIA_BRF(t[0],2)]>>8) ^ rk[ 1];
outBlock[ 2] = static_cast<byte>(S1[ARIA_BRF(t[0],1)] ) ^ rk[ 2];
outBlock[ 3] = static_cast<byte>(S2[ARIA_BRF(t[0],0)] ) ^ rk[ 3];
outBlock[ 4] = static_cast<byte>(X1[ARIA_BRF(t[1],3)] ) ^ rk[ 4];
outBlock[ 5] = static_cast<byte>(X2[ARIA_BRF(t[1],2)]>>8) ^ rk[ 5];
outBlock[ 6] = static_cast<byte>(S1[ARIA_BRF(t[1],1)] ) ^ rk[ 6];
outBlock[ 7] = static_cast<byte>(S2[ARIA_BRF(t[1],0)] ) ^ rk[ 7];
outBlock[ 8] = static_cast<byte>(X1[ARIA_BRF(t[2],3)] ) ^ rk[ 8];
outBlock[ 9] = static_cast<byte>(X2[ARIA_BRF(t[2],2)]>>8) ^ rk[ 9];
outBlock[10] = static_cast<byte>(S1[ARIA_BRF(t[2],1)] ) ^ rk[10];
outBlock[11] = static_cast<byte>(S2[ARIA_BRF(t[2],0)] ) ^ rk[11];
outBlock[12] = static_cast<byte>(X1[ARIA_BRF(t[3],3)] ) ^ rk[12];
outBlock[13] = static_cast<byte>(X2[ARIA_BRF(t[3],2)]>>8) ^ rk[13];
outBlock[14] = static_cast<byte>(S1[ARIA_BRF(t[3],1)] ) ^ rk[14];
outBlock[15] = static_cast<byte>(S2[ARIA_BRF(t[3],0)] ) ^ rk[15];
}
#endif // CRYPTOPP_LITTLE_ENDIAN
}
NAMESPACE_END
|