1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
// gf2n_simd.cpp - written and placed in the public domain by Jeffrey Walton
// Also based on PCLMULQDQ code by Jankowski, Laurent and
// O'Mahony from Intel (see reference below).
//
// This source file uses intrinsics and built-ins to gain access to
// CLMUL, ARMv8a, and Power8 instructions. A separate source file is
// needed because additional CXXFLAGS are required to enable the
// appropriate instructions sets in some build configurations.
//
// Several speedups were taken from Intel Polynomial Multiplication
// Instruction and its Usage for Elliptic Curve Cryptography, by
// Krzysztof Jankowski, Pierre Laurent and Aidan O'Mahony,
// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/polynomial-multiplication-instructions-paper.pdf
// There may be more speedups available, see https://eprint.iacr.org/2011/589.pdf.
// The IACR paper performs some optimizations that the compiler is
// expected to perform, like Common Subexpression Elimination to save
// on variables (among others). Note that the compiler may miss the
// optimization so the IACR paper is useful. However, the code is GPL3
// and toxic for some users of the library, so it is not used here...
#include "pch.h"
#include "config.h"
#ifndef CRYPTOPP_IMPORTS
#include "gf2n.h"
#if (CRYPTOPP_CLMUL_AVAILABLE)
# include <emmintrin.h>
# include <wmmintrin.h>
#endif
#if (CRYPTOPP_ARM_PMULL_AVAILABLE)
# include "arm_simd.h"
#endif
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "ppc_simd.h"
#endif
// Squash MS LNK4221 and libtool warnings
extern const char GF2N_SIMD_FNAME[] = __FILE__;
ANONYMOUS_NAMESPACE_BEGIN
// ************************** ARMv8 ************************** //
using CryptoPP::word;
#if (CRYPTOPP_ARM_PMULL_AVAILABLE)
// c1c0 = a * b
inline void
F2N_Multiply_128x128_ARMv8(uint64x2_t& c1, uint64x2_t& c0, const uint64x2_t& a, const uint64x2_t& b)
{
uint64x2_t t1, t2, z0={0};
c0 = PMULL_00(a, b);
c1 = PMULL_11(a, b);
t1 = vmovq_n_u64(vgetq_lane_u64(a, 1));
t1 = veorq_u64(a, t1);
t2 = vmovq_n_u64(vgetq_lane_u64(b, 1));
t2 = veorq_u64(b, t2);
t1 = PMULL_00(t1, t2);
t1 = veorq_u64(c0, t1);
t1 = veorq_u64(c1, t1);
t2 = t1;
t1 = vextq_u64(z0, t1, 1);
t2 = vextq_u64(t2, z0, 1);
c0 = veorq_u64(c0, t1);
c1 = veorq_u64(c1, t2);
}
// c3c2c1c0 = a1a0 * b1b0
inline void
F2N_Multiply_256x256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0,
const uint64x2_t& b1, const uint64x2_t& b0, const uint64x2_t& a1, const uint64x2_t& a0)
{
uint64x2_t c4, c5;
uint64x2_t x0=a0, x1=a1, y0=b0, y1=b1;
F2N_Multiply_128x128_ARMv8(c1, c0, x0, y0);
F2N_Multiply_128x128_ARMv8(c3, c2, x1, y1);
x0 = veorq_u64(x0, x1);
y0 = veorq_u64(y0, y1);
F2N_Multiply_128x128_ARMv8(c5, c4, x0, y0);
c4 = veorq_u64(c4, c0);
c4 = veorq_u64(c4, c2);
c5 = veorq_u64(c5, c1);
c5 = veorq_u64(c5, c3);
c1 = veorq_u64(c1, c4);
c2 = veorq_u64(c2, c5);
}
// c3c2c1c0 = a1a0 * a1a0
inline void
F2N_Square_256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1,
uint64x2_t& c0, const uint64x2_t& a1, const uint64x2_t& a0)
{
c0 = PMULL_00(a0, a0);
c1 = PMULL_11(a0, a0);
c2 = PMULL_00(a1, a1);
c3 = PMULL_11(a1, a1);
}
// x = (x << n), z = 0
template <unsigned int N>
inline uint64x2_t ShiftLeft128_ARMv8(uint64x2_t x)
{
uint64x2_t u=x, v, z={0};
x = vshlq_n_u64(x, N);
u = vshrq_n_u64(u, (64-N));
v = vcombine_u64(vget_low_u64(z), vget_low_u64(u));
x = vorrq_u64(x, v);
return x;
}
// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
inline void
GF2NT_233_Reduce_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0)
{
const unsigned int mask[4] = {
0xffffffff, 0xffffffff, 0xffffffff, 0x000001ff,
};
uint64x2_t b3, b2, b1, /*b0,*/ a1, a0, m0, z0={0};
m0 = vreinterpretq_u64_u32(vld1q_u32(mask));
b1 = c1; a1 = c1;
a0 = vcombine_u64(vget_low_u64(c1), vget_low_u64(z0));
a1 = vshlq_n_u64(a1, 23);
a1 = vshrq_n_u64(a1, 23);
c1 = vorrq_u64(a1, a0);
b2 = vshrq_n_u64(c2, (64-23));
c3 = ShiftLeft128_ARMv8<23>(c3);
a0 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
c3 = vorrq_u64(c3, a0);
b1 = vshrq_n_u64(b1, (64-23));
c2 = ShiftLeft128_ARMv8<23>(c2);
a0 = vcombine_u64(vget_high_u64(b1), vget_high_u64(z0));
c2 = vorrq_u64(c2, a0);
b3 = c3;
b2 = vshrq_n_u64(c2, (64-10));
b3 = ShiftLeft128_ARMv8<10>(b3);
a0 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
b3 = vorrq_u64(b3, a0);
a0 = vcombine_u64(vget_high_u64(c3), vget_high_u64(z0));
b3 = veorq_u64(b3, a0);
b1 = vshrq_n_u64(b3, (64-23));
b3 = ShiftLeft128_ARMv8<23>(b3);
b3 = vcombine_u64(vget_high_u64(b3), vget_high_u64(z0));
b3 = vorrq_u64(b3, b1);
c2 = veorq_u64(c2, b3);
b3 = c3;
b2 = vshrq_n_u64(c2, (64-10));
b3 = ShiftLeft128_ARMv8<10>(b3);
b2 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
b3 = vorrq_u64(b3, b2);
b2 = c2;
b2 = ShiftLeft128_ARMv8<10>(b2);
a0 = vcombine_u64(vget_low_u64(z0), vget_low_u64(b2));
c2 = veorq_u64(c2, a0);
a0 = vcombine_u64(vget_low_u64(z0), vget_low_u64(b3));
a1 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
a0 = vorrq_u64(a0, a1);
c3 = veorq_u64(c3, a0);
c0 = veorq_u64(c0, c2);
c1 = veorq_u64(c1, c3);
c1 = vandq_u64(c1, m0);
}
#endif
// ************************** SSE ************************** //
#if (CRYPTOPP_CLMUL_AVAILABLE)
using CryptoPP::word;
// c1c0 = a * b
inline void
F2N_Multiply_128x128_CLMUL(__m128i& c1, __m128i& c0, const __m128i& a, const __m128i& b)
{
__m128i t1, t2;
c0 = _mm_clmulepi64_si128(a, b, 0x00);
c1 = _mm_clmulepi64_si128(a, b, 0x11);
t1 = _mm_shuffle_epi32(a, 0xEE);
t1 = _mm_xor_si128(a, t1);
t2 = _mm_shuffle_epi32(b, 0xEE);
t2 = _mm_xor_si128(b, t2);
t1 = _mm_clmulepi64_si128(t1, t2, 0x00);
t1 = _mm_xor_si128(c0, t1);
t1 = _mm_xor_si128(c1, t1);
t2 = t1;
t1 = _mm_slli_si128(t1, 8);
t2 = _mm_srli_si128(t2, 8);
c0 = _mm_xor_si128(c0, t1);
c1 = _mm_xor_si128(c1, t2);
}
// c3c2c1c0 = a1a0 * b1b0
inline void
F2N_Multiply_256x256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0,
const __m128i& b1, const __m128i& b0, const __m128i& a1, const __m128i& a0)
{
__m128i c4, c5;
__m128i x0=a0, x1=a1, y0=b0, y1=b1;
F2N_Multiply_128x128_CLMUL(c1, c0, x0, y0);
F2N_Multiply_128x128_CLMUL(c3, c2, x1, y1);
x0 = _mm_xor_si128(x0, x1);
y0 = _mm_xor_si128(y0, y1);
F2N_Multiply_128x128_CLMUL(c5, c4, x0, y0);
c4 = _mm_xor_si128(c4, c0);
c4 = _mm_xor_si128(c4, c2);
c5 = _mm_xor_si128(c5, c1);
c5 = _mm_xor_si128(c5, c3);
c1 = _mm_xor_si128(c1, c4);
c2 = _mm_xor_si128(c2, c5);
}
// c3c2c1c0 = a1a0 * a1a0
inline void
F2N_Square_256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1,
__m128i& c0, const __m128i& a1, const __m128i& a0)
{
c0 = _mm_clmulepi64_si128(a0, a0, 0x00);
c1 = _mm_clmulepi64_si128(a0, a0, 0x11);
c2 = _mm_clmulepi64_si128(a1, a1, 0x00);
c3 = _mm_clmulepi64_si128(a1, a1, 0x11);
}
// x = (x << n), z = 0
template <unsigned int N>
inline __m128i ShiftLeft128_SSE(__m128i x, const __m128i& z)
{
__m128i u=x, v;
x = _mm_slli_epi64(x, N);
u = _mm_srli_epi64(u, (64-N));
v = _mm_unpacklo_epi64(z, u);
x = _mm_or_si128(x, v);
return x;
}
// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
inline void
GF2NT_233_Reduce_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0)
{
const unsigned int m[4] = {
0xffffffff, 0xffffffff, 0xffffffff, 0x000001ff
};
__m128i b3, b2, b1, /*b0,*/ a1, a0, m0, z0;
m0 = _mm_set_epi32(m[3], m[2], m[1], m[0]);
z0 = _mm_setzero_si128();
b1 = c1; a1 = c1;
a0 = _mm_move_epi64(c1);
a1 = _mm_slli_epi64(a1, 23);
a1 = _mm_srli_epi64(a1, 23);
c1 = _mm_or_si128(a1, a0);
b2 = _mm_srli_epi64(c2, (64-23));
c3 = ShiftLeft128_SSE<23>(c3, z0);
a0 = _mm_unpackhi_epi64(b2, z0);
c3 = _mm_or_si128(c3, a0);
b1 = _mm_srli_epi64(b1, (64-23));
c2 = ShiftLeft128_SSE<23>(c2, z0);
a0 = _mm_unpackhi_epi64(b1, z0);
c2 = _mm_or_si128(c2, a0);
b3 = c3;
b2 = _mm_srli_epi64(c2, (64-10));
b3 = ShiftLeft128_SSE<10>(b3, z0);
a0 = _mm_unpackhi_epi64(b2, z0);
b3 = _mm_or_si128(b3, a0);
a0 = _mm_unpackhi_epi64(c3, z0);
b3 = _mm_xor_si128(b3, a0);
b1 = _mm_srli_epi64(b3, (64-23));
b3 = ShiftLeft128_SSE<23>(b3, z0);
b3 = _mm_unpackhi_epi64(b3, z0);
b3 = _mm_or_si128(b3, b1);
c2 = _mm_xor_si128(c2, b3);
b3 = c3;
b2 = _mm_srli_epi64(c2, (64-10));
b3 = ShiftLeft128_SSE<10>(b3, z0);
b2 = _mm_unpackhi_epi64(b2, z0);
b3 = _mm_or_si128(b3, b2);
b2 = c2;
b2 = ShiftLeft128_SSE<10>(b2, z0);
a0 = _mm_unpacklo_epi64(z0, b2);
c2 = _mm_xor_si128(c2, a0);
a0 = _mm_unpacklo_epi64(z0, b3);
a1 = _mm_unpackhi_epi64(b2, z0);
a0 = _mm_or_si128(a0, a1);
c3 = _mm_xor_si128(c3, a0);
c0 = _mm_xor_si128(c0, c2);
c1 = _mm_xor_si128(c1, c3);
c1 = _mm_and_si128(c1, m0);
}
#endif
// ************************* Power8 ************************* //
#if (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0
using CryptoPP::byte;
using CryptoPP::word;
using CryptoPP::uint8x16_p;
using CryptoPP::uint64x2_p;
using CryptoPP::VecLoad;
using CryptoPP::VecStore;
using CryptoPP::VecOr;
using CryptoPP::VecXor;
using CryptoPP::VecAnd;
using CryptoPP::VecPermute;
using CryptoPP::VecMergeLow;
using CryptoPP::VecMergeHigh;
using CryptoPP::VecShiftLeft;
using CryptoPP::VecShiftRight;
using CryptoPP::VecIntelMultiply00;
using CryptoPP::VecIntelMultiply11;
// c1c0 = a * b
inline void
F2N_Multiply_128x128_POWER8(uint64x2_p& c1, uint64x2_p& c0, const uint64x2_p& a, const uint64x2_p& b)
{
uint64x2_p t1, t2;
const uint64x2_p z0={0};
c0 = VecIntelMultiply00(a, b);
c1 = VecIntelMultiply11(a, b);
t1 = VecMergeLow(a, a);
t1 = VecXor(a, t1);
t2 = VecMergeLow(b, b);
t2 = VecXor(b, t2);
t1 = VecIntelMultiply00(t1, t2);
t1 = VecXor(c0, t1);
t1 = VecXor(c1, t1);
t2 = t1;
t1 = VecMergeHigh(z0, t1);
t2 = VecMergeLow(t2, z0);
c0 = VecXor(c0, t1);
c1 = VecXor(c1, t2);
}
// c3c2c1c0 = a1a0 * b1b0
inline void
F2N_Multiply_256x256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0,
const uint64x2_p& b1, const uint64x2_p& b0, const uint64x2_p& a1, const uint64x2_p& a0)
{
uint64x2_p c4, c5;
uint64x2_p x0=a0, x1=a1, y0=b0, y1=b1;
F2N_Multiply_128x128_POWER8(c1, c0, x0, y0);
F2N_Multiply_128x128_POWER8(c3, c2, x1, y1);
x0 = VecXor(x0, x1);
y0 = VecXor(y0, y1);
F2N_Multiply_128x128_POWER8(c5, c4, x0, y0);
c4 = VecXor(c4, c0);
c4 = VecXor(c4, c2);
c5 = VecXor(c5, c1);
c5 = VecXor(c5, c3);
c1 = VecXor(c1, c4);
c2 = VecXor(c2, c5);
}
// c3c2c1c0 = a1a0 * a1a0
inline void
F2N_Square_256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1,
uint64x2_p& c0, const uint64x2_p& a1, const uint64x2_p& a0)
{
c0 = VecIntelMultiply00(a0, a0);
c1 = VecIntelMultiply11(a0, a0);
c2 = VecIntelMultiply00(a1, a1);
c3 = VecIntelMultiply11(a1, a1);
}
// x = (x << n), z = 0
template <unsigned int N>
inline uint64x2_p ShiftLeft128_POWER8(uint64x2_p x)
{
uint64x2_p u=x, v;
const uint64x2_p z={0};
x = VecShiftLeft<N>(x);
u = VecShiftRight<64-N>(u);
v = VecMergeHigh(z, u);
x = VecOr(x, v);
return x;
}
// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
inline void
GF2NT_233_Reduce_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0)
{
const uint64_t mod[] = {W64LIT(0xffffffffffffffff), W64LIT(0x01ffffffffff)};
const uint64x2_p m0 = (uint64x2_p)VecLoad(mod);
uint64x2_p b3, b2, b1, /*b0,*/ a1, a0;
const uint64x2_p z0={0};
b1 = c1; a1 = c1;
a0 = VecMergeHigh(c1, z0);
a1 = VecShiftLeft<23>(a1);
a1 = VecShiftRight<23>(a1);
c1 = VecOr(a1, a0);
b2 = VecShiftRight<64-23>(c2);
c3 = ShiftLeft128_POWER8<23>(c3);
a0 = VecMergeLow(b2, z0);
c3 = VecOr(c3, a0);
b1 = VecShiftRight<64-23>(b1);
c2 = ShiftLeft128_POWER8<23>(c2);
a0 = VecMergeLow(b1, z0);
c2 = VecOr(c2, a0);
b3 = c3;
b2 = VecShiftRight<64-10>(c2);
b3 = ShiftLeft128_POWER8<10>(b3);
a0 = VecMergeLow(b2, z0);
b3 = VecOr(b3, a0);
a0 = VecMergeLow(c3, z0);
b3 = VecXor(b3, a0);
b1 = VecShiftRight<64-23>(b3);
b3 = ShiftLeft128_POWER8<23>(b3);
b3 = VecMergeLow(b3, z0);
b3 = VecOr(b3, b1);
c2 = VecXor(c2, b3);
b3 = c3;
b2 = VecShiftRight<64-10>(c2);
b3 = ShiftLeft128_POWER8<10>(b3);
b2 = VecMergeLow(b2, z0);
b3 = VecOr(b3, b2);
b2 = c2;
b2 = ShiftLeft128_POWER8<10>(b2);
a0 = VecMergeHigh(z0, b2);
c2 = VecXor(c2, a0);
a0 = VecMergeHigh(z0, b3);
a1 = VecMergeLow(b2, z0);
a0 = VecOr(a0, a1);
c3 = VecXor(c3, a0);
c0 = VecXor(c0, c2);
c1 = VecXor(c1, c3);
c1 = VecAnd(c1, m0);
}
#endif
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
#if (CRYPTOPP_CLMUL_AVAILABLE)
void
GF2NT_233_Multiply_Reduce_CLMUL(const word* pA, const word* pB, word* pC)
{
enum {S=sizeof(__m128i)/sizeof(word)};
__m128i a0 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pA+0*S));
__m128i a1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pA+1*S));
__m128i b0 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pB+0*S));
__m128i b1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pB+1*S));
__m128i c0, c1, c2, c3;
F2N_Multiply_256x256_CLMUL(c3, c2, c1, c0, a1, a0, b1, b0);
GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(pC+0*S), c0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(pC+1*S), c1);
}
void
GF2NT_233_Square_Reduce_CLMUL(const word* pA, word* pC)
{
enum {S=sizeof(__m128i)/sizeof(word)};
__m128i a0 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pA+0*S));
__m128i a1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pA+1*S));
__m128i c0, c1, c2, c3;
F2N_Square_256_CLMUL(c3, c2, c1, c0, a1, a0);
GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(pC+0*S), c0);
_mm_storeu_si128(reinterpret_cast<__m128i*>(pC+1*S), c1);
}
#elif (CRYPTOPP_ARM_PMULL_AVAILABLE)
void
GF2NT_233_Multiply_Reduce_ARMv8(const word* pA, const word* pB, word* pC)
{
// word is either 32-bit or 64-bit, depending on the platform.
// Load using a 32-bit pointer to avoid possible alignment issues.
const uint32_t* pAA = reinterpret_cast<const uint32_t*>(pA);
const uint32_t* pBB = reinterpret_cast<const uint32_t*>(pB);
uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0));
uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4));
uint64x2_t b0 = vreinterpretq_u64_u32(vld1q_u32(pBB+0));
uint64x2_t b1 = vreinterpretq_u64_u32(vld1q_u32(pBB+4));
uint64x2_t c0, c1, c2, c3;
F2N_Multiply_256x256_ARMv8(c3, c2, c1, c0, a1, a0, b1, b0);
GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0);
uint32_t* pCC = reinterpret_cast<uint32_t*>(pC);
vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0));
vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1));
}
void
GF2NT_233_Square_Reduce_ARMv8(const word* pA, word* pC)
{
// word is either 32-bit or 64-bit, depending on the platform.
// Load using a 32-bit pointer to avoid possible alignment issues.
const uint32_t* pAA = reinterpret_cast<const uint32_t*>(pA);
uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0));
uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4));
uint64x2_t c0, c1, c2, c3;
F2N_Square_256_ARMv8(c3, c2, c1, c0, a1, a0);
GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0);
uint32_t* pCC = reinterpret_cast<uint32_t*>(pC);
vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0));
vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1));
}
#elif (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0
void
GF2NT_233_Multiply_Reduce_POWER8(const word* pA, const word* pB, word* pC)
{
// word is either 32-bit or 64-bit, depending on the platform.
// Load using a byte pointer to avoid possible alignment issues.
const byte* pAA = reinterpret_cast<const byte*>(pA);
const byte* pBB = reinterpret_cast<const byte*>(pB);
uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0);
uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16);
uint64x2_p b0 = (uint64x2_p)VecLoad(pBB+0);
uint64x2_p b1 = (uint64x2_p)VecLoad(pBB+16);
#if (CRYPTOPP_BIG_ENDIAN)
const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
const uint8x16_p m = (uint8x16_p)VecLoad(mb);
a0 = VecPermute(a0, m);
a1 = VecPermute(a1, m);
b0 = VecPermute(b0, m);
b1 = VecPermute(b1, m);
#endif
uint64x2_p c0, c1, c2, c3;
F2N_Multiply_256x256_POWER8(c3, c2, c1, c0, a1, a0, b1, b0);
GF2NT_233_Reduce_POWER8(c3, c2, c1, c0);
#if (CRYPTOPP_BIG_ENDIAN)
c0 = VecPermute(c0, m);
c1 = VecPermute(c1, m);
#endif
byte* pCC = reinterpret_cast<byte*>(pC);
VecStore(c0, pCC+0);
VecStore(c1, pCC+16);
}
void
GF2NT_233_Square_Reduce_POWER8(const word* pA, word* pC)
{
// word is either 32-bit or 64-bit, depending on the platform.
// Load using a byte pointer to avoid possible alignment issues.
const byte* pAA = reinterpret_cast<const byte*>(pA);
uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0);
uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16);
#if (CRYPTOPP_BIG_ENDIAN)
const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
const uint8x16_p m = (uint8x16_p)VecLoad(mb);
a0 = VecPermute(a0, m);
a1 = VecPermute(a1, m);
#endif
uint64x2_p c0, c1, c2, c3;
F2N_Square_256_POWER8(c3, c2, c1, c0, a1, a0);
GF2NT_233_Reduce_POWER8(c3, c2, c1, c0);
#if (CRYPTOPP_BIG_ENDIAN)
c0 = VecPermute(c0, m);
c1 = VecPermute(c1, m);
#endif
byte* pCC = reinterpret_cast<byte*>(pC);
VecStore(c0, pCC+0);
VecStore(c1, pCC+16);
}
#endif
NAMESPACE_END
#endif // CRYPTOPP_IMPORTS
|