1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
// queue.h - originally written and placed in the public domain by Wei Dai
/// \file
/// \brief Classes for an unlimited queue to store bytes
#ifndef CRYPTOPP_QUEUE_H
#define CRYPTOPP_QUEUE_H
#include "cryptlib.h"
#include "simple.h"
NAMESPACE_BEGIN(CryptoPP)
class ByteQueueNode;
/// \brief Data structure used to store byte strings
/// \details The queue is implemented as a linked list of byte arrays.
/// Each byte array is stored in a ByteQueueNode.
/// \sa <A HREF="https://www.cryptopp.com/wiki/ByteQueue">ByteQueue</A>
/// on the Crypto++ wiki.
/// \since Crypto++ 2.0
class CRYPTOPP_DLL ByteQueue : public Bufferless<BufferedTransformation>
{
public:
virtual ~ByteQueue();
/// \brief Construct a ByteQueue
/// \param nodeSize the initial node size
/// \details Internally, ByteQueue uses a ByteQueueNode to store bytes,
/// and <tt>nodeSize</tt> determines the size of the ByteQueueNode. A value
/// of 0 indicates the ByteQueueNode should be automatically sized,
/// which means a value of 256 is used.
ByteQueue(size_t nodeSize=0);
/// \brief Copy construct a ByteQueue
/// \param copy the other ByteQueue
ByteQueue(const ByteQueue ©);
// BufferedTransformation
lword MaxRetrievable() const
{return CurrentSize();}
bool AnyRetrievable() const
{return !IsEmpty();}
void IsolatedInitialize(const NameValuePairs ¶meters);
byte * CreatePutSpace(size_t &size);
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking);
size_t Get(byte &outByte);
size_t Get(byte *outString, size_t getMax);
size_t Peek(byte &outByte) const;
size_t Peek(byte *outString, size_t peekMax) const;
size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const;
/// \brief Set node size
/// \param nodeSize the new node size, in bytes
/// \details The default node size is 256.
void SetNodeSize(size_t nodeSize);
/// \brief Determine data size
/// \return the data size, in bytes
lword CurrentSize() const;
/// \brief Determine data availability
/// \return true if the ByteQueue has data, false otherwise
bool IsEmpty() const;
/// \brief Empty the queue
void Clear();
/// \brief Insert data in the queue
/// \param inByte a byte to insert
/// \details Unget() inserts a byte at the head of the queue
void Unget(byte inByte);
/// \brief Insert data in the queue
/// \param inString a byte array to insert
/// \param length the size of the byte array
/// \details Unget() inserts a byte array at the head of the queue
void Unget(const byte *inString, size_t length);
/// \brief Peek data in the queue
/// \param contiguousSize the size of the data
/// \details Spy() peeks at data at the head of the queue. Spy() does
/// not remove data from the queue.
/// \details The data's size is returned in <tt>contiguousSize</tt>.
/// Spy() returns the size of the first byte array in the list. The
/// entire data may be larger since the queue is a linked list of
/// byte arrays.
const byte * Spy(size_t &contiguousSize) const;
/// \brief Insert data in the queue
/// \param inString a byte array to insert
/// \param size the length of the byte array
/// \details LazyPut() inserts a byte array at the tail of the queue.
/// The data may not be copied at this point. Rather, the pointer
/// and size to external data are recorded.
/// \details Another call to Put() or LazyPut() will force the data to
/// be copied. When lazy puts are used, the data is copied when
/// FinalizeLazyPut() is called.
/// \sa LazyPutter
void LazyPut(const byte *inString, size_t size);
/// \brief Insert data in the queue
/// \param inString a byte array to insert
/// \param size the length of the byte array
/// \details LazyPut() inserts a byte array at the tail of the queue.
/// The data may not be copied at this point. Rather, the pointer
/// and size to external data are recorded.
/// \details Another call to Put() or LazyPut() will force the data to
/// be copied. When lazy puts are used, the data is copied when
/// FinalizeLazyPut() is called.
/// \sa LazyPutter
void LazyPutModifiable(byte *inString, size_t size);
/// \brief Remove data from the queue
/// \param size the length of the data
/// \throw InvalidArgument if there is no lazy data in the queue or if
/// size is larger than the lazy string
/// \details UndoLazyPut() truncates data inserted using LazyPut() by
/// modifying size.
/// \sa LazyPutter
void UndoLazyPut(size_t size);
/// \brief Insert data in the queue
/// \details FinalizeLazyPut() copies external data inserted using
/// LazyPut() or LazyPutModifiable() into the tail of the queue.
/// \sa LazyPutter
void FinalizeLazyPut();
/// \brief Assign contents from another ByteQueue
/// \param rhs the other ByteQueue
/// \return reference to this ByteQueue
ByteQueue & operator=(const ByteQueue &rhs);
/// \brief Bitwise compare two ByteQueue
/// \param rhs the other ByteQueue
/// \return true if the size and bits are equal, false otherwise
/// \details operator==() walks each ByteQueue comparing bytes in
/// each queue. operator==() is not constant time.
bool operator==(const ByteQueue &rhs) const;
/// \brief Bitwise compare two ByteQueue
/// \param rhs the other ByteQueue
/// \return true if the size and bits are not equal, false otherwise
/// \details operator!=() is implemented in terms of operator==().
/// operator==() is not constant time.
bool operator!=(const ByteQueue &rhs) const {return !operator==(rhs);}
/// \brief Retrieve data from the queue
/// \param index of byte to retrieve
/// \return byte at the specified index
/// \details operator[]() does not perform bounds checking.
byte operator[](lword index) const;
/// \brief Swap contents with another ByteQueue
/// \param rhs the other ByteQueue
void swap(ByteQueue &rhs);
/// \brief A ByteQueue iterator
class Walker : public InputRejecting<BufferedTransformation>
{
public:
/// \brief Construct a ByteQueue Walker
/// \param queue a ByteQueue
Walker(const ByteQueue &queue)
: m_queue(queue), m_node(NULLPTR), m_position(0), m_offset(0), m_lazyString(NULLPTR), m_lazyLength(0)
{Initialize();}
lword GetCurrentPosition() {return m_position;}
lword MaxRetrievable() const
{return m_queue.CurrentSize() - m_position;}
void IsolatedInitialize(const NameValuePairs ¶meters);
size_t Get(byte &outByte);
size_t Get(byte *outString, size_t getMax);
size_t Peek(byte &outByte) const;
size_t Peek(byte *outString, size_t peekMax) const;
size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const;
private:
const ByteQueue &m_queue;
const ByteQueueNode *m_node;
lword m_position;
size_t m_offset;
const byte *m_lazyString;
size_t m_lazyLength;
};
friend class Walker;
protected:
void CleanupUsedNodes();
void CopyFrom(const ByteQueue ©);
void Destroy();
private:
ByteQueueNode *m_head, *m_tail;
byte *m_lazyString;
size_t m_lazyLength;
size_t m_nodeSize;
bool m_lazyStringModifiable;
bool m_autoNodeSize;
};
/// \brief Helper class to finalize Puts on ByteQueue
/// \details LazyPutter ensures LazyPut is committed to the ByteQueue
/// in event of exception. During destruction, the LazyPutter class
/// calls FinalizeLazyPut.
class CRYPTOPP_DLL LazyPutter
{
public:
virtual ~LazyPutter() {
try {m_bq.FinalizeLazyPut();}
catch(const Exception&) {CRYPTOPP_ASSERT(0);}
}
/// \brief Construct a LazyPutter
/// \param bq the ByteQueue
/// \param inString a byte array to insert
/// \param size the length of the byte array
/// \details LazyPutter ensures LazyPut is committed to the ByteQueue
/// in event of exception. During destruction, the LazyPutter class
/// calls FinalizeLazyPut.
LazyPutter(ByteQueue &bq, const byte *inString, size_t size)
: m_bq(bq) {bq.LazyPut(inString, size);}
protected:
LazyPutter(ByteQueue &bq) : m_bq(bq) {}
private:
ByteQueue &m_bq;
};
/// \brief Helper class to finalize Puts on ByteQueue
/// \details LazyPutterModifiable ensures LazyPut is committed to the
/// ByteQueue in event of exception. During destruction, the
/// LazyPutterModifiable class calls FinalizeLazyPut.
class LazyPutterModifiable : public LazyPutter
{
public:
/// \brief Construct a LazyPutterModifiable
/// \param bq the ByteQueue
/// \param inString a byte array to insert
/// \param size the length of the byte array
/// \details LazyPutterModifiable ensures LazyPut is committed to the
/// ByteQueue in event of exception. During destruction, the
/// LazyPutterModifiable class calls FinalizeLazyPut.
LazyPutterModifiable(ByteQueue &bq, byte *inString, size_t size)
: LazyPutter(bq) {bq.LazyPutModifiable(inString, size);}
};
NAMESPACE_END
#ifndef __BORLANDC__
NAMESPACE_BEGIN(std)
template<> inline void swap(CryptoPP::ByteQueue &a, CryptoPP::ByteQueue &b)
{
a.swap(b);
}
NAMESPACE_END
#endif
#endif
|