1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
// modarith.h - originally written and placed in the public domain by Wei Dai
/// \file modarith.h
/// \brief Class file for performing modular arithmetic.
#ifndef CRYPTOPP_MODARITH_H
#define CRYPTOPP_MODARITH_H
// implementations are in integer.cpp
#include "cryptlib.h"
#include "integer.h"
#include "algebra.h"
#include "secblock.h"
#include "misc.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
#endif
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>;
/// \brief Ring of congruence classes modulo n
/// \details This implementation represents each congruence class as
/// the smallest non-negative integer in that class.
/// \details <tt>const Element&</tt> returned by member functions are
/// references to internal data members. Since each object may have
/// only one such data member for holding results, you should use the
/// class like this:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
/// The following code will produce <i>incorrect</i> results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// \details If a ModularArithmetic() is copied or assigned the modulus
/// is copied, but not the internal data members. The internal data
/// members are undefined after copy or assignment.
/// \sa <A HREF="https://cryptopp.com/wiki/Integer">Integer</A> on the
/// Crypto++ wiki.
class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer>
{
public:
typedef int RandomizationParameter;
typedef Integer Element;
virtual ~ModularArithmetic() {}
/// \brief Construct a ModularArithmetic
/// \param modulus congruence class modulus
ModularArithmetic(const Integer &modulus = Integer::One())
: m_modulus(modulus), m_result(static_cast<word>(0), modulus.reg.size()) {}
/// \brief Copy construct a ModularArithmetic
/// \param ma other ModularArithmetic
ModularArithmetic(const ModularArithmetic &ma)
: AbstractRing<Integer>(ma), m_modulus(ma.m_modulus), m_result(static_cast<word>(0), m_modulus.reg.size()) {}
/// \brief Assign a ModularArithmetic
/// \param ma other ModularArithmetic
ModularArithmetic& operator=(const ModularArithmetic &ma) {
if (this != &ma)
{
m_modulus = ma.m_modulus;
m_result = Integer(static_cast<word>(0), m_modulus.reg.size());
}
return *this;
}
/// \brief Construct a ModularArithmetic
/// \param bt BER encoded ModularArithmetic
ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters
/// \brief Clone a ModularArithmetic
/// \return pointer to a new ModularArithmetic
/// \details Clone effectively copy constructs a new ModularArithmetic. The caller is
/// responsible for deleting the pointer returned from this method.
virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);}
/// \brief Encodes in DER format
/// \param bt BufferedTransformation object
void DEREncode(BufferedTransformation &bt) const;
/// \brief Encodes element in DER format
/// \param out BufferedTransformation object
/// \param a Element to encode
void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
/// \brief Decodes element in DER format
/// \param in BufferedTransformation object
/// \param a Element to decode
void BERDecodeElement(BufferedTransformation &in, Element &a) const;
/// \brief Retrieves the modulus
/// \return the modulus
const Integer& GetModulus() const {return m_modulus;}
/// \brief Sets the modulus
/// \param newModulus the new modulus
void SetModulus(const Integer &newModulus)
{m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());}
/// \brief Retrieves the representation
/// \return true if the if the modulus is in Montgomery form for multiplication, false otherwise
virtual bool IsMontgomeryRepresentation() const {return false;}
/// \brief Reduces an element in the congruence class
/// \param a element to convert
/// \return the reduced element
/// \details ConvertIn is useful for derived classes, like MontgomeryRepresentation, which
/// must convert between representations.
virtual Integer ConvertIn(const Integer &a) const
{return a%m_modulus;}
/// \brief Reduces an element in the congruence class
/// \param a element to convert
/// \return the reduced element
/// \details ConvertOut is useful for derived classes, like MontgomeryRepresentation, which
/// must convert between representations.
virtual Integer ConvertOut(const Integer &a) const
{return a;}
/// \brief Divides an element by 2
/// \param a element to convert
const Integer& Half(const Integer &a) const;
/// \brief Compare two elements for equality
/// \param a first element
/// \param b second element
/// \return true if the elements are equal, false otherwise
/// \details Equal() tests the elements for equality using <tt>a==b</tt>
bool Equal(const Integer &a, const Integer &b) const
{return a==b;}
/// \brief Provides the Identity element
/// \return the Identity element
const Integer& Identity() const
{return Integer::Zero();}
/// \brief Adds elements in the ring
/// \param a first element
/// \param b second element
/// \return the sum of <tt>a</tt> and <tt>b</tt>
const Integer& Add(const Integer &a, const Integer &b) const;
/// \brief TODO
/// \param a first element
/// \param b second element
/// \return TODO
Integer& Accumulate(Integer &a, const Integer &b) const;
/// \brief Inverts the element in the ring
/// \param a first element
/// \return the inverse of the element
const Integer& Inverse(const Integer &a) const;
/// \brief Subtracts elements in the ring
/// \param a first element
/// \param b second element
/// \return the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
const Integer& Subtract(const Integer &a, const Integer &b) const;
/// \brief TODO
/// \param a first element
/// \param b second element
/// \return TODO
Integer& Reduce(Integer &a, const Integer &b) const;
/// \brief Doubles an element in the ring
/// \param a the element
/// \return the element doubled
/// \details Double returns <tt>Add(a, a)</tt>. The element <tt>a</tt> must provide an Add member function.
const Integer& Double(const Integer &a) const
{return Add(a, a);}
/// \brief Retrieves the multiplicative identity
/// \return the multiplicative identity
/// \details the base class implementations returns 1.
const Integer& MultiplicativeIdentity() const
{return Integer::One();}
/// \brief Multiplies elements in the ring
/// \param a the multiplicand
/// \param b the multiplier
/// \return the product of a and b
/// \details Multiply returns <tt>a*b\%n</tt>.
const Integer& Multiply(const Integer &a, const Integer &b) const
{return m_result1 = a*b%m_modulus;}
/// \brief Square an element in the ring
/// \param a the element
/// \return the element squared
/// \details Square returns <tt>a*a\%n</tt>. The element <tt>a</tt> must provide a Square member function.
const Integer& Square(const Integer &a) const
{return m_result1 = a.Squared()%m_modulus;}
/// \brief Determines whether an element is a unit in the ring
/// \param a the element
/// \return true if the element is a unit after reduction, false otherwise.
bool IsUnit(const Integer &a) const
{return Integer::Gcd(a, m_modulus).IsUnit();}
/// \brief Calculate the multiplicative inverse of an element in the ring
/// \param a the element
/// \details MultiplicativeInverse returns <tt>a<sup>-1</sup>\%n</tt>. The element <tt>a</tt> must
/// provide a InverseMod member function.
const Integer& MultiplicativeInverse(const Integer &a) const
{return m_result1 = a.InverseMod(m_modulus);}
/// \brief Divides elements in the ring
/// \param a the dividend
/// \param b the divisor
/// \return the quotient
/// \details Divide returns <tt>a*b<sup>-1</sup>\%n</tt>.
const Integer& Divide(const Integer &a, const Integer &b) const
{return Multiply(a, MultiplicativeInverse(b));}
/// \brief TODO
/// \param x first element
/// \param e1 first exponent
/// \param y second element
/// \param e2 second exponent
/// \return TODO
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
/// \brief Exponentiates a base to multiple exponents in the ring
/// \param results an array of Elements
/// \param base the base to raise to the exponents
/// \param exponents an array of exponents
/// \param exponentsCount the number of exponents in the array
/// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
/// result at the respective position in the results array.
/// \details SimultaneousExponentiate() must be implemented in a derived class.
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
/// \brief Provides the maximum bit size of an element in the ring
/// \return maximum bit size of an element
unsigned int MaxElementBitLength() const
{return (m_modulus-1).BitCount();}
/// \brief Provides the maximum byte size of an element in the ring
/// \return maximum byte size of an element
unsigned int MaxElementByteLength() const
{return (m_modulus-1).ByteCount();}
/// \brief Provides a random element in the ring
/// \param rng RandomNumberGenerator used to generate material
/// \param ignore_for_now unused
/// \return a random element that is uniformly distributed
/// \details RandomElement constructs a new element in the range <tt>[0,n-1]</tt>, inclusive.
/// The element's class must provide a constructor with the signature <tt>Element(RandomNumberGenerator rng,
/// Element min, Element max)</tt>.
Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &ignore_for_now = 0) const
// left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct
{
CRYPTOPP_UNUSED(ignore_for_now);
return Element(rng, Integer::Zero(), m_modulus - Integer::One()) ;
}
/// \brief Compares two ModularArithmetic for equality
/// \param rhs other ModularArithmetic
/// \return true if this is equal to the other, false otherwise
/// \details The operator tests for equality using <tt>this.m_modulus == rhs.m_modulus</tt>.
bool operator==(const ModularArithmetic &rhs) const
{return m_modulus == rhs.m_modulus;}
static const RandomizationParameter DefaultRandomizationParameter;
private:
// TODO: Clang on OS X needs a real operator=.
// Squash warning on missing assignment operator.
// ModularArithmetic& operator=(const ModularArithmetic &ma);
protected:
Integer m_modulus;
mutable Integer m_result, m_result1;
};
// const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ;
/// \brief Performs modular arithmetic in Montgomery representation for increased speed
/// \details The Montgomery representation represents each congruence class <tt>[a]</tt> as
/// <tt>a*r\%n</tt>, where <tt>r</tt> is a convenient power of 2.
/// \details <tt>const Element&</tt> returned by member functions are references to
/// internal data members. Since each object may have only one such data member for holding
/// results, the following code will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic
{
public:
virtual ~MontgomeryRepresentation() {}
/// \brief Construct a MontgomeryRepresentation
/// \param modulus congruence class modulus
/// \note The modulus must be odd.
MontgomeryRepresentation(const Integer &modulus);
/// \brief Clone a MontgomeryRepresentation
/// \return pointer to a new MontgomeryRepresentation
/// \details Clone effectively copy constructs a new MontgomeryRepresentation. The caller is
/// responsible for deleting the pointer returned from this method.
virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);}
bool IsMontgomeryRepresentation() const {return true;}
Integer ConvertIn(const Integer &a) const
{return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;}
Integer ConvertOut(const Integer &a) const;
const Integer& MultiplicativeIdentity() const
{return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;}
const Integer& Multiply(const Integer &a, const Integer &b) const;
const Integer& Square(const Integer &a) const;
const Integer& MultiplicativeInverse(const Integer &a) const;
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const
{return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);}
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
{AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);}
private:
Integer m_u;
mutable IntegerSecBlock m_workspace;
};
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif
|