1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
// simon.h - written and placed in the public domain by Jeffrey Walton
#include "pch.h"
#include "config.h"
#include "simon.h"
#include "misc.h"
#include "cpu.h"
// Uncomment for benchmarking C++ against SSE or NEON.
// Do so in both simon.cpp and simon_simd.cpp.
// #undef CRYPTOPP_SSSE3_AVAILABLE
// #undef CRYPTOPP_SSE41_AVAILABLE
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::rotlConstant;
using CryptoPP::rotrConstant;
/// \brief Round transformation helper
/// \tparam W word type
/// \param v value
template <class W>
inline W f(const W v)
{
return (rotlConstant<1>(v) & rotlConstant<8>(v)) ^ rotlConstant<2>(v);
}
/// \brief Round transformation
/// \tparam W word type
/// \param x value
/// \param y value
/// \param k value
/// \param l value
template <class W>
inline void R2(W& x, W& y, const W k, const W l)
{
y ^= f(x); y ^= k;
x ^= f(y); x ^= l;
}
/// \brief Forward transformation
/// \tparam W word type
/// \tparam R number of rounds
/// \param c output array
/// \param p input array
/// \param k subkey array
template <class W, unsigned int R>
inline void SIMON_Encrypt(W c[2], const W p[2], const W k[R])
{
c[0]=p[0]; c[1]=p[1];
for (int i = 0; i < static_cast<int>(R-1); i += 2)
R2(c[0], c[1], k[i], k[i + 1]);
if (R & 1)
{
c[1] ^= f(c[0]); c[1] ^= k[R-1];
W t = c[0]; c[0] = c[1]; c[1] = t;
}
}
/// \brief Reverse transformation
/// \tparam W word type
/// \tparam R number of rounds
/// \param p output array
/// \param c input array
/// \param k subkey array
template <class W, unsigned int R>
inline void SIMON_Decrypt(W p[2], const W c[2], const W k[R])
{
p[0]=c[0]; p[1]=c[1];
unsigned int rounds = R;
if (R & 1)
{
const W t = p[1]; p[1] = p[0]; p[0] = t;
p[1] ^= k[R - 1]; p[1] ^= f(p[0]);
rounds--;
}
for (int i = static_cast<int>(rounds - 2); i >= 0; i -= 2)
R2(p[1], p[0], k[i + 1], k[i]);
}
/// \brief Subkey generation function
/// \details Used for SIMON-64 with 96-bit key and 42 rounds. A template was
/// not worthwhile because all instantiations would need specialization.
/// \param key empty subkey array
/// \param k user key array
inline void SIMON64_ExpandKey_3W(word32 key[42], const word32 k[3])
{
const word32 c = 0xfffffffc;
word64 z = W64LIT(0x7369f885192c0ef5);
key[0] = k[2]; key[1] = k[1]; key[2] = k[0];
for (size_t i = 3; i<42; ++i)
{
key[i] = static_cast<word32>(c ^ (z & 1) ^ key[i - 3] ^
rotrConstant<3>(key[i - 1]) ^ rotrConstant<4>(key[i - 1]));
z >>= 1;
}
}
/// \brief Subkey generation function
/// \details Used for SIMON-64 with 128-bit key and 44 rounds. A template was
/// not worthwhile because all instantiations would need specialization.
/// \param key empty subkey array
/// \param k user key array
inline void SIMON64_ExpandKey_4W(word32 key[44], const word32 k[4])
{
const word32 c = 0xfffffffc;
word64 z = W64LIT(0xfc2ce51207a635db);
key[0] = k[3]; key[1] = k[2]; key[2] = k[1]; key[3] = k[0];
for (size_t i = 4; i<44; ++i)
{
key[i] = static_cast<word32>(c ^ (z & 1) ^ key[i - 4] ^
rotrConstant<3>(key[i - 1]) ^ key[i - 3] ^ rotrConstant<4>(key[i - 1]) ^
rotrConstant<1>(key[i - 3]));
z >>= 1;
}
}
/// \brief Subkey generation function
/// \details Used for SIMON-128 with 128-bit key and 68 rounds. A template was
/// not worthwhile because all instantiations would need specialization.
/// \param key empty subkey array
/// \param k user key array
inline void SIMON128_ExpandKey_2W(word64 key[68], const word64 k[2])
{
const word64 c = W64LIT(0xfffffffffffffffc);
word64 z = W64LIT(0x7369f885192c0ef5);
key[0] = k[1]; key[1] = k[0];
for (size_t i=2; i<66; ++i)
{
key[i] = c ^ (z & 1) ^ key[i - 2] ^ rotrConstant<3>(key[i - 1]) ^ rotrConstant<4>(key[i - 1]);
z>>=1;
}
key[66] = c ^ 1 ^ key[64] ^ rotrConstant<3>(key[65]) ^ rotrConstant<4>(key[65]);
key[67] = c^key[65] ^ rotrConstant<3>(key[66]) ^ rotrConstant<4>(key[66]);
}
/// \brief Subkey generation function
/// \details Used for SIMON-128 with 192-bit key and 69 rounds. A template was
/// not worthwhile because all instantiations would need specialization.
/// \param key empty subkey array
/// \param k user key array
inline void SIMON128_ExpandKey_3W(word64 key[69], const word64 k[3])
{
const word64 c = W64LIT(0xfffffffffffffffc);
word64 z = W64LIT(0xfc2ce51207a635db);
key[0]=k[2]; key[1]=k[1]; key[2]=k[0];
for (size_t i=3; i<67; ++i)
{
key[i] = c ^ (z & 1) ^ key[i - 3] ^ rotrConstant<3>(key[i - 1]) ^ rotrConstant<4>(key[i - 1]);
z>>=1;
}
key[67] = c^key[64] ^ rotrConstant<3>(key[66]) ^ rotrConstant<4>(key[66]);
key[68] = c ^ 1 ^ key[65] ^ rotrConstant<3>(key[67]) ^ rotrConstant<4>(key[67]);
}
/// \brief Subkey generation function
/// \details Used for SIMON-128 with 256-bit key and 72 rounds. A template was
/// not worthwhile because all instantiations would need specialization.
/// \param key empty subkey array
/// \param k user key array
inline void SIMON128_ExpandKey_4W(word64 key[72], const word64 k[4])
{
const word64 c = W64LIT(0xfffffffffffffffc);
word64 z = W64LIT(0xfdc94c3a046d678b);
key[0]=k[3]; key[1]=k[2]; key[2]=k[1]; key[3]=k[0];
for (size_t i=4; i<68; ++i)
{
key[i] = c ^ (z & 1) ^ key[i - 4] ^ rotrConstant<3>(key[i - 1]) ^ key[i - 3] ^ rotrConstant<4>(key[i - 1]) ^ rotrConstant<1>(key[i - 3]);
z>>=1;
}
key[68] = c^key[64] ^ rotrConstant<3>(key[67]) ^ key[65] ^ rotrConstant<4>(key[67]) ^ rotrConstant<1>(key[65]);
key[69] = c ^ 1 ^ key[65] ^ rotrConstant<3>(key[68]) ^ key[66] ^ rotrConstant<4>(key[68]) ^ rotrConstant<1>(key[66]);
key[70] = c^key[66] ^ rotrConstant<3>(key[69]) ^ key[67] ^ rotrConstant<4>(key[69]) ^ rotrConstant<1>(key[67]);
key[71] = c^key[67] ^ rotrConstant<3>(key[70]) ^ key[68] ^ rotrConstant<4>(key[70]) ^ rotrConstant<1>(key[68]);
}
ANONYMOUS_NAMESPACE_END
///////////////////////////////////////////////////////////
NAMESPACE_BEGIN(CryptoPP)
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
extern size_t SIMON128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
#endif
#if (CRYPTOPP_SSSE3_AVAILABLE)
extern size_t SIMON128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t SIMON128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
extern size_t SIMON128_Enc_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
extern size_t SIMON128_Dec_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);
#endif
std::string SIMON64::Base::AlgorithmProvider() const
{
return "C++";
}
unsigned int SIMON64::Base::OptimalDataAlignment() const
{
return GetAlignmentOf<word32>();
}
void SIMON64::Base::UncheckedSetKey(const byte *userKey, unsigned int keyLength, const NameValuePairs ¶ms)
{
CRYPTOPP_ASSERT(keyLength == 12 || keyLength == 16);
CRYPTOPP_UNUSED(params);
// Building the key schedule table requires {3,4} words workspace.
// Encrypting and decrypting requires 4 words workspace.
m_kwords = keyLength/sizeof(word32);
m_wspace.New(4U);
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word32, LittleEndian> KeyBlock;
KeyBlock kblk(userKey);
switch (m_kwords)
{
case 3:
m_rkeys.New((m_rounds = 42)+1);
kblk(m_wspace[2])(m_wspace[1])(m_wspace[0]);
SIMON64_ExpandKey_3W(m_rkeys, m_wspace);
break;
case 4:
m_rkeys.New((m_rounds = 44)+1);
kblk(m_wspace[3])(m_wspace[2])(m_wspace[1])(m_wspace[0]);
SIMON64_ExpandKey_4W(m_rkeys, m_wspace);
break;
default:
CRYPTOPP_ASSERT(0);
}
}
void SIMON64::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word32, LittleEndian> InBlock;
InBlock iblk(inBlock); iblk(m_wspace[1])(m_wspace[0]);
switch (m_rounds)
{
case 42:
SIMON_Encrypt<word32, 42>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 44:
SIMON_Encrypt<word32, 44>(m_wspace+2, m_wspace+0, m_rkeys);
break;
default:
CRYPTOPP_ASSERT(0);
}
// Do the endian gyrations from the paper and align pointers
typedef PutBlock<word32, LittleEndian> OutBlock;
OutBlock oblk(xorBlock, outBlock); oblk(m_wspace[3])(m_wspace[2]);
}
void SIMON64::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word32, LittleEndian> InBlock;
InBlock iblk(inBlock); iblk(m_wspace[1])(m_wspace[0]);
switch (m_rounds)
{
case 42:
SIMON_Decrypt<word32, 42>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 44:
SIMON_Decrypt<word32, 44>(m_wspace+2, m_wspace+0, m_rkeys);
break;
default:
CRYPTOPP_ASSERT(0);
}
// Do the endian gyrations from the paper and align pointers
typedef PutBlock<word32, LittleEndian> OutBlock;
OutBlock oblk(xorBlock, outBlock); oblk(m_wspace[3])(m_wspace[2]);
}
///////////////////////////////////////////////////////////
std::string SIMON128::Base::AlgorithmProvider() const
{
#if (CRYPTOPP_SIMON128_ADVANCED_PROCESS_BLOCKS)
# if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return "SSSE3";
# endif
# if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return "NEON";
# endif
# if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return "Altivec";
# endif
#endif
return "C++";
}
unsigned int SIMON128::Base::OptimalDataAlignment() const
{
#if (CRYPTOPP_SIMON128_ADVANCED_PROCESS_BLOCKS)
# if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return 16; // load __m128i
# endif
# if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return 8; // load uint64x2_t
# endif
# if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 16; // load uint64x2_p
# endif
#endif
return GetAlignmentOf<word64>();
}
void SIMON128::Base::UncheckedSetKey(const byte *userKey, unsigned int keyLength, const NameValuePairs ¶ms)
{
CRYPTOPP_ASSERT(keyLength == 16 || keyLength == 24 || keyLength == 32);
CRYPTOPP_UNUSED(params);
// Building the key schedule table requires {2,3,4} words workspace.
// Encrypting and decrypting requires 4 words workspace.
m_kwords = keyLength/sizeof(word64);
m_wspace.New(4U);
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word64, LittleEndian> KeyBlock;
KeyBlock kblk(userKey);
switch (m_kwords)
{
case 2:
m_rkeys.New((m_rounds = 68)+1);
kblk(m_wspace[1])(m_wspace[0]);
SIMON128_ExpandKey_2W(m_rkeys, m_wspace);
break;
case 3:
m_rkeys.New((m_rounds = 69)+1);
kblk(m_wspace[2])(m_wspace[1])(m_wspace[0]);
SIMON128_ExpandKey_3W(m_rkeys, m_wspace);
break;
case 4:
m_rkeys.New((m_rounds = 72)+1);
kblk(m_wspace[3])(m_wspace[2])(m_wspace[1])(m_wspace[0]);
SIMON128_ExpandKey_4W(m_rkeys, m_wspace);
break;
default:
CRYPTOPP_ASSERT(0);
}
#if CRYPTOPP_SIMON128_ADVANCED_PROCESS_BLOCKS
// Pre-splat the round keys for Altivec forward transformation
#if CRYPTOPP_ALTIVEC_AVAILABLE
if (IsForwardTransformation() && HasAltivec())
{
AlignedSecBlock presplat(m_rkeys.size()*2);
for (size_t i=0, j=0; i<m_rkeys.size(); i++, j+=2)
presplat[j+0] = presplat[j+1] = m_rkeys[i];
m_rkeys.swap(presplat);
}
#elif CRYPTOPP_SSSE3_AVAILABLE
if (IsForwardTransformation() && HasSSSE3())
{
AlignedSecBlock presplat(m_rkeys.size()*2);
for (size_t i=0, j=0; i<m_rkeys.size(); i++, j+=2)
presplat[j+0] = presplat[j+1] = m_rkeys[i];
m_rkeys.swap(presplat);
}
#endif
#endif // CRYPTOPP_SIMON128_ADVANCED_PROCESS_BLOCKS
}
void SIMON128::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word64, LittleEndian> InBlock;
InBlock iblk(inBlock); iblk(m_wspace[1])(m_wspace[0]);
switch (m_rounds)
{
case 68:
SIMON_Encrypt<word64, 68>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 69:
SIMON_Encrypt<word64, 69>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 72:
SIMON_Encrypt<word64, 72>(m_wspace+2, m_wspace+0, m_rkeys);
break;
default:
CRYPTOPP_ASSERT(0);
}
// Do the endian gyrations from the paper and align pointers
typedef PutBlock<word64, LittleEndian> OutBlock;
OutBlock oblk(xorBlock, outBlock); oblk(m_wspace[3])(m_wspace[2]);
}
void SIMON128::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
// Do the endian gyrations from the paper and align pointers
typedef GetBlock<word64, LittleEndian> InBlock;
InBlock iblk(inBlock); iblk(m_wspace[1])(m_wspace[0]);
switch (m_rounds)
{
case 68:
SIMON_Decrypt<word64, 68>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 69:
SIMON_Decrypt<word64, 69>(m_wspace+2, m_wspace+0, m_rkeys);
break;
case 72:
SIMON_Decrypt<word64, 72>(m_wspace+2, m_wspace+0, m_rkeys);
break;
default:
CRYPTOPP_ASSERT(0);
}
// Do the endian gyrations from the paper and align pointers
typedef PutBlock<word64, LittleEndian> OutBlock;
OutBlock oblk(xorBlock, outBlock); oblk(m_wspace[3])(m_wspace[2]);
}
#if (CRYPTOPP_SIMON128_ADVANCED_PROCESS_BLOCKS)
size_t SIMON128::Enc::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
#if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return SIMON128_Enc_AdvancedProcessBlocks_SSSE3(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return SIMON128_Enc_AdvancedProcessBlocks_NEON(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return SIMON128_Enc_AdvancedProcessBlocks_ALTIVEC(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON128::Dec::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks,
byte *outBlocks, size_t length, word32 flags) const
{
#if (CRYPTOPP_SSSE3_AVAILABLE)
if (HasSSSE3())
return SIMON128_Dec_AdvancedProcessBlocks_SSSE3(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return SIMON128_Dec_AdvancedProcessBlocks_NEON(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return SIMON128_Dec_AdvancedProcessBlocks_ALTIVEC(m_rkeys, (size_t)m_rounds,
inBlocks, xorBlocks, outBlocks, length, flags);
#endif
return BlockTransformation::AdvancedProcessBlocks(inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_SIMON128_ADVANCED_PROCESS_BLOCKS
NAMESPACE_END
|