1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
// hc128.cpp - written and placed in the public domain by Jeffrey Walton
// based on public domain code by Hongjun Wu.
//
// The reference materials and source files are available at
// The eSTREAM Project, http://www.ecrypt.eu.org/stream/e2-hc128.html.
#include "pch.h"
#include "config.h"
#include "hc128.h"
#include "secblock.h"
#include "strciphr.h"
#include "misc.h"
/*h1 function*/
#define h1(x, y) { \
byte a,c; \
a = (byte) (x); \
c = (byte) ((x) >> 16); \
y = (m_T[512+a])+(m_T[512+256+c]); \
}
/*h2 function*/
#define h2(x, y) { \
byte a,c; \
a = (byte) (x); \
c = (byte) ((x) >> 16); \
y = (m_T[a])+(m_T[256+c]); \
}
/*one step of HC-128, update P and generate 32 bits keystream*/
#define step_P(u,v,a,b,c,d,n){ \
word32 tem0,tem1,tem2,tem3; \
h1(m_X[(d)],tem3); \
tem0 = rotrConstant<23>(m_T[(v)]); \
tem1 = rotrConstant<10>(m_X[(c)]); \
tem2 = rotrConstant<8>(m_X[(b)]); \
(m_T[(u)]) += tem2+(tem0 ^ tem1); \
(m_X[(a)]) = (m_T[(u)]); \
(n) = tem3 ^ (m_T[(u)]); \
}
/*one step of HC-128, update Q and generate 32 bits keystream*/
#define step_Q(u,v,a,b,c,d,n){ \
word32 tem0,tem1,tem2,tem3; \
h2(m_Y[(d)],tem3); \
tem0 = rotrConstant<(32-23)>(m_T[(v)]); \
tem1 = rotrConstant<(32-10)>(m_Y[(c)]); \
tem2 = rotrConstant<(32-8)>(m_Y[(b)]); \
(m_T[(u)]) += tem2 + (tem0 ^ tem1); \
(m_Y[(a)]) = (m_T[(u)]); \
(n) = tem3 ^ (m_T[(u)]) ; \
}
/*update table P*/
#define update_P(u,v,a,b,c,d){ \
word32 tem0,tem1,tem2,tem3; \
tem0 = rotrConstant<23>(m_T[(v)]); \
tem1 = rotrConstant<10>(m_X[(c)]); \
tem2 = rotrConstant<8>(m_X[(b)]); \
h1(m_X[(d)],tem3); \
(m_T[(u)]) = ((m_T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
(m_X[(a)]) = (m_T[(u)]); \
}
/*update table Q*/
#define update_Q(u,v,a,b,c,d){ \
word32 tem0,tem1,tem2,tem3; \
tem0 = rotrConstant<(32-23)>(m_T[(v)]); \
tem1 = rotrConstant<(32-10)>(m_Y[(c)]); \
tem2 = rotrConstant<(32-8)>(m_Y[(b)]); \
h2(m_Y[(d)],tem3); \
(m_T[(u)]) = ((m_T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
(m_Y[(a)]) = (m_T[(u)]); \
}
#define BYTES_PER_ITERATION 64
#define WordType word32
#define HC128_OUTPUT(x){\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 0, keystream[ 0]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 1, keystream[ 1]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 2, keystream[ 2]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 3, keystream[ 3]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 4, keystream[ 4]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 5, keystream[ 5]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 6, keystream[ 6]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 7, keystream[ 7]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 8, keystream[ 8]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 9, keystream[ 9]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 10, keystream[10]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 11, keystream[11]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 12, keystream[12]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 13, keystream[13]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 14, keystream[14]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 15, keystream[15]);}
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::word32;
using CryptoPP::rotrConstant;
inline word32 f1(word32 x)
{
return rotrConstant<7>(x) ^ rotrConstant<18>(x) ^ ((x) >> 3);
}
inline word32 f2(word32 x)
{
return rotrConstant<17>(x) ^ rotrConstant<19>(x) ^ ((x) >> 10);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
/*16 steps of HC-128, generate 512 bits keystream*/
void HC128Policy::GenerateKeystream(word32 keystream[16])
{
unsigned int cc = m_ctr & 0x1ff;
unsigned int dd = (cc + 16) & 0x1ff;
if (m_ctr < 512)
{
m_ctr = (m_ctr + 16) & 0x3ff;
step_P(cc + 0, cc + 1, 0, 6, 13, 4, keystream[0]);
step_P(cc + 1, cc + 2, 1, 7, 14, 5, keystream[1]);
step_P(cc + 2, cc + 3, 2, 8, 15, 6, keystream[2]);
step_P(cc + 3, cc + 4, 3, 9, 0, 7, keystream[3]);
step_P(cc + 4, cc + 5, 4, 10, 1, 8, keystream[4]);
step_P(cc + 5, cc + 6, 5, 11, 2, 9, keystream[5]);
step_P(cc + 6, cc + 7, 6, 12, 3, 10, keystream[6]);
step_P(cc + 7, cc + 8, 7, 13, 4, 11, keystream[7]);
step_P(cc + 8, cc + 9, 8, 14, 5, 12, keystream[8]);
step_P(cc + 9, cc + 10, 9, 15, 6, 13, keystream[9]);
step_P(cc + 10, cc + 11, 10, 0, 7, 14, keystream[10]);
step_P(cc + 11, cc + 12, 11, 1, 8, 15, keystream[11]);
step_P(cc + 12, cc + 13, 12, 2, 9, 0, keystream[12]);
step_P(cc + 13, cc + 14, 13, 3, 10, 1, keystream[13]);
step_P(cc + 14, cc + 15, 14, 4, 11, 2, keystream[14]);
step_P(cc + 15, dd + 0, 15, 5, 12, 3, keystream[15]);
}
else
{
m_ctr = (m_ctr + 16) & 0x3ff;
step_Q(512 + cc + 0, 512 + cc + 1, 0, 6, 13, 4, keystream[0]);
step_Q(512 + cc + 1, 512 + cc + 2, 1, 7, 14, 5, keystream[1]);
step_Q(512 + cc + 2, 512 + cc + 3, 2, 8, 15, 6, keystream[2]);
step_Q(512 + cc + 3, 512 + cc + 4, 3, 9, 0, 7, keystream[3]);
step_Q(512 + cc + 4, 512 + cc + 5, 4, 10, 1, 8, keystream[4]);
step_Q(512 + cc + 5, 512 + cc + 6, 5, 11, 2, 9, keystream[5]);
step_Q(512 + cc + 6, 512 + cc + 7, 6, 12, 3, 10, keystream[6]);
step_Q(512 + cc + 7, 512 + cc + 8, 7, 13, 4, 11, keystream[7]);
step_Q(512 + cc + 8, 512 + cc + 9, 8, 14, 5, 12, keystream[8]);
step_Q(512 + cc + 9, 512 + cc + 10, 9, 15, 6, 13, keystream[9]);
step_Q(512 + cc + 10, 512 + cc + 11, 10, 0, 7, 14, keystream[10]);
step_Q(512 + cc + 11, 512 + cc + 12, 11, 1, 8, 15, keystream[11]);
step_Q(512 + cc + 12, 512 + cc + 13, 12, 2, 9, 0, keystream[12]);
step_Q(512 + cc + 13, 512 + cc + 14, 13, 3, 10, 1, keystream[13]);
step_Q(512 + cc + 14, 512 + cc + 15, 14, 4, 11, 2, keystream[14]);
step_Q(512 + cc + 15, 512 + dd + 0, 15, 5, 12, 3, keystream[15]);
}
}
/*16 steps of HC-128, without generating keystream, */
/*but use the outputs to update P and Q*/
void HC128Policy::SetupUpdate() /*each time 16 steps*/
{
unsigned int cc = m_ctr & 0x1ff;
unsigned int dd = (cc + 16) & 0x1ff;
if (m_ctr < 512)
{
m_ctr = (m_ctr + 16) & 0x3ff;
update_P(cc + 0, cc + 1, 0, 6, 13, 4);
update_P(cc + 1, cc + 2, 1, 7, 14, 5);
update_P(cc + 2, cc + 3, 2, 8, 15, 6);
update_P(cc + 3, cc + 4, 3, 9, 0, 7);
update_P(cc + 4, cc + 5, 4, 10, 1, 8);
update_P(cc + 5, cc + 6, 5, 11, 2, 9);
update_P(cc + 6, cc + 7, 6, 12, 3, 10);
update_P(cc + 7, cc + 8, 7, 13, 4, 11);
update_P(cc + 8, cc + 9, 8, 14, 5, 12);
update_P(cc + 9, cc + 10, 9, 15, 6, 13);
update_P(cc + 10, cc + 11, 10, 0, 7, 14);
update_P(cc + 11, cc + 12, 11, 1, 8, 15);
update_P(cc + 12, cc + 13, 12, 2, 9, 0);
update_P(cc + 13, cc + 14, 13, 3, 10, 1);
update_P(cc + 14, cc + 15, 14, 4, 11, 2);
update_P(cc + 15, dd + 0, 15, 5, 12, 3);
}
else
{
m_ctr = (m_ctr + 16) & 0x3ff;
update_Q(512 + cc + 0, 512 + cc + 1, 0, 6, 13, 4);
update_Q(512 + cc + 1, 512 + cc + 2, 1, 7, 14, 5);
update_Q(512 + cc + 2, 512 + cc + 3, 2, 8, 15, 6);
update_Q(512 + cc + 3, 512 + cc + 4, 3, 9, 0, 7);
update_Q(512 + cc + 4, 512 + cc + 5, 4, 10, 1, 8);
update_Q(512 + cc + 5, 512 + cc + 6, 5, 11, 2, 9);
update_Q(512 + cc + 6, 512 + cc + 7, 6, 12, 3, 10);
update_Q(512 + cc + 7, 512 + cc + 8, 7, 13, 4, 11);
update_Q(512 + cc + 8, 512 + cc + 9, 8, 14, 5, 12);
update_Q(512 + cc + 9, 512 + cc + 10, 9, 15, 6, 13);
update_Q(512 + cc + 10, 512 + cc + 11, 10, 0, 7, 14);
update_Q(512 + cc + 11, 512 + cc + 12, 11, 1, 8, 15);
update_Q(512 + cc + 12, 512 + cc + 13, 12, 2, 9, 0);
update_Q(512 + cc + 13, 512 + cc + 14, 13, 3, 10, 1);
update_Q(512 + cc + 14, 512 + cc + 15, 14, 4, 11, 2);
update_Q(512 + cc + 15, 512 + dd + 0, 15, 5, 12, 3);
}
}
void HC128Policy::CipherSetKey(const NameValuePairs ¶ms, const byte *userKey, size_t keylen)
{
CRYPTOPP_UNUSED(params);
GetUserKey(LITTLE_ENDIAN_ORDER, m_key.begin(), 4, userKey, keylen);
for (unsigned int i = 4; i < 8; i++)
m_key[i] = m_key[i - 4];
}
void HC128Policy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
while (iterationCount--)
{
FixedSizeSecBlock<word32, 16> keystream;
GenerateKeystream(keystream);
CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(HC128_OUTPUT, BYTES_PER_ITERATION);
}
}
void HC128Policy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer);
GetUserKey(LITTLE_ENDIAN_ORDER, m_iv.begin(), 4, iv, length);
for (unsigned int i = 4; i < 8; i++)
m_iv[i] = m_iv[i - 4];
/* expand the key and IV into the table T */
/* (expand the key and IV into the table P and Q) */
for (unsigned int i = 0; i < 8; i++)
m_T[i] = m_key[i];
for (unsigned int i = 8; i < 16; i++)
m_T[i] = m_iv[i - 8];
for (unsigned int i = 16; i < (256 + 16); i++)
m_T[i] = f2(m_T[i - 2]) + m_T[i - 7] + f1(m_T[i - 15]) + m_T[i - 16] + i;
for (unsigned int i = 0; i < 16; i++)
m_T[i] = m_T[256 + i];
for (unsigned int i = 16; i < 1024; i++)
m_T[i] = f2(m_T[i - 2]) + m_T[i - 7] + f1(m_T[i - 15]) + m_T[i - 16] + 256 + i;
/* initialize counter1024, X and Y */
m_ctr = 0;
for (unsigned int i = 0; i < 16; i++)
m_X[i] = m_T[512 - 16 + i];
for (unsigned int i = 0; i < 16; i++)
m_Y[i] = m_T[512 + 512 - 16 + i];
/* run the cipher 1024 steps before generating the output */
for (unsigned int i = 0; i < 64; i++)
SetupUpdate();
}
NAMESPACE_END
|