1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
// rw.cpp - originally written and placed in the public domain by Wei Dai
#include "pch.h"
#include "rw.h"
#include "asn.h"
#include "integer.h"
#include "nbtheory.h"
#include "modarith.h"
#include "asn.h"
#ifndef CRYPTOPP_IMPORTS
#if defined(_OPENMP)
# define CRYPTOPP_RW_USE_OMP 1
#else
# define CRYPTOPP_RW_USE_OMP 0
#endif
NAMESPACE_BEGIN(CryptoPP)
void RWFunction::BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_n.BERDecode(seq);
seq.MessageEnd();
}
void RWFunction::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_n.DEREncode(seq);
seq.MessageEnd();
}
Integer RWFunction::ApplyFunction(const Integer &in) const
{
DoQuickSanityCheck();
Integer out = in.Squared()%m_n;
const word r = 12;
// this code was written to handle both r = 6 and r = 12,
// but now only r = 12 is used in P1363
const word r2 = r/2;
const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13
const word r3b = (16 + 13 - r) % 16;
const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5
switch (out % 16)
{
case r:
break;
case r2:
case r2+8:
out <<= 1;
break;
case r3a:
case r3b:
out.Negate();
out += m_n;
break;
case r4:
case r4+8:
out.Negate();
out += m_n;
out <<= 1;
break;
default:
out = Integer::Zero();
}
return out;
}
bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(level);
bool pass = true;
pass = pass && m_n > Integer::One() && m_n%8 == 5;
CRYPTOPP_ASSERT(pass);
return pass;
}
bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
;
}
void RWFunction::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
;
}
// *****************************************************************************
// private key operations:
// generate a random private key
void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
int modulusSize = 2048;
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
if (modulusSize < 16)
throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small");
AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize);
m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8)));
m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8)));
m_n = m_p * m_q;
m_u = m_q.InverseMod(m_p);
Precompute();
}
void InvertibleRWFunction::Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u)
{
m_n = n; m_p = p; m_q = q; m_u = u;
Precompute();
}
void InvertibleRWFunction::PrecomputeTweakedRoots() const
{
ModularArithmetic modp(m_p), modq(m_q);
// GCC warning bug, https://stackoverflow.com/q/12842306/608639
#ifdef _OPENMP
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP)
{
#pragma omp section
m_pre_2_9p = modp.Exponentiate(2, (9 * m_p - 11)/8);
#pragma omp section
m_pre_2_3q = modq.Exponentiate(2, (3 * m_q - 5)/8);
#pragma omp section
m_pre_q_p = modp.Exponentiate(m_q, m_p - 2);
}
#else
m_pre_2_9p = modp.Exponentiate(2, (9 * m_p - 11)/8);
m_pre_2_3q = modq.Exponentiate(2, (3 * m_q - 5)/8);
m_pre_q_p = modp.Exponentiate(m_q, m_p - 2);
#endif
m_precompute = true;
}
void InvertibleRWFunction::LoadPrecomputation(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_pre_2_9p.BERDecode(seq);
m_pre_2_3q.BERDecode(seq);
m_pre_q_p.BERDecode(seq);
seq.MessageEnd();
m_precompute = true;
}
void InvertibleRWFunction::SavePrecomputation(BufferedTransformation &bt) const
{
if(!m_precompute)
Precompute();
DERSequenceEncoder seq(bt);
m_pre_2_9p.DEREncode(seq);
m_pre_2_3q.DEREncode(seq);
m_pre_q_p.DEREncode(seq);
seq.MessageEnd();
}
void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_n.BERDecode(seq);
m_p.BERDecode(seq);
m_q.BERDecode(seq);
m_u.BERDecode(seq);
seq.MessageEnd();
m_precompute = false;
}
void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_n.DEREncode(seq);
m_p.DEREncode(seq);
m_q.DEREncode(seq);
m_u.DEREncode(seq);
seq.MessageEnd();
}
// DJB's "RSA signatures and Rabin-Williams signatures..." (http://cr.yp.to/sigs/rwsota-20080131.pdf).
Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
{
DoQuickSanityCheck();
if(!m_precompute)
Precompute();
ModularArithmetic modn(m_n), modp(m_p), modq(m_q);
Integer r, rInv;
do
{
// Do this in a loop for people using small numbers for testing
r.Randomize(rng, Integer::One(), m_n - Integer::One());
// Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting.
// Squaring to satisfy Jacobi requirements suggested by Jean-Pierre Munch.
r = modn.Square(r);
rInv = modn.MultiplicativeInverse(r);
} while (rInv.IsZero());
Integer re = modn.Square(r);
re = modn.Multiply(re, x); // blind
const Integer &h = re, &p = m_p, &q = m_q;
Integer e, f;
const Integer U = modq.Exponentiate(h, (q+1)/8);
if(((modq.Exponentiate(U, 4) - h) % q).IsZero())
e = Integer::One();
else
e = -1;
const Integer eh = e*h, V = modp.Exponentiate(eh, (p-3)/8);
if(((modp.Multiply(modp.Exponentiate(V, 4), modp.Exponentiate(eh, 2)) - eh) % p).IsZero())
f = Integer::One();
else
f = 2;
#ifdef _OPENMP
Integer W, X;
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP)
{
#pragma omp section
{
W = (f.IsUnit() ? U : modq.Multiply(m_pre_2_3q, U));
}
#pragma omp section
{
const Integer t = modp.Multiply(modp.Exponentiate(V, 3), eh);
X = (f.IsUnit() ? t : modp.Multiply(m_pre_2_9p, t));
}
}
#else
const Integer W = (f.IsUnit() ? U : modq.Multiply(m_pre_2_3q, U));
const Integer t = modp.Multiply(modp.Exponentiate(V, 3), eh);
const Integer X = (f.IsUnit() ? t : modp.Multiply(m_pre_2_9p, t));
#endif
const Integer Y = W + q * modp.Multiply(m_pre_q_p, (X - W));
// Signature
Integer s = modn.Multiply(modn.Square(Y), rInv);
CRYPTOPP_ASSERT((e * f * s.Squared()) % m_n == x);
// IEEE P1363, Section 8.2.8 IFSP-RW, p.44
s = STDMIN(s, m_n - s);
if (ApplyFunction(s) != x) // check
throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation");
return s;
}
bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
bool pass = RWFunction::Validate(rng, level);
CRYPTOPP_ASSERT(pass);
pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n;
CRYPTOPP_ASSERT(pass);
pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n;
CRYPTOPP_ASSERT(pass);
pass = pass && m_u.IsPositive() && m_u < m_p;
CRYPTOPP_ASSERT(pass);
if (level >= 1)
{
pass = pass && m_p * m_q == m_n;
CRYPTOPP_ASSERT(pass);
pass = pass && m_u * m_q % m_p == 1;
CRYPTOPP_ASSERT(pass);
}
if (level >= 2)
{
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
CRYPTOPP_ASSERT(pass);
}
return pass;
}
bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper<RWFunction>(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
;
}
void InvertibleRWFunction::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper<RWFunction>(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
;
m_precompute = false;
}
NAMESPACE_END
#endif
|